New PDEs governing both fluids and solids

Symmetric-hyperbolic balance laws to model viscoelastic flows of Maxwell fluids

S. Boyaval, Ecole des Ponts ParisTech

LHSV (Laboratoire d'hydraulique Saint-Venant), EDF'lab Chatou & MATHERIALS, Inria Paris, France

Viscoelastic flows, Maxwell fluids & hyperbolic PDEs

$$\lambda \stackrel{\diamond}{\tau} + \tau = 2\mu \mathbf{D}(\mathbf{u})$$
 where $\mathbf{D}(\mathbf{u}) = \frac{1}{2} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right) \equiv \frac{1}{2} \left(\mathbf{L} + \mathbf{L}^T \right)$ propagates shear waves at finite speed, and models

- Hookean solids when $\lambda, \mu \equiv G\lambda \to \infty$: $\stackrel{\diamondsuit}{\tau} = 2GD(\mathbf{u})$ $\tau = G(\mathbf{F}\mathbf{F}^{\mathsf{T}} \mathbf{I}), (\partial_t + \mathbf{u} \cdot \nabla)\mathbf{F} = \mathbf{L}\mathbf{F} \Rightarrow \stackrel{\diamondsuit}{\tau} \equiv \overset{\triangledown}{\tau} := \partial_t \tau + (\mathbf{u} \cdot \nabla)\tau \mathbf{L}\tau \tau \mathbf{L}^{\mathsf{T}}$
- Newtonian fluids when $\lambda, 1/G \equiv \mu/\lambda \rightarrow 0$: $\tau = 2\mu D(u)$

Our aim: computing unequivocal solutions to Cauchy problems without retardation $\lambda \stackrel{\diamond}{\tau} + \tau = 2\mu(\stackrel{\checkmark}{\lambda} \stackrel{\diamond}{D} + D)$ which induces diffusion $\rho \hat{\textbf{\textit{u}}} - \eta_{\text{\textit{s}}} \Delta \textbf{\textit{u}} = \text{div } \tau_{p}$ [Owens & Philips, Computational rheology. Imperial College Press / World Scientific, 2002]

We suggest a symmetric-hyperbolic system of balance laws that contains $\overset{\diamondsuit}{\tau} \equiv \overset{\triangledown}{\tau} := \partial_t \tau + (\boldsymbol{u} \cdot \nabla) \tau - (\nabla \boldsymbol{u}) \tau - \tau (\nabla \boldsymbol{u})^T$

Outline

1 Setting the constitutive modelling issue

2 From anisotropic elastodynamics to viscoelastic fluids

3 Applications

Continuum Mechanics

Look for $\mathbb{R}^d=\{\pmb{x}=\pmb{\phi_t^i}(\pmb{a})\pmb{e}_i\,,\;\pmb{a}=\pmb{a}^{\alpha}\pmb{e}_{\alpha}\}\quad \forall t\in[0,T),$ i.e.

velocity $\mathbf{u} \equiv \partial_t \phi_t$ and deformation gradient $\mathbf{F} \equiv \partial_\alpha \phi_t^i \mathbf{e}_i \otimes \mathbf{e}^\alpha$

$$\partial_t F_\alpha^i - \partial_\alpha u^i = 0 \tag{1}$$

$$\partial_t |\mathbf{F}| - \partial_\alpha \left(\hat{F}^i_\alpha u^i \right) = 0$$
 (2)

$$\partial_t \hat{F}^j_{\alpha} + \sigma_{ijk} \sigma_{\alpha\beta\gamma} \partial_{\beta} \left(F^j_{\gamma} u^k \right) = 0 \tag{3}$$

where $|{\bf F}|$ and $\hat{{\bf F}}$ denote *determinant* and *cofactor matrix* of ${\bf F}$ while Piola's identities hold ($\sigma_{\alpha\beta\gamma}$ is Levi-Civita's symbol)

$$\sigma_{\alpha\beta\gamma}\partial_{\beta}F_{\gamma}^{i} = 0 = \partial_{\alpha}\hat{F}_{\alpha}^{i} \quad \forall i$$
 (4)

$$(\partial_b F_a^i = \partial_a F_b^i)$$

Newtonian physics

Require balance of energy using material coordinates e.g.

$$\hat{\rho}\partial_t \left(\frac{|\boldsymbol{u}|^2}{2} + \boldsymbol{e} \right) = \partial_\alpha \left(S_i^\alpha u^i \right) + \hat{\rho} f_i u^i \tag{5}$$

where stored energy $e(\mathbf{F})$ defines first Piola-Kirchoff stress \mathbf{S}

$$S_i^{\alpha} = \hat{\rho} \partial_{F_{\alpha}^i} \mathbf{e} \,. \tag{6}$$

Require momentum balance in fact in Cartesian system e.g.

$$\hat{\rho}\partial_t u_i = \partial_\alpha S_i^\alpha + \hat{\rho} f_i \tag{7}$$

by Galilean invariance. Here, we also assume $\hat{\rho}$ constant.

