PAC-Bayesian Bounds and Aggregation: Introduction, and Algorithmic Issues

Pierre Alquier

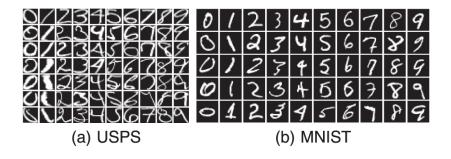
Statistics/Learning at Paris-Saclay - IHES - 08/01/2016

Learning vs. estimation

In many applications one would like to learn from a sample without being able to write the likelihood.

Learning vs. estimation

In many applications one would like to learn from a sample without being able to write the likelihood.



Typical machine learning problem

Typical machine learning problem

Main ingredients :

• observations object-label : (X_1, Y_1) , (X_2, Y_2) , ...

Typical machine learning problem

- observations object-label : (X_1, Y_1) , (X_2, Y_2) , ... \rightarrow either given once and for all (batch learning), once at
 - \rightarrow either given once and for all (batch learning), once a time (online learning), upon request...

Typical machine learning problem

- observations object-label : (X_1, Y_1) , (X_2, Y_2) , ... \rightarrow either given once and for all (batch learning), once at
 - a time (online learning), upon request...
- a restricted set of predictors ($f_{\theta}, \theta \in \Theta$).

Typical machine learning problem

- observations object-label : (X₁, Y₁), (X₂, Y₂), ...
 → either given once and for all (batch learning), once at a time (online learning), upon request...
- a restricted set of predictors $(f_{\theta}, \theta \in \Theta)$. $\rightarrow f_{\theta}(X)$ meant to predict Y.

Typical machine learning problem

Main ingredients :

- observations object-label : (X₁, Y₁), (X₂, Y₂), ...
 → either given once and for all (batch learning), once at a time (online learning), upon request...
- a restricted set of predictors $(f_{\theta}, \theta \in \Theta)$. $\rightarrow f_{\theta}(X)$ meant to predict Y.

• a criterion of success, $R(\theta)$:

Typical machine learning problem

- observations object-label : (X_1, Y_1) , (X_2, Y_2) , ...
 - \rightarrow either given once and for all (batch learning), once at a time (online learning), upon request...
- a restricted set of predictors $(f_{\theta}, \theta \in \Theta)$. $\rightarrow f_{\theta}(X)$ meant to predict Y.
- a criterion of success, $R(\theta)$: \rightarrow for example $R(\theta) = \mathbb{P}(f_{\theta}(X) \neq Y)$, $R(\theta) = ||\theta - \theta_0||$ where θ_0 is a target parameter, ... we want $R(\theta)$ to be small. But note that it is unknown.

Typical machine learning problem

- observations object-label : (X_1, Y_1) , (X_2, Y_2) , ...
 - \rightarrow either given once and for all (batch learning), once at a time (online learning), upon request...
- a restricted set of predictors $(f_{\theta}, \theta \in \Theta)$. $\rightarrow f_{\theta}(X)$ meant to predict Y.
- a criterion of success, $R(\theta)$: \rightarrow for example $R(\theta) = \mathbb{P}(f_{\theta}(X) \neq Y)$, $R(\theta) = ||\theta - \theta_0||$ where θ_0 is a target parameter, ... we want $R(\theta)$ to be small. But note that it is unknown.
- an empirical proxy $r(\theta)$ for this criterion of success :

Typical machine learning problem

- observations object-label : (X_1, Y_1) , (X_2, Y_2) , ...
 - \rightarrow either given once and for all (batch learning), once at a time (online learning), upon request...
- a restricted set of predictors $(f_{\theta}, \theta \in \Theta)$. $\rightarrow f_{\theta}(X)$ meant to predict Y.
- a criterion of success, $R(\theta)$: \rightarrow for example $R(\theta) = \mathbb{P}(f_{\theta}(X) \neq Y)$, $R(\theta) = ||\theta - \theta_0||$ where θ_0 is a target parameter, ... we want $R(\theta)$ to be small. But note that it is unknown.
- an empirical proxy $r(\theta)$ for this criterion of success : \rightarrow for example $r(\theta) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}(f_{\theta}(X_i) \neq Y_i).$

PAC-Bayesian bounds

One more ingredient :

PAC-Bayesian bounds

One more ingredient :

• a prior $\pi(d\theta)$ on the parameter space.

