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Typical machine learning problem

Main ingredients :

observations object-label : (X1,Y1), (X2,Y2), ...
→ either given once and for all (batch learning), once at
a time (online learning), upon request...
a restricted set of predictors (fθ, θ ∈ Θ).
→ fθ(X ) meant to predict Y .
a criterion of success, R(θ) :
→ for example R(θ) = P(fθ(X ) 6= Y ), R(θ) = ‖θ − θ0‖
where θ0 is a target parameter, ... we want R(θ) to be
small. But note that it is unknown.
an empirical proxy r(θ) for this criterion of success :
→ for example r(θ) = 1

n

∑n
i=1 1(fθ(Xi) 6= Yi).
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PAC-Bayesian bounds

One more ingredient :

a prior π(dθ) on the parameter space.
The PAC-Bayesian approach usually provides a “posterior
distribution” ρ̂λ and a theoretical guarantee :∫

R(θ)ρ̂λ(dθ) ≤ inf
ρ

[∫
R(θ)ρ(dθ) +

1
λ
K(ρ, π)

]
+ o(1).

Usually o(1) is explicit, λ is some tuning-parameter to be
calibrated (constrained to some range by theory), and

ρ̂λ(dθ) ∝ exp [−λr(θ)]π(dθ).
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Dalalyan-Tsybakov’s Bound
Catoni’s Bound
Audibert’s Bound for Online Learning

1st example : fixed design regression

Context :
X1, . . . ,Xn deterministic ; Yi = f (Xi) + εi and
εi ∼ N (0, σ2) (say).

any (fθ(·) = 〈θ, g(·)〉 , θ ∈ Rp).
R(θ) = 1

n

∑n
i=1[f (Xi)− fθ(Xi)]2.

rn(θ) = 1
n

∑n
i=1[Yi − fθ(Xi)]2.

any prior π.

Pierre Alquier PAC-Bayesian Bounds and Aggregation



Introduction : Learning with PAC-Bayes Bounds
Three Types of PAC-Bayesian Bounds

Computational Issues

Dalalyan-Tsybakov’s Bound
Catoni’s Bound
Audibert’s Bound for Online Learning

1st example : fixed design regression

Context :
X1, . . . ,Xn deterministic ; Yi = f (Xi) + εi and
εi ∼ N (0, σ2) (say).
any (fθ(·) = 〈θ, g(·)〉 , θ ∈ Rp).

R(θ) = 1
n

∑n
i=1[f (Xi)− fθ(Xi)]2.

rn(θ) = 1
n

∑n
i=1[Yi − fθ(Xi)]2.

any prior π.

Pierre Alquier PAC-Bayesian Bounds and Aggregation



Introduction : Learning with PAC-Bayes Bounds
Three Types of PAC-Bayesian Bounds

Computational Issues

Dalalyan-Tsybakov’s Bound
Catoni’s Bound
Audibert’s Bound for Online Learning

1st example : fixed design regression

Context :
X1, . . . ,Xn deterministic ; Yi = f (Xi) + εi and
εi ∼ N (0, σ2) (say).
any (fθ(·) = 〈θ, g(·)〉 , θ ∈ Rp).
R(θ) = 1

n

∑n
i=1[f (Xi)− fθ(Xi)]2.

rn(θ) = 1
n

∑n
i=1[Yi − fθ(Xi)]2.

any prior π.

Pierre Alquier PAC-Bayesian Bounds and Aggregation



Introduction : Learning with PAC-Bayes Bounds
Three Types of PAC-Bayesian Bounds

Computational Issues

Dalalyan-Tsybakov’s Bound
Catoni’s Bound
Audibert’s Bound for Online Learning

1st example : fixed design regression

Context :
X1, . . . ,Xn deterministic ; Yi = f (Xi) + εi and
εi ∼ N (0, σ2) (say).
any (fθ(·) = 〈θ, g(·)〉 , θ ∈ Rp).
R(θ) = 1

n

∑n
i=1[f (Xi)− fθ(Xi)]2.

rn(θ) = 1
n

∑n
i=1[Yi − fθ(Xi)]2.

any prior π.