Lagrangian description

Computable motions $\phi_t(\mathbf{a})$ are defined on specifying i) constitutive relations $e(\mathbf{F})$, strictly convex in \mathbf{F} e.g. like

$$e(\mathbf{F}) = \frac{c_1^2}{2} (F_\alpha^k F_\alpha^k - d) \tag{8}$$

 $(c_1^2 \equiv G > 0$ is Lamé's second coefficient or shear modulus) hence $\mathbf{S}(\mathbf{F}) = c_1^2 \mathbf{F}^T$ in the (symmetric-hyperbolic) system

$$\partial_t \mathbf{F}^T = \nabla_{\mathbf{a}} \mathbf{u} \tag{9}$$

$$\hat{\rho}\partial_t \boldsymbol{u} = \operatorname{div}_{\boldsymbol{a}} \boldsymbol{S} + \hat{\rho} \boldsymbol{f}$$
 (10)

plus ii) *initial conditions* for (9–10), e.g. in $[H^s(\mathbb{R}^d)]^{3d}$ (whatever $s \in \mathbb{R}$, $\forall T > 0$ here: (9–10) is linear!)

Neo-Hookean materials

A more realistic constitutive relation (for rubber, resine...) is

$$e(\mathbf{F}) = \frac{c_1^2}{2}(\mathbf{F} : \mathbf{F} - d) - \frac{d_1^2}{1 - \gamma} |\mathbf{F}|^{1 - \gamma}$$
 (11)

(where d_1^2 is Lamé's first coefficient). Properties of (11):

• e(F) is polyconvex in F as soon as $\gamma > 1$

$$\tilde{e}(|m{F}|,m{F}) := e(m{F}) ext{ convex in } |m{F}|,m{F}$$

well defining solutions with $S_i^{\alpha}(\mathbf{F}) = \hat{\rho} c_1^2 F_{\alpha}^i - \hat{\rho} d_1^2 |\mathbf{F}|^{-\gamma} \hat{F}_{\alpha}^i$ to

$$\partial_t \mathbf{F}^T = \nabla_{\mathbf{a}} \mathbf{u} \tag{12}$$

$$\partial_t |\mathbf{F}| = \operatorname{div}_{\mathbf{a}}(\mathbf{u} \cdot \hat{\mathbf{F}})$$
 (13)

$$\partial_t \mathbf{u} = \operatorname{div}_{\mathbf{a}}(\mathbf{S}/\hat{\rho}) + \mathbf{f}$$
 (14)

• e(F) is material-frame indifferent

$$e(\mathbf{F}) = \bar{e}(\mathbf{C}, |\mathbf{C}|)$$
 where $\mathbf{C} = C_{\alpha\beta}\mathbf{e}^{\alpha} \otimes \mathbf{e}^{\beta}, C_{\alpha\beta} = F_{\alpha}^{i}F_{\beta}^{i}$ (and \bar{e} is monotone and convex in each argument)

Eulerian description

Smooth solutions to (11–14) preserving $\nabla_{\mathbf{a}} \times \mathbf{F}^T = 0$ are equivalently (smooth) solutions preserving $\operatorname{div}(\rho \mathbf{F}^T) = 0$ to

$$\partial_t (\rho \mathbf{u}) + \operatorname{div} (\rho \mathbf{u} \otimes \mathbf{u} - \boldsymbol{\sigma}) = \rho \mathbf{f}$$
 (15)

$$\partial_t (\rho \mathbf{F}) - \mathbf{\nabla} \times (\rho \mathbf{F}^T \times \mathbf{u}) = \mathbf{0}$$
 (16)

$$\partial_t \rho + \operatorname{div}\left(\rho \mathbf{u}\right) = 0 \tag{17}$$

using *mass density* $\rho = \hat{\rho}/|\mathbf{F}|$ and Cauchy stress

$$\sigma^{ij} := |\mathbf{F}|^{-1} S^{i\alpha} F_{\alpha}^{j} \equiv \rho c_{1}^{2} F_{\alpha}^{i} F_{\alpha}^{j} - \rho d_{1}^{2} \left(\frac{\rho}{\hat{\rho}}\right)^{\gamma} \delta^{ij}.$$