PAC-Bayesian bounds

One more ingredient :

• a prior $\pi(d\theta)$ on the parameter space.

The PAC-Bayesian approach usually provides a "posterior distribution" $\hat{\rho}_\lambda$ and a theoretical guarantee :

$$\int R(\theta) \hat{\rho}_{\lambda}(\mathrm{d}\theta) \leq \inf_{\rho} \left[\int R(\theta) \rho(\mathrm{d}\theta) + \frac{1}{\lambda} \mathcal{K}(\rho,\pi) \right] + o(1).$$

PAC-Bayesian bounds

One more ingredient :

• a prior $\pi(d\theta)$ on the parameter space.

The PAC-Bayesian approach usually provides a "posterior distribution" $\hat{\rho}_\lambda$ and a theoretical guarantee :

$$\int R(\theta) \hat{\rho}_{\lambda}(\mathrm{d}\theta) \leq \inf_{\rho} \left[\int R(\theta) \rho(\mathrm{d}\theta) + \frac{1}{\lambda} \mathcal{K}(\rho, \pi) \right] + o(1).$$

Usually o(1) is explicit, λ is some tuning-parameter to be calibrated (constrained to some range by theory), and

$$\hat{\rho}_{\lambda}(\mathrm{d}\theta) \propto \exp\left[-\lambda r(\theta)\right] \pi(\mathrm{d}\theta).$$

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

1st example : fixed design regression

Context :

• X_1, \ldots, X_n deterministic; $Y_i = f(X_i) + \varepsilon_i$ and $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ (say).

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

1st example : fixed design regression

- X_1, \ldots, X_n deterministic; $Y_i = f(X_i) + \varepsilon_i$ and $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ (say).
- any $(f_{\theta}(\cdot) = \langle \theta, g(\cdot) \rangle, \theta \in \mathbb{R}^{p}).$

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

1st example : fixed design regression

- X_1, \ldots, X_n deterministic; $Y_i = f(X_i) + \varepsilon_i$ and $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ (say).
- any $(f_{\theta}(\cdot) = \langle \theta, g(\cdot) \rangle, \theta \in \mathbb{R}^{p}).$
- $R(\theta) = \frac{1}{n} \sum_{i=1}^{n} [f(X_i) f_{\theta}(X_i)]^2.$

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

1st example : fixed design regression

- X_1, \ldots, X_n deterministic; $Y_i = f(X_i) + \varepsilon_i$ and $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ (say).
- any $(f_{\theta}(\cdot) = \langle \theta, g(\cdot) \rangle, \theta \in \mathbb{R}^{p}).$
- $R(\theta) = \frac{1}{n} \sum_{i=1}^{n} [f(X_i) f_{\theta}(X_i)]^2.$
- $r_n(\theta) = \frac{1}{n} \sum_{i=1}^n [Y_i f_\theta(X_i)]^2.$

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

1st example : fixed design regression

- X_1, \ldots, X_n deterministic; $Y_i = f(X_i) + \varepsilon_i$ and $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ (say).
- any $(f_{\theta}(\cdot) = \langle \theta, g(\cdot) \rangle, \theta \in \mathbb{R}^{p}).$
- $R(\theta) = \frac{1}{n} \sum_{i=1}^{n} [f(X_i) f_{\theta}(X_i)]^2$.
- $r_n(\theta) = \frac{1}{n} \sum_{i=1}^n [Y_i f_\theta(X_i)]^2$.
- any prior π .