Pierre Alquier PAC-Bayesian Bounds and Aggregation



Introduction : Learning with PAC-Bayes Bounds
Three Types of PAC-Bayesian Bounds

Computational Issues

Dalalyan-Tsybakov’s Bound
Catoni’s Bound
Audibert’s Bound for Online Learning

1st example : fixed design regression

Context :
X1, . . . ,Xn deterministic ; Yi = f (Xi) + εi and
εi ∼ N (0, σ2) (say).
any (fθ(·) = 〈θ, g(·)〉 , θ ∈ Rp).
R(θ) = 1

n

∑n
i=1[f (Xi)− fθ(Xi)]2.

rn(θ) = 1
n

∑n
i=1[Yi − fθ(Xi)]2.

any prior π.

Pierre Alquier PAC-Bayesian Bounds and Aggregation



Introduction : Learning with PAC-Bayes Bounds
Three Types of PAC-Bayesian Bounds

Computational Issues

Dalalyan-Tsybakov’s Bound
Catoni’s Bound
Audibert’s Bound for Online Learning

Dalalyan and Tsybakov’s bound for EWA

Theorem
Dalalyan, A. & Tsybakov, A. (2008). Aggregation by Exponential Weighting, Sharp PAC-Bayesian
Bounds and Sparsity. Machine Learning.

∀λ ≤ n

4σ2 : E
{
R

[∫
θρ̂λ(dθ)

]}
≤ inf

ρ

[∫
R(θ)ρ(dθ) +

1
λ
K(ρ, π)

]

Based on previous work :

Leung, G. and Barron, A. (2006). Information Theory and Mixing Least-Square Regressions. IEEE
Trans. on Information Theory.
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Application : finite set of predictors θ1, . . . , θM

With π the uniform distribution on {θ1, . . . , θM} we get

E
{
R

[∫
θρ̂λ(dθ)

]}
≤ inf

ρ

[∫
R(θ)ρ(dθ) +

1
λ
K(ρ, π)

]

≤ inf
1≤i≤M

[∫
R(θ)δθi (dθ) + 4σ2K(δθi , π)

]

= inf
1≤i≤M

[
R(θi) + 4σ2 log(M)

]
.
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Application : linear regression
With π = N (0, S2IM),

E
{
R

[∫
θρ̂λ(dθ)

]}
≤ inf

ρ=N (θ0,s2IM)

[∫
R(θ)ρ(dθ)+

1
λ
K(ρ, π)

]
.

As K(ρ, π) = 1
2

[
M
(

s2

S2 − 1 + log
(

S2

s2

))
+ ‖θ0‖2

S2

]
and (rough)

calculations lead to
∫
R(θ)ρ(dθ) ≤ R(θ0) + M2‖g‖2∞s2,

E
{
R

[∫
θρ̂λ(dθ)

]}
≤ inf

θ0∈RM

{
R(θ0) +

4Mσ2

n
log
(
S2Mn

e

)

+
1
n

[
‖θ‖20 + 1

S2 + ‖g‖2∞
]}

.
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2nd example : general bound for batch learning

Context :
(X1,Y1), (X2,Y2), ..., (Xn,Yn) iid from P.

any (fθ, θ ∈ Θ).
R(θ) = E(X ,Y )∼P[`(Y , fθ(X ))] for any bounded loss
function |`(·, ·)| ≤ B .
rn(θ) = 1

n

∑n
i=1 `(Yi , fθ(Xi)).

any prior π.

Pierre Alquier PAC-Bayesian Bounds and Aggregation



Introduction : Learning with PAC-Bayes Bounds
Three Types of PAC-Bayesian Bounds

Computational Issues

Dalalyan-Tsybakov’s Bound
Catoni’s Bound
Audibert’s Bound for Online Learning

2nd example : general bound for batch learning

Context :
(X1,Y1), (X2,Y2), ..., (Xn,Yn) iid from P.
any (fθ, θ ∈ Θ).