It allows one to define *isentropic*, time-reversible motions of "solids", isotropic (motions depend only on c_1^2, d_1^2 , not direction)

Fluid motions

Within liquids, stress are mostly spheric i.e. $\sigma=-p\mathbf{I}$ like in the famous barotropic case $e(\mathbf{F})=\frac{C_0}{\gamma-1}\rho^{\gamma-1}$, $p=C_0\rho^{\gamma}$

$$\partial_t (\rho \mathbf{u}) + \operatorname{div} (\rho \mathbf{u} \otimes \mathbf{u} - \boldsymbol{\sigma}) = \rho \mathbf{f}$$
 (18)

$$\partial_t \rho + \operatorname{div}\left(\rho \mathbf{u}\right) = 0 \tag{19}$$

Now, real liquids are viscous and flow non-reversibly

Newtonian fluids $\sigma = -p\mathbf{I} + \tau$, $\tau = 2\mu\mathbf{D}(\mathbf{u})$ produce entropy but propagate shear at infinite speed and fail at

In particular, $\tau = 2\mu \mathbf{D}(\mathbf{u})$ is "purely entropic" unlike shear in elastodynamics, which is paradoxical for *thixotropic fluids* \sim *gels*

Fluids (micro-)structure

Rheology of solids & dense fluids depends on (micro-)structure

Use "structure parameter" τ , Maxwell eq. constitutive relation ?

Objective suspension flow models $\lambda \overset{\diamond}{\tau} + \tau = 2\mu \mathbf{D}(\mathbf{u})$ where e.g. $\overset{\diamond}{\tau} \equiv \overset{\nabla}{\tau} := \partial_t \tau + (\mathbf{u} \cdot \nabla)\tau - (\nabla \mathbf{u})\tau - \tau(\nabla \mathbf{u})^T$ are not well-posed; the *linearized* system is hyperbolic if $\mathbf{c} = \mathbf{c}^T > 0$, $\tau = \frac{\mu}{\lambda}(\mathbf{c} - \mathbf{I})$, but the *nonlinear* system has no conservative formulation.

Viscous friction in shear induces non-reversible deformations; as for plastic solids, we use a *structural tensor* $\mathbf{A} = \mathbf{A}^T > 0$ modelling anisotropy in stored energy through $\mathrm{tr}(\mathbf{AC})$.

Outline

Setting the constitutive modelling issue

2 From anisotropic elastodynamics to viscoelastic fluids

3 Applications

Anisotropic elastodynamics

Defects inducing anisotropy in solids can be modelled on modifying elastodynamics system preserving $\operatorname{div}(\rho \mathbf{F}) = 0$

$$\partial_{t}(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} - \sigma) = \rho \mathbf{f}$$

$$\partial_{t}(\rho \mathbf{F}) - \nabla \times (\rho \mathbf{F}^{T} \times \mathbf{u}) = \mathbf{0}$$

$$\partial_{t}\rho + \operatorname{div}(\rho \mathbf{u}) = \mathbf{0}$$
(20)

where $\sigma := \rho\left(\partial_{\boldsymbol{F}}\boldsymbol{e}\right) \cdot \boldsymbol{F}^{T}$ is given by $e(\boldsymbol{F}) = \bar{e}(\boldsymbol{C}, |\boldsymbol{C}|)$ material-frame indifferent, polyconvex in \boldsymbol{F} .

Introducing a structure parameter $\mathbf{A} = \mathbf{F}_{p}^{-1} \cdot \mathbf{F}_{p}^{-T} > 0$ in e.g.

$$e(\mathbf{F}) = \frac{c_1^2}{2} (\operatorname{tr}(\mathbf{F} \cdot \mathbf{A} \cdot \mathbf{F}^T) - d) - \frac{d_1^2}{1 - \gamma} |\mathbf{F}|^{1 - \gamma}$$
(21)

(still polyconvex in \mathbf{F} !) yields $\sigma = \rho c_1^2 \mathbf{F} \cdot \mathbf{A} \cdot \mathbf{F}^T - p\mathbf{I}$ with $\operatorname{strain} \mathbf{F} \cdot \mathbf{A} \cdot \mathbf{F}^T$ like in [Green, Naghdi 1965] [Lee, Liu 1967]