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

Dalalyan and Tsybakov's bound for EWA

Theorem

Dalalyan, A. & Tsybakov, A. (2008). Aggregation by Exponential Weighting, Sharp PAC-Bayesian Bounds and Sparsity. *Machine Learning*.

$$\begin{aligned} \forall \lambda \leq \frac{n}{4\sigma^2} : \quad \mathbb{E}\left\{ R\left[\int \theta \hat{\rho}_{\lambda}(\mathrm{d}\theta)\right] \right\} \\ \leq \inf_{\rho}\left[\int R(\theta)\rho(\mathrm{d}\theta) + \frac{1}{\lambda}\mathcal{K}(\rho,\pi)\right] \end{aligned}$$

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

Dalalyan and Tsybakov's bound for EWA

Theorem

Dalalyan, A. & Tsybakov, A. (2008). Aggregation by Exponential Weighting, Sharp PAC-Bayesian Bounds and Sparsity. *Machine Learning*.

$$\begin{aligned} \forall \lambda &\leq \frac{n}{4\sigma^2} : \quad \mathbb{E}\left\{ R\left[\int \theta \hat{\rho}_{\lambda}(\mathrm{d}\theta)\right] \right\} \\ &\leq \inf_{\rho}\left[\int R(\theta)\rho(\mathrm{d}\theta) + \frac{1}{\lambda}\mathcal{K}(\rho,\pi)\right] \end{aligned}$$

Based on previous work :

Leung, G. and Barron, A. (2006). Information Theory and Mixing Least-Square Regressions. *IEEE Trans. on Information Theory*.

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

Application : finite set of predictors $\theta_1, \ldots, \theta_M$

With π the uniform distribution on $\{\theta_1, \ldots, \theta_M\}$ we get

$$\mathbb{E}\left\{R\left[\int\theta\hat{\rho}_{\lambda}(\mathrm{d}\theta)\right]\right\}\leq \inf_{\rho}\left[\int R(\theta)\rho(\mathrm{d}\theta)+\frac{1}{\lambda}\mathcal{K}(\rho,\pi)\right]$$

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

Application : finite set of predictors $\theta_1, \ldots, \theta_M$

With π the uniform distribution on $\{\theta_1, \ldots, \theta_M\}$ we get

$$\mathbb{E}\left\{R\left[\int \theta \hat{\rho}_{\lambda}(\mathrm{d}\theta)\right]\right\} \leq \inf_{\rho}\left[\int R(\theta)\rho(\mathrm{d}\theta) + \frac{1}{\lambda}\mathcal{K}(\rho,\pi)\right]$$
$$\leq \inf_{1\leq i\leq M}\left[\int R(\theta)\delta_{\theta_{i}}(\mathrm{d}\theta) + 4\sigma^{2}\mathcal{K}(\delta_{\theta_{i}},\pi)\right]$$

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

Application : finite set of predictors $\theta_1, \ldots, \theta_M$

With π the uniform distribution on $\{\theta_1, \ldots, \theta_M\}$ we get

$$\mathbb{E}\left\{R\left[\int \theta \hat{\rho}_{\lambda}(\mathrm{d}\theta)\right]\right\} \leq \inf_{\rho}\left[\int R(\theta)\rho(\mathrm{d}\theta) + \frac{1}{\lambda}\mathcal{K}(\rho,\pi)\right]$$
$$\leq \inf_{1\leq i\leq M}\left[\int R(\theta)\delta_{\theta_{i}}(\mathrm{d}\theta) + 4\sigma^{2}\mathcal{K}(\delta_{\theta_{i}},\pi)\right]$$
$$= \inf_{1\leq i\leq M}\left[R(\theta_{i}) + 4\sigma^{2}\log(M)\right].$$

.

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

Application : linear regression

With
$$\pi = \mathcal{N}(0, S^2 I_M)$$
,

$$\mathbb{E}\left\{R\left[\int \theta \hat{\rho}_{\lambda}(\mathrm{d}\theta)\right]\right\} \leq \inf_{\rho = \mathcal{N}(\theta_0, s^2 I_M)}\left[\int R(\theta)\rho(\mathrm{d}\theta) + \frac{1}{\lambda}\mathcal{K}(\rho, \pi)\right].$$