R(θ) = E(X ,Y )∼P[`(Y , fθ(X ))] for any bounded loss
function |`(·, ·)| ≤ B .
rn(θ) = 1

n

∑n
i=1 `(Yi , fθ(Xi)).

any prior π.

Pierre Alquier PAC-Bayesian Bounds and Aggregation



Introduction : Learning with PAC-Bayes Bounds
Three Types of PAC-Bayesian Bounds

Computational Issues

Dalalyan-Tsybakov’s Bound
Catoni’s Bound
Audibert’s Bound for Online Learning

2nd example : general bound for batch learning

Context :
(X1,Y1), (X2,Y2), ..., (Xn,Yn) iid from P.
any (fθ, θ ∈ Θ).
R(θ) = E(X ,Y )∼P[`(Y , fθ(X ))] for any bounded loss
function |`(·, ·)| ≤ B .

rn(θ) = 1
n

∑n
i=1 `(Yi , fθ(Xi)).

any prior π.

Pierre Alquier PAC-Bayesian Bounds and Aggregation



Introduction : Learning with PAC-Bayes Bounds
Three Types of PAC-Bayesian Bounds

Computational Issues

Dalalyan-Tsybakov’s Bound
Catoni’s Bound
Audibert’s Bound for Online Learning

2nd example : general bound for batch learning

Context :
(X1,Y1), (X2,Y2), ..., (Xn,Yn) iid from P.
any (fθ, θ ∈ Θ).
R(θ) = E(X ,Y )∼P[`(Y , fθ(X ))] for any bounded loss
function |`(·, ·)| ≤ B .
rn(θ) = 1

n

∑n
i=1 `(Yi , fθ(Xi)).

any prior π.

Pierre Alquier PAC-Bayesian Bounds and Aggregation



Introduction : Learning with PAC-Bayes Bounds
Three Types of PAC-Bayesian Bounds

Computational Issues

Dalalyan-Tsybakov’s Bound
Catoni’s Bound
Audibert’s Bound for Online Learning

2nd example : general bound for batch learning

Context :
(X1,Y1), (X2,Y2), ..., (Xn,Yn) iid from P.
any (fθ, θ ∈ Θ).
R(θ) = E(X ,Y )∼P[`(Y , fθ(X ))] for any bounded loss
function |`(·, ·)| ≤ B .
rn(θ) = 1

n

∑n
i=1 `(Yi , fθ(Xi)).

any prior π.

Pierre Alquier PAC-Bayesian Bounds and Aggregation



Introduction : Learning with PAC-Bayes Bounds
Three Types of PAC-Bayesian Bounds

Computational Issues

Dalalyan-Tsybakov’s Bound
Catoni’s Bound
Audibert’s Bound for Online Learning

Catoni’s bound for batch learning
Theorem

Catoni, O. (2007). PAC-Bayesian Supervised Classification (The Thermodynamics of Statistical
Learning), volume 56 of Lecture Notes-Monograph Series, IMS.

∀λ > 0, P

{∫
R(θ)ρ̂λ(dθ)

≤ inf
ρ

[∫
R(θ)ρ(dθ) +

λB

n
+

2
λ

[
K(ρ, π) + log

(
2
ε

)]]}
≥ 1− ε.

improving on seminal work :

Shawe-Taylor, J. & Williamson, R. C. (1997). A PAC Analysis of a Bayesian Estimator. COLT’97.

McAllester, D. A. (1998). Some PAC-Bayesian Theorems. COLT’98.
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Catoni’s bound for batch learning
Theorem

Catoni, O. (2007). PAC-Bayesian Supervised Classification (The Thermodynamics of Statistical
Learning), volume 56 of Lecture Notes-Monograph Series, IMS.

∀λ > 0, P

{∫
R(θ)ρ̂λ(dθ)

≤ inf
ρ

[∫
R(θ)ρ(dθ) +

λB

n
+

2
λ

[
K(ρ, π) + log

(
2
ε

)]]}
≥ 1− ε.

improving on seminal work :

Shawe-Taylor, J. & Williamson, R. C. (1997). A PAC Analysis of a Bayesian Estimator. COLT’97.