Maxwell fluids with hyperbolic PDEs

Assuming (20) and a modified neo-Hookean stored energy with structure parameter $\boldsymbol{A}(t, \boldsymbol{x})$ as in (21),

Maxwell fluids $\lambda \stackrel{\diamondsuit}{\tau} + \tau = 2\mu \mathbf{D}(\mathbf{u})$ result from requiring $\mu = \lambda c_1^2$

$$\lambda(\partial_t + \boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{A} + \boldsymbol{A} = \boldsymbol{F}^{-1}\boldsymbol{F}^{-T}$$
 (22)

$$\stackrel{\diamond}{\tau} \equiv \stackrel{\blacktriangle}{\tau} := \partial_t \tau + (\boldsymbol{u} \cdot \nabla) \tau + \tau \cdot \nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T \cdot \tau - (\operatorname{div} \boldsymbol{u}) \tau. \quad (23)$$

Theorem (Lieb, 1973)

$$(m{F},m{Y})\in\mathbb{R}^{d imes d} imes SDP^{d imes d} o {\sf tr}\left(m{F}m{Y}^{-rac{1}{2}}m{F}^T
ight)$$
 is convex

By Godunov-Mock theorem, the system of conservation laws (20–22) is symmetric hyperbolic when $\operatorname{div}(\rho \boldsymbol{F}) = 0$ [Boyaval M2AN 2021]

Thermodynamics consistency

The solutions preserving $div(\rho \mathbf{F}) = 0$ to

$$\partial_{t}(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} - \boldsymbol{\sigma}) = \rho \mathbf{f}
\partial_{t}(\rho \mathbf{F}) - \nabla \times (\rho \mathbf{F}^{T} \times \mathbf{u}) = \mathbf{0}
\partial_{t}\rho + \operatorname{div}(\rho \mathbf{u}) = \mathbf{0}
\partial_{t}\mathbf{A} + \mathbf{u} \cdot \nabla \mathbf{A} = \frac{1}{\lambda}(\mathbf{F}^{-1}\mathbf{F}^{-T} - \mathbf{A})$$
(24)

 $\sigma = \rho c_1^2 \mathbf{F} \cdot \mathbf{A} \cdot \mathbf{F}^T - \tilde{p} \mathbf{I}$ also satisfy the energy balance

$$\partial_t E + \operatorname{div} (E \boldsymbol{u} - \boldsymbol{\sigma} \cdot \boldsymbol{u}) = \rho \boldsymbol{f} \cdot \boldsymbol{u} + \frac{\rho c_1^2}{2\lambda} (\boldsymbol{I} - \boldsymbol{c}^{-1}) : (\boldsymbol{c} - \boldsymbol{I})$$
 (25)

using
$$\boldsymbol{c} = \boldsymbol{F} \boldsymbol{A} \boldsymbol{F}^T \in \boldsymbol{S}^{+,*}, \, E = \rho \left(\frac{1}{2} |\boldsymbol{u}|^2 + \tilde{\boldsymbol{e}} \right), \, \tilde{\boldsymbol{p}} = \boldsymbol{p} + c_1^2 \rho$$

$$\tilde{\mathbf{e}}(\mathbf{F}) = \frac{c_1^2}{2} (\operatorname{tr}(\mathbf{F} \cdot \mathbf{A} \cdot \mathbf{F}^T) - d - \log |\mathbf{F} \cdot \mathbf{A} \cdot \mathbf{F}^T|) - \frac{d_1^2}{1-\gamma} |\mathbf{F}|^{1-\gamma}$$

Entropy and temperature

Thermal influences on mechanics were neglected so far Let e depend on η and preserve entropy production ?

$$-\frac{\rho c_1^2}{2\lambda}(\boldsymbol{I}-\boldsymbol{c}^{-1}):(\boldsymbol{c}-\boldsymbol{I})\equiv \rho\theta(\partial_t+\boldsymbol{u}\cdot\boldsymbol{\nabla})\eta=:\rho(\partial_t+\boldsymbol{u}\cdot\boldsymbol{\nabla})\boldsymbol{e}_s(\eta)$$