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

Application : linear regression

With
$$\pi = \mathcal{N}(0, S^2 I_M)$$
,

$$\mathbb{E}\left\{R\left[\int\theta\hat{\rho}_{\lambda}(\mathrm{d}\theta)\right]\right\} \leq \inf_{\rho=\mathcal{N}(\theta_{0},s^{2}I_{M})}\left[\int R(\theta)\rho(\mathrm{d}\theta) + \frac{1}{\lambda}\mathcal{K}(\rho,\pi)\right].$$

As
$$\mathcal{K}(\rho, \pi) = \frac{1}{2} \left[M\left(\frac{s^2}{S^2} - 1 + \log\left(\frac{S^2}{s^2}\right)\right) + \frac{\|\theta_0\|^2}{S^2} \right]$$
 and (rough) calculations lead to $\int R(\theta)\rho(\mathrm{d}\theta) \leq R(\theta_0) + M^2 \|g\|_{\infty}^2 s^2$,

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

Application : linear regression

With
$$\pi = \mathcal{N}(0, S^2 I_M)$$
,

$$\mathbb{E}\left\{R\left[\int\theta\hat{\rho}_{\lambda}(\mathrm{d}\theta)\right]\right\}\leq\inf_{\rho=\mathcal{N}(\theta_{0},s^{2}I_{M})}\left[\int R(\theta)\rho(\mathrm{d}\theta)+\frac{1}{\lambda}\mathcal{K}(\rho,\pi)\right].$$

As
$$\mathcal{K}(\rho, \pi) = \frac{1}{2} \left[M\left(\frac{s^2}{S^2} - 1 + \log\left(\frac{S^2}{s^2}\right)\right) + \frac{\|\theta_0\|^2}{S^2} \right]$$
 and (rough) calculations lead to $\int R(\theta)\rho(\mathrm{d}\theta) \leq R(\theta_0) + M^2 \|g\|_{\infty}^2 s^2$,

$$\mathbb{E}\left\{R\left[\int \theta \hat{\rho}_{\lambda}(\mathrm{d}\theta)\right]\right\} \leq \inf_{\theta_{0} \in \mathbb{R}^{M}} \left\{R(\theta_{0}) + \frac{4M\sigma^{2}}{n}\log\left(\frac{S^{2}Mn}{\mathrm{e}}\right) + \frac{1}{n}\left[\frac{\|\theta\|_{0}^{2} + 1}{S^{2}} + \|g\|_{\infty}^{2}\right]\right\}.$$

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

2nd example : general bound for batch learning

Context :

• (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n) iid from \mathbb{P} .

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

2nd example : general bound for batch learning

- (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n) iid from \mathbb{P} .
- any $(f_{\theta}, \theta \in \Theta)$.

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

2nd example : general bound for batch learning

- (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n) iid from \mathbb{P} .
- any $(f_{\theta}, \theta \in \Theta)$.
- $R(\theta) = \mathbb{E}_{(X,Y) \sim \mathbb{P}}[\ell(Y, f_{\theta}(X))]$ for any bounded loss function $|\ell(\cdot, \cdot)| \leq B$.

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

2nd example : general bound for batch learning

- (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n) iid from \mathbb{P} .
- any $(f_{\theta}, \theta \in \Theta)$.
- $R(\theta) = \mathbb{E}_{(X,Y) \sim \mathbb{P}}[\ell(Y, f_{\theta}(X))]$ for any bounded loss function $|\ell(\cdot, \cdot)| \leq B$.
- $r_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, f_{\theta}(X_i)).$

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

2nd example : general bound for batch learning

- (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n) iid from \mathbb{P} .
- any $(f_{\theta}, \theta \in \Theta)$.
- $R(\theta) = \mathbb{E}_{(X,Y) \sim \mathbb{P}}[\ell(Y, f_{\theta}(X))]$ for any bounded loss function $|\ell(\cdot, \cdot)| \leq B$.
- $r_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, f_{\theta}(X_i)).$
- any prior π .