McAllester, D. A. (1998). Some PAC-Bayesian Theorems. COLT’98.
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3rd example : online learning

(X1,Y1), (X2,Y2), ... without any other assumption than
|Yi | ≤ B .

any (fθ, θ ∈ Θ), with |f (θ)(x)| ≤ B .
given (X1,Y1), (X2,Y2), ..., (Xt−1,Yt−1) and Xt we are
asked to predict Yt : by Ŷt . At some time T the game
stops and we evaluate the regret :

R =
T∑
t=1

(Yt − Ŷt)
2 − inf

θ

T∑
t=1

(Yt − fθ(Xt))2.

at time t we can use as a proxy of the quality of θ :
rt−1(θ) =

∑t−1
`=1(Y` − fθ(X`))2.

any prior π.
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Audibert / Gerchinovitz’s bound for online learning
Fix λ ≤ 1

8B2 and define, at each time t :

ρ̂λ,t(dθ) ∝ exp[−λrt−1(θ)]π(dθ) and Ŷt =

∫
fθ(Xt)ρ̂λ,t(dθ).

Theorem
Gerchinovitz, S. (2011). Sparsity Regret Bounds for Individual Sequences in Online Linear
Regression. COLT’11.

T∑
t=1

(Yt−Ŷt)
2 ≤ inf

ρ

{∫ T∑
t=1

[
Yt − fθ(Xt)

]2
ρ(dθ) +

1
λ
K(ρ, π)

}
.

Based on a result with general loss to be found in

Audibert, J.-Y. (2009). Fast learning Rates in Statistical Inference through Aggregation. Annals
of Statistics.

Pierre Alquier PAC-Bayesian Bounds and Aggregation



Introduction : Learning with PAC-Bayes Bounds
Three Types of PAC-Bayesian Bounds

Computational Issues

Dalalyan-Tsybakov’s Bound
Catoni’s Bound
Audibert’s Bound for Online Learning

Audibert / Gerchinovitz’s bound for online learning
Fix λ ≤ 1

8B2 and define, at each time t :

ρ̂λ,t(dθ) ∝ exp[−λrt−1(θ)]π(dθ) and Ŷt =
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2 ≤ inf

ρ

{∫ T∑
t=1

[
Yt − fθ(Xt)

]2
ρ(dθ) +

1
λ
K(ρ, π)

}
.

Based on a result with general loss to be found in

Audibert, J.-Y. (2009). Fast learning Rates in Statistical Inference through Aggregation. Annals
of Statistics.

Pierre Alquier PAC-Bayesian Bounds and Aggregation



Introduction : Learning with PAC-Bayes Bounds
Three Types of PAC-Bayesian Bounds

Computational Issues

Dalalyan-Tsybakov’s Bound
Catoni’s Bound
Audibert’s Bound for Online Learning

Audibert / Gerchinovitz’s bound for online learning
Fix λ ≤ 1

8B2 and define, at each time t :

ρ̂λ,t(dθ) ∝ exp[−λrt−1(θ)]π(dθ) and Ŷt =
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Bibliographical remarks (1/2)

“Catoni’s type bound” : under the name “PAC-Bayesian
bounds”, many authors including Langford, Seeger, Meir,
Cesa-Bianchi, Li, Jiang, Tanner, Laviolette, Guedj, sorry for
not being exhaustive, see the papers for more references !

“Dalalyan-Tsybakov’s type” bound : under the name
“Exponentially Weighted Aggregation”, Golubev, Suzuki,
Montuelle, Le Pennec, Robbiano, Salmon...

Related to other works on aggregation : Vovk, Rissanen,
Abramovitch, Nemirovski, Yang, Rigollet, Lecué, Bellec,
Michel, Gaïffas...
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Bibliographical remarks (2/2)

ρ̂λ(dθ) ∝ exp [−λr(θ)]π(dθ).

Bayesian interpretation : exp [−λr(θ)] = “pseudo-likelihood”.