Assume $K(\theta)$ affine in a θ -convex Helmholtz free energy

$$\tilde{\mathbf{e}}^{\star}(\mathbf{F},\theta) = \frac{K(\theta)}{2}\bar{\mathbf{e}}_{A}(\mathbf{F}) + \psi_{0}(|\mathbf{F}|,\theta)$$
 (26)

where $\bar{e}_{A}(\mathbf{F}) = \operatorname{tr}(\mathbf{F} \cdot \mathbf{A} \cdot \mathbf{F}^{T}) - d - \log |\mathbf{F} \cdot \mathbf{A} \cdot \mathbf{F}^{T}|$, then

$$e(\mathbf{F}, \eta) = \frac{K - \theta \partial_{\theta} K}{2} \bar{e}_{A}(\mathbf{F}) + e_{0} (|\mathbf{F}|, \eta + \partial_{\theta} K \bar{e}_{A}(\mathbf{F}))$$

after Legendre transform of (26) is jointly convex in $(|\mathbf{F}|, \mathbf{F}, \eta)$

$$o m{\sigma} =
ho m{K}(heta) m{F} \cdot m{A} \cdot m{F}^T - ilde{m{p}}(
ho, heta) m{I}$$
 like [Dressler-Edwards-Öttinger 1999] for polymers

Adding heat transfer by conduction

Heat conduction at finite-speed can be added using

$$\textit{e}(\textit{\textbf{F}},\eta,\textit{\textbf{p}}) = \frac{\textit{\textbf{K}} - \theta \partial_{\theta} \textit{\textbf{K}}}{2} \bar{\textit{\textbf{e}}}_{\textit{\textbf{A}}}(\textit{\textbf{F}}) + \textit{\textbf{e}}_{0} \left(|\textit{\textbf{F}}|, \eta + \partial_{\theta} \textit{\textbf{K}} \; \bar{\textit{\textbf{e}}}_{\textit{\textbf{A}}}(\textit{\textbf{F}}) \right) + \frac{\tau}{2} |\textit{\textbf{p}}|^{2}$$

$$au
ho (\partial_t + u^i \partial_i) {m p} + {
m div}(\zeta(heta)
ho {m F}) =
ho heta |\zeta'(heta)|^2 \hat{\kappa}^{-1} {m p}$$

as in pioneering works of Cattaneo,

with an additional heat flux in energy balance (25)

$$\partial_t \tilde{\pmb{E}} + \operatorname{div}\left(\tilde{\pmb{E}} \pmb{u} - \pmb{\sigma} \cdot \pmb{u} + heta \zeta'(heta) \pmb{p}\right) =
ho \pmb{f} \cdot \pmb{u}$$

where
$$\tilde{E} = \rho \left(\frac{1}{2} |\boldsymbol{u}|^2 + \boldsymbol{e}(\boldsymbol{F}, \eta, \boldsymbol{p}) \right)$$

Compatibility with Fourier's law

First, balance of energy $\hat{\rho}\partial_t e + \partial_\alpha Q^\alpha = \hat{\rho} r$ for $e(\eta, \mathbf{p})$ is compatible with second law $\hat{\rho}\theta\partial_t \eta + \theta\partial_\alpha q^\alpha - \hat{\rho} r = \hat{\rho}\mathcal{D} \geq 0$ when $Q^\alpha = \theta q^\alpha$, $\hat{\rho}(\partial_{p^\alpha} e)\partial_t p^\alpha + q^\alpha\partial_\alpha \theta = -\hat{\rho}\mathcal{D} < 0$

$$\rho C_1(\partial_t + u^i \partial_i) \hat{\rho} \theta + \partial_i \left(\theta \rho F_\alpha^i q^\alpha \right) = \rho \left(\hat{\rho} \mathcal{D} + F_\alpha^i q^\alpha \partial_i \theta \right)$$
 (27)

where $\theta := \partial_{\eta} e$, $C_1(\theta) := \theta(\partial_{\eta\eta}^2 e)^{-1}$, r = 0 implies Fourier's law

$$heta
ho F_{lpha}^i q^{lpha}
ightarrow -\kappa_{ij} \partial_j heta \quad ext{and} \quad F_{lpha}^i q^{lpha} \partial_i heta + \mathcal{D} \equiv q^{lpha} \partial_{lpha} heta + \mathcal{D}
ightarrow 0$$

i.e. using $\hat{\kappa} := \mathbf{F}^{-1} \cdot \kappa \cdot \mathbf{F}^T$

$$\theta \rho \boldsymbol{q} \to -\hat{\kappa}^{-1} \nabla_{\boldsymbol{a}} \theta , \quad \hat{\rho} \mathcal{D} \to \theta \rho \boldsymbol{q}^T \cdot \hat{\kappa}^{-1} \cdot \boldsymbol{q} > 0$$

provided
$$\tau \hat{\rho} \partial_t p^{\alpha} + \partial_{\alpha} \zeta(\theta) = -\rho \theta |\zeta'(\theta)|^2 [\hat{\kappa}^{-1}]_{\alpha\beta} p^{\beta}$$
, $p = q/\zeta'(\theta)$