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

Catoni's bound for batch learning

Theorem

Catoni, O. (2007). PAC-Bayesian Supervised Classification (The Thermodynamics of Statistical Learning), volume 56 of Lecture Notes-Monograph Series, IMS.

$$egin{aligned} &orall \lambda > 0, \quad \mathbb{P}iggl\{ \int R(heta) \hat{
ho}_\lambda(\mathrm{d} heta) \ &\leq \inf_{
ho} \left[\int R(heta)
ho(\mathrm{d} heta) + rac{\lambda B}{n} + rac{2}{\lambda} \left[\mathcal{K}(
ho,\pi) + \log\left(rac{2}{arepsilon}
ight)
ight]
ight] iggr\} \ &\geq 1 - arepsilon. \end{aligned}$$

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

Catoni's bound for batch learning

Theorem

Catoni, O. (2007). PAC-Bayesian Supervised Classification (The Thermodynamics of Statistical Learning), volume 56 of Lecture Notes-Monograph Series, IMS.

$$\begin{aligned} \forall \lambda > 0, \quad \mathbb{P} \left\{ \int R(\theta) \hat{\rho}_{\lambda}(\mathrm{d}\theta) \\ &\leq \inf_{\rho} \left[\int R(\theta) \rho(\mathrm{d}\theta) + \frac{\lambda B}{n} + \frac{2}{\lambda} \left[\mathcal{K}(\rho, \pi) + \log\left(\frac{2}{\varepsilon}\right) \right] \right] \right\} \\ &\geq 1 - \varepsilon. \end{aligned}$$

improving on seminal work :

Shawe-Taylor, J. & Williamson, R. C. (1997). A PAC Analysis of a Bayesian Estimator. COLT'97.

McAllester, D. A. (1998). Some PAC-Bayesian Theorems. COLT'98.

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

3rd example : online learning

• (X_1, Y_1) , (X_2, Y_2) , ... without *any* other assumption than $|Y_i| \leq B$.

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

3rd example : online learning

- (X_1, Y_1) , (X_2, Y_2) , ... without any other assumption than $|Y_i| \leq B$.
- any $(f_{\theta}, \theta \in \Theta)$, with $|f(\theta)(x)| \leq B$.

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

3rd example : online learning

- (X_1, Y_1) , (X_2, Y_2) , ... without *any* other assumption than $|Y_i| \leq B$.
- any $(f_{\theta}, \theta \in \Theta)$, with $|f(\theta)(x)| \leq B$.
- given (X₁, Y₁), (X₂, Y₂), ..., (X_{t-1}, Y_{t-1}) and X_t we are asked to predict Y_t : by Ŷ_t. At some time T the game stops and we evaluate the *regret* :

$$\mathcal{R} = \sum_{t=1}^T (Y_t - \hat{Y}_t)^2 - \inf_{\theta} \sum_{t=1}^T (Y_t - f_{\theta}(X_t))^2.$$

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

3rd example : online learning

- (X_1, Y_1) , (X_2, Y_2) , ... without *any* other assumption than $|Y_i| \leq B$.
- any $(f_{\theta}, \theta \in \Theta)$, with $|f(\theta)(x)| \leq B$.
- given (X₁, Y₁), (X₂, Y₂), ..., (X_{t-1}, Y_{t-1}) and X_t we are asked to predict Y_t : by Ŷ_t. At some time T the game stops and we evaluate the *regret* :

$$\mathcal{R} = \sum_{t=1}^T (Y_t - \hat{Y}_t)^2 - \inf_{ heta} \sum_{t=1}^T (Y_t - f_{ heta}(X_t))^2.$$

• at time t we can use as a proxy of the quality of θ : $r_{t-1}(\theta) = \sum_{\ell=1}^{t-1} (Y_{\ell} - f_{\theta}(X_{\ell}))^2.$

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

3rd example : online learning

- (X_1, Y_1) , (X_2, Y_2) , ... without *any* other assumption than $|Y_i| \leq B$.
- any $(f_{\theta}, \theta \in \Theta)$, with $|f(\theta)(x)| \leq B$.
- given (X₁, Y₁), (X₂, Y₂), ..., (X_{t-1}, Y_{t-1}) and X_t we are asked to predict Y_t : by Ŷ_t. At some time T the game stops and we evaluate the *regret* :

$$\mathcal{R} = \sum_{t=1}^T (Y_t - \hat{Y}_t)^2 - \inf_{ heta} \sum_{t=1}^T (Y_t - f_{ heta}(X_t))^2.$$

- at time t we can use as a proxy of the quality of θ : $r_{t-1}(\theta) = \sum_{\ell=1}^{t-1} (Y_{\ell} - f_{\theta}(X_{\ell}))^2.$
- any prior π .