Decision theory and Bayesian statistics : more authors
advocate the use of ρ̂λ : Miller, Dunson...

Bissiri, P., Holmes, C. and Walker, S. (2013). Fast learning Rates in Statistical Inference through
Aggregation. Preprint.

Grünwald, P. D. & van Ommen, T. (2013). Inconsistency of Bayesian Inference for Misspecified
Linear Models, and a Proposal for Repairing It. Preprint.

Asymptotic study of Bayesian estimators : Ghosh,
Ghoshal, van der Vaart, Gassiat, Rousseau, Castillo... different
from PAC-Bayes but most calculations are similar !
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Reminder : EWA

ρ̂λ(dθ) ∝ exp [−λr(θ)]π(dθ).

Depending on the setting, we have to
sample from ρ̂λ,
compute

∫
θρ̂λ(dθ).
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A natural idea : MCMC methods
Langevin Monte-Carlo :

Dalalyan, A. and Tsybakov, A. (2011). Sparse regression learning by aggregation and Langevin
Monte-Carlo. Journal of Computer and System Science.

Markov Chain Monte-Carlo :

Alquier, P. & Biau, G. (2013). Sparse Single-Index Model. Journal of Machine Learning Reseach.

However : very hard to prove the convergence of the
algorithm. Usually not possible to provide guarantees after a
finite number of steps. See however

Joulin, A. & Ollivier, Y. (2010). Curvature, Concentration, and Error Estimates for Markov Chain
Monte Carlo. The Annals of Probability.

Dalalyan, A. (2014). Theoretical Guarantees for Approximate Sampling from a Smooth and
Log-Concave Density. Preprint.
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Variational Bayes methods
Idea from Bayesian statistics : approximate the posterior
distribution π(θ|x). We fix a convenient family of probability
distributions F and approximate the posterior by π̃(θ) :

π̃ = argmin
ρ∈F
K(ρ, π(·|x)).

Jordan, M. et al (1999). An Introduction to Variational Methods for Graphical Models. Machine
Learning.

F is either parametric or non-parametric. In the parametric
case, the problem boils down to an optimization problem :

F = {ρa, a ∈ A ⊂ Rd} 99K min
a∈A
K(ρa, π(·|x)).

Theoretical guarantees on the approximation ?

Pierre Alquier PAC-Bayesian Bounds and Aggregation
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VB in PAC-Bayesian framework

ρ̂λ(dθ) ∝ exp [−λr(θ)]π(dθ).

Then :

K(ρa, ρ̂λ) =

∫
log
[
dρa
dπ

dπ
dρ̂λ

]
dρa

= λ

∫
r(θ)ρa(dθ) +K(ρa, π) + log

∫
exp[−λr ]dπ.

We put

ãλ = argmin
a∈A

[
λ

∫
r(θ)ρa(dθ) +K(ρa, π)

]
and ρ̃λ = ρâλ .
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A PAC-Bound for VB Approximation

Theorem
Alquier, P., Ridgway, J. & Chopin, N. (2015). On the Properties of Variational Approximations of
Gibbs Posteriors. Preprint.

∀λ > 0, P

{∫
R(θ)ρ̃λ(dθ)

≤ inf
a∈A

[∫
R(θ)ρa(dθ) +

λ

n
+

2
λ

[
K(ρa, π) + log

(
2
ε

)]]}
≥ 1− ε.

99K if we can derive a tight oracle inequality from this bound,
we know that the VB approximation is sensible !
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Application to a linear classification problem

(X1,Y1), (X2,Y2), ..., (Xn,Yn) iid from P.

fθ(x) = 1(〈θ, x〉 ≥ 0), x , θ ∈ Rd .
R(θ) = P[Y 6= fθ(X )].
rn(θ) = 1

n

∑n
i=1 1[Yi 6= fθ(Xi)].

Gaussian prior π = N (0, ϑI ).
Gaussian approx. of the posterior :
F =

{
N (µ,Σ), µ ∈ Rd ,Σ s. pos. def.

}
.