Linking solids with fluids

Standard comparison tools for systems of balance laws *rigorously* link the (fading-memory) fluid model (24) with (neo-Hookean) elastic *solid* bodies when $\frac{1}{\lambda} \to 0$ i.e. when no energy is dissipated [Boyaval 2023]

Whenever $0 < \lambda < \infty$, flows dissipate and one is considering non-ideal *fluids* with extra-stress

$$\lambda \left(\partial_t \boldsymbol{\tau} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{\tau} + \boldsymbol{\tau} \cdot \nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T \cdot \boldsymbol{\tau} - (\operatorname{div} \boldsymbol{u}) \boldsymbol{\tau} \right) = 2\mu \boldsymbol{D}(\boldsymbol{u}) - \boldsymbol{\tau}$$

When $\lambda \to 0$, fluids memory is fading infinitely fast and fluids become formally *Newtonian*, with non-zero viscosity $\mu = \lambda c_1^2$ if $c_1^2 \to \infty$ at the same time

Extensions possible

One can change the stored energy and introduce finite-extensibility:

$$\psi = \psi_0 + K(\theta)b^2 \log \left(1 - \frac{F_{\alpha}^i F_{\beta}^i A^{\alpha\beta}}{b^2}\right) - k_B \theta \log |F_{\alpha}^i F_{\beta}^i A^{\alpha\beta}| + \frac{\tau}{2} |\boldsymbol{p}|^2$$

or add a term function of \hat{F} for 3D flows...

or let λ vary

(as a function of θ , **A**, **F**... or yet another structure parameter)

Outline

Setting the constitutive modelling issue

2 From anisotropic elastodynamics to viscoelastic fluids

3 Applications

Saint-Venant for shallow flows:viscous?

Saint-Venant [1871]: free-surface gravity flows of depth H(t, x, y) > 0 are governed by hydrostatic pressure P = gH/2

$$\partial_t H + \operatorname{div}(H \mathbf{U}) = 0 \tag{28}$$

$$\partial_t(H\boldsymbol{U}) + \text{div}(H\boldsymbol{U} \otimes \boldsymbol{U} + H(P + \Sigma_{zz})\boldsymbol{I} - H\boldsymbol{\Sigma}_h) = -kH\boldsymbol{U}$$
 (29)

and
$$\Sigma = 0$$
, or $\Sigma_h = 2\nu D(U)$, $\Sigma_{zz} = -(\Sigma_{xx} + \Sigma_{yy})$

2D shallow elastodynamics

 $\lambda \to \infty$: elastodynamics for thin layers $H \equiv F_c^z = |\boldsymbol{F}_h|^{-1} > 0$ of hyperelastic materials with deformation $\boldsymbol{F} = \partial_{a,b,c}(x,y,z)$

$$\partial_t \mathbf{F} + (\mathbf{u} \cdot \nabla) \mathbf{F} = (\nabla \mathbf{U}) \mathbf{F}$$

and with a Hookean stress function of $\mathbf{B} = \mathbf{F} \mathbf{F}^T$

$$\mathbf{\Sigma}_h = \partial_{\mathbf{F}_h} \left(\frac{G}{2} \mathbf{F}_h : \mathbf{F}_h \right) \mathbf{F}_h^T, \quad \Sigma_{zz} = \partial_{\mathbf{F}_c^z} \left(\frac{G}{2} |\mathbf{F}_c^z|^2 \right) \mathbf{F}_c^z$$

i.e.
$$\boldsymbol{\Sigma}_h - \boldsymbol{\Sigma}_{zz} \boldsymbol{I} \equiv \boldsymbol{G}(\boldsymbol{B}_h - \boldsymbol{B}_{zz} \boldsymbol{I}) = (\partial_{\boldsymbol{F}_h} \boldsymbol{e}) \boldsymbol{F}_h^T;$$

in fact is as *symmetric hyperbolic* system of conservation laws with *polyconvex* energy $e := \frac{g}{2} |\mathbf{F}_h|^{-1} + \frac{G}{2} (\mathbf{F}_h : \mathbf{F}_h + |\mathbf{F}_h|^{-2})$