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

Audibert / Gerchinovitz's bound for online learning

Fix $\lambda \leq \frac{1}{8B^2}$ and define, at each time t :

$$\hat{
ho}_{\lambda,t}(\mathrm{d} heta)\propto \exp[-\lambda r_{t-1}(heta)]\pi(\mathrm{d} heta) ext{ and } \hat{Y}_t=\int f_{ heta}(X_t)\hat{
ho}_{\lambda,t}(\mathrm{d} heta).$$

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

Audibert / Gerchinovitz's bound for online learning

Fix
$$\lambda \leq rac{1}{8B^2}$$
 and define, at each time t :

$$\hat{\rho}_{\lambda,t}(\mathrm{d}\theta) \propto \exp[-\lambda r_{t-1}(\theta)]\pi(\mathrm{d}\theta) \text{ and } \hat{Y}_t = \int f_{\theta}(X_t)\hat{\rho}_{\lambda,t}(\mathrm{d}\theta).$$

Theorem

Gerchinovitz, S. (2011). Sparsity Regret Bounds for Individual Sequences in Online Linear Regression. *COLT'11*.

$$\sum_{t=1}^{T} (Y_t - \hat{Y}_t)^2 \leq \inf_{\rho} \left\{ \int \sum_{t=1}^{T} \left[Y_t - f_{\theta}(X_t) \right]^2 \rho(\mathrm{d}\theta) + \frac{1}{\lambda} \mathcal{K}(\rho, \pi) \right\}.$$

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

Audibert / Gerchinovitz's bound for online learning

Fix $\lambda \leq \frac{1}{8B^2}$ and define, at each time t :

$$\hat{\rho}_{\lambda,t}(\mathrm{d}\theta) \propto \exp[-\lambda r_{t-1}(\theta)]\pi(\mathrm{d}\theta) \text{ and } \hat{Y}_t = \int f_{\theta}(X_t)\hat{\rho}_{\lambda,t}(\mathrm{d}\theta).$$

Theorem

Gerchinovitz, S. (2011). Sparsity Regret Bounds for Individual Sequences in Online Linear Regression. *COLT'11*.

$$\sum_{t=1}^{T} (Y_t - \hat{Y}_t)^2 \leq \inf_{\rho} \left\{ \int \sum_{t=1}^{T} \left[Y_t - f_{\theta}(X_t) \right]^2 \rho(\mathrm{d}\theta) + \frac{1}{\lambda} \mathcal{K}(\rho, \pi) \right\}.$$

Based on a result with general loss to be found in

Audibert, J.-Y. (2009). Fast learning Rates in Statistical Inference through Aggregation. Annals of Statistics.

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

Bibliographical remarks (1/2)

"Catoni's type bound" : under the name "PAC-Bayesian bounds", many authors including Langford, Seeger, Meir, Cesa-Bianchi, Li, Jiang, Tanner, Laviolette, Guedj, sorry for not being exhaustive, see the papers for more references !

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

Bibliographical remarks (1/2)

"Catoni's type bound" : under the name "PAC-Bayesian bounds", many authors including Langford, Seeger, Meir, Cesa-Bianchi, Li, Jiang, Tanner, Laviolette, Guedj, sorry for not being exhaustive, see the papers for more references!

"Dalalyan-Tsybakov's type" bound : under the name "Exponentially Weighted Aggregation", Golubev, Suzuki, Montuelle, Le Pennec, Robbiano, Salmon...