Optimization criterion :

λ

n

n∑
i=1

Φ

(
−Yi 〈Xi , µ〉√
〈Xi ,ΣXi〉

)
+
‖µ‖2

2ϑ
+

1
2

(
1
ϑ

tr(Σ)− log |Σ|
)

using deterministic annealing and gradient descent.
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Application of the main theorem

Corollary
Assume that, for ‖θ‖ = ‖θ′‖ = 1,
P(〈θ,X 〉 〈θ′,X 〉) ≤ c‖θ − θ′‖ and take λ =

√
nd and

ϑ = 1/
√
d . Then

P

{∫
R(θ)ρ̃λ(dθ) ≤ inf

θ
R(θ) +

√
d

n

[
log(4ne2) + c

]
+

2 log
(

2
ε

)
√
nd

}
≥ 1− ε.

N.B : under margin assumption, possible to obtain d/n rates...
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Test on real data

Dataset Covariates VB SMC SVM

Pima 7 21.3 22.3 30.4
Credit 60 33.6 32.0 32.0
DNA 180 23.6 23.6 20.4
SPECTF 22 06.9 08.5 10.1
Glass 10 19.6 23.3 4.7
Indian 11 25.5 26.2 26.8
Breast 10 1.1 1.1 1.7

Table: Comparison of misclassification rates (%). Last column :
kernel-SVM with radial kernel. The hyper-parameters λ and ϑ are
chosen by cross-validation.
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Convexification of the loss
Can replace the 0/1 loss by a convex surrogate at “no” cost :

Zhang, T. (2004). Statistical behavior and consistency of classification methods based on convex
risk minimization. Annals of Statistics.

R(θ) = E[(1− Yfθ(X ))+] (hinge loss).
rn(θ) = 1

n

∑n
i=1(1− Yi fθ(Xi))+.

Gaussian approx. : F =
{
N (µ, σ2I ), µ ∈ Rd , σ > 0

}
.

99K the following criterion (which turns out to be convex !) :

1
n

n∑
i=1

(1− Yi 〈µ,Xi〉) Φ

(
1− Yi 〈µ,Xi〉

σ‖Xi‖2

)
+
1
n

n∑
i=1

σ‖Xi‖ϕ
(
1− Yi 〈µ,Xi〉

σ‖Xi‖2

)
+
‖µ‖22
2ϑ

+
d

2

(
ϑ

σ2 − log σ2
)
.
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Application of the main theorem
Optimization with stochastic gradient descent on a ball of
radius M . On this ball, the objetive function is L-Lipschitz.
After k step, we have the approximation ρ̃(k)λ of the posterior.

Corollary

Assume ‖X‖ ≤ cx a.s., take λ =
√
nd and ϑ = 1/

√
d . Then

P

{∫
R(θ)ρ̃

(k)
λ (dθ) ≤ inf

θ
R(θ)

+
LM√
1 + k

+
cx
2

√
d

n
log
(n
d

)
+

c2x+1
2cx

+ 2cx log
(

2
ε

)
√
nd

}
≥ 1− ε.
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Dataset Convex VB VB SMC SVM

Pima 21.8 21.3 22.3 30.4
Credit 27.2 33.6 32.0 32.0
DNA 4.2 23.6 23.6 20.4
SPECTF 19.2 06.9 08.5 10.1
Glass 26.1 19.6 23.3 4.7
Indian 26.2 25.5 26.2 26.8
Breast 0.5 1.1 1.1 1.7

Table: Comparison of misclassification rates (%), including the
convexified version of VB.

Pierre Alquier PAC-Bayesian Bounds and Aggregation



Introduction : Learning with PAC-Bayes Bounds
Three Types of PAC-Bayesian Bounds

Computational Issues

Monte-Carlo
Variational Bayes Methods
PAC Analysis of Variational Bayes Approximations

Convergence graphs
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Figure: Stochastic gradient descent, Pima and Adult datasets.
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Thanks & best wishes for 2016 !

Pierre Alquier PAC-Bayesian Bounds and Aggregation
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