2D shallow elastodynamics SCL

When $\lambda \to \infty$, SV-UCM should be

$$\begin{split} &\partial_t(HF_\alpha^i) + \partial_j(HU^jF_\alpha^i - HF_\alpha^jU^i) = 0 \\ &\partial_t(HU^i) + \partial_j(HU^jU^i + gH^2/2 + GH^3 - GHF_\alpha^iF_\alpha^j) = -KHU^i \end{split}$$

as long as $\partial_{\alpha}(\sigma_{\alpha\beta}F_{\beta}^{k})=0$, $\partial_{j}(HF_{\alpha}^{j})=0$ (Piola) so e.g.

$$\partial_t H + \partial_j (HU^j) = 0.$$

It is possible accomodate viscosity using "memory" variables.

2D viscoelastic Saint-Venant

Adding $A_{\alpha\beta}$ to the usual dependent variables yields

$$\begin{split} \partial_{t}H + \partial_{j}(HU^{j}) &= 0 \\ \partial_{t}(HF_{\alpha}^{i}) + \partial_{j}(HU^{j}F_{\alpha}^{i} - HF_{\alpha}^{j}U^{i}) &= 0 \\ \partial_{t}(HU^{i}) + \partial_{j}(HU^{j}U^{i} + gH^{2}/2 + GH^{3}A_{cc} - GHF_{\alpha}^{i}A_{\alpha\beta}F_{\beta}^{j}F_{\alpha}^{j}) &= -KHU^{i} \\ \partial_{t}(HA_{\alpha\beta}) + \partial_{j}(HU^{j}A_{\alpha\beta}) &= H(|\mathbf{F}_{h}|^{-2}\sigma_{\alpha\alpha'}\sigma_{\beta\beta'}F_{\alpha'}^{k}F_{\beta'}^{k} - A_{\alpha\beta})/\lambda \\ \partial_{t}(HA_{cc}) + \partial_{j}(HU^{j}A_{cc}) &= H(H^{-2} - A_{cc})/\lambda \end{split}$$

i.e. a system of conservation laws, with companion law

$$egin{aligned} &\partial_t(HE) + \partial_x \left(HEU + H(P + \Sigma_{zz} - \Sigma_{xx})U - H\Sigma_{xy}V
ight) \ &+ \partial_y \left(HEV - H\Sigma_{yx}U + H(P + \Sigma_{zz} - \Sigma_{yy})V
ight) \leq -KH|oldsymbol{U}|^2 - HD \end{aligned}$$

Computing solutions

 $\tau := \sigma + p \delta$ satisfies a *compressible UCM* eq.

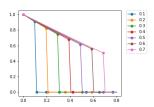
$$\lambda \overset{\triangledown}{\tau} + \tau (\operatorname{div} \boldsymbol{u}) + \tau = 2\mu \boldsymbol{D}(\boldsymbol{u})$$

using
$$\overset{\triangledown}{ au} := \partial_t au + (oldsymbol{u} \cdot oldsymbol{
abla}) au - oldsymbol{
abla} oldsymbol{u}^T$$

Assuming 1D flow, one retrieves the damped-wave equation

$$\lambda \partial_{tt}^2 \tau(t,y) + \partial_t \tau(t,y) = \mu \partial_{yy}^2 \tau(t,y)$$

with shear-wave solution to Stokes first-problem in $\{y > 0\}$



Perspectives

- Compute localized vorticity generation starting from a quiescent fluid
- Treat fluid-solid contact "seamlessly" through parameter discontinuities?
- Treat localized re-structuration under shear?

References

Viscoelastic flows of Maxwell fluids with conservation laws. *M2AN*, 55:807–831, 2021.

R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager. *Dynamics of Polymeric Liquids*, volume 1&2. John Wiley & Sons, 1987.

C. M. Dafermos. Hyperbolic conservation laws in continuum physics. Springer, 2000.

E. H. Lieb.

Convex trace functions and the Wigner-Yanase-Dyson conjecture. *Advances in Math.*, 11:267–288, 1973.

M. Renardy. A local existence and uniqueness theorem for a K-BKZ-fluid. *ARMA* , 88(1):83–94, 1985.