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

Bibliographical remarks (1/2)

"Catoni's type bound" : under the name "PAC-Bayesian bounds", many authors including Langford, Seeger, Meir, Cesa-Bianchi, Li, Jiang, Tanner, Laviolette, Guedj, sorry for not being exhaustive, see the papers for more references!

"Dalalyan-Tsybakov's type" bound : under the name "Exponentially Weighted Aggregation", Golubev, Suzuki, Montuelle, Le Pennec, Robbiano, Salmon...

Related to other works on aggregation : Vovk, Rissanen, Abramovitch, Nemirovski, Yang, Rigollet, Lecué, Bellec, Michel, Gaïffas...

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

Bibliographical remarks (2/2)

$\hat{\rho}_{\lambda}(\mathrm{d}\theta) \propto \exp\left[-\lambda r(\theta)\right] \pi(\mathrm{d}\theta).$

Bayesian interpretation : exp $[-\lambda r(\theta)] =$ "pseudo-likelihood".

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

Bibliographical remarks (2/2)

$\hat{\rho}_{\lambda}(\mathrm{d}\theta) \propto \exp\left[-\lambda r(\theta)\right] \pi(\mathrm{d}\theta).$

Bayesian interpretation : exp $[-\lambda r(\theta)] =$ "pseudo-likelihood".

Decision theory and Bayesian statistics : more authors advocate the use of $\hat{\rho}_{\lambda}$: Miller, Dunson...

Bissiri, P., Holmes, C. and Walker, S. (2013). Fast learning Rates in Statistical Inference through Aggregation. *Preprint*.

Grünwald, P. D. & van Ommen, T. (2013). Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It. *Preprint*.

Dalalyan-Tsybakov's Bound Catoni's Bound Audibert's Bound for Online Learning

Bibliographical remarks (2/2)

$\hat{\rho}_{\lambda}(\mathrm{d}\theta) \propto \exp\left[-\lambda r(\theta)\right] \pi(\mathrm{d}\theta).$

Bayesian interpretation : exp $[-\lambda r(\theta)] =$ "pseudo-likelihood".

Decision theory and Bayesian statistics : more authors advocate the use of $\hat{\rho}_{\lambda}$: Miller, Dunson...

Bissiri, P., Holmes, C. and Walker, S. (2013). Fast learning Rates in Statistical Inference through Aggregation. *Preprint*.

Grünwald, P. D. & van Ommen, T. (2013). Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It. *Preprint*.

Asymptotic study of Bayesian estimators : Ghosh, Ghoshal, van der Vaart, Gassiat, Rousseau, Castillo... different from PAC-Bayes but most calculations are similar !

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

Reminder : EWA

$\hat{\rho}_{\lambda}(\mathrm{d}\theta) \propto \exp\left[-\lambda r(\theta)\right] \pi(\mathrm{d}\theta).$

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

Reminder : EWA

$\hat{\rho}_{\lambda}(\mathrm{d}\theta) \propto \exp\left[-\lambda r(\theta)\right] \pi(\mathrm{d}\theta).$

Depending on the setting, we have to

- sample from $\hat{\rho}_{\lambda}$,
- compute $\int \theta \hat{\rho}_{\lambda}(d\theta)$.

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

A natural idea : MCMC methods

Langevin Monte-Carlo :

Dalalyan, A. and Tsybakov, A. (2011). Sparse regression learning by aggregation and Langevin Monte-Carlo. *Journal of Computer and System Science*.

Markov Chain Monte-Carlo :

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

A natural idea : MCMC methods

Langevin Monte-Carlo :

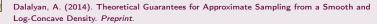
Dalalyan, A. and Tsybakov, A. (2011). Sparse regression learning by aggregation and Langevin Monte-Carlo. *Journal of Computer and System Science*.

Markov Chain Monte-Carlo :

Alquier, P. & Biau, G. (2013). Sparse Single-Index Model. Journal of Machine Learning Reseach.

However : very hard to prove the convergence of the algorithm. Usually not possible to provide guarantees after a finite number of steps. See however

Joulin, A. & Ollivier, Y. (2010). Curvature, Concentration, and Error Estimates for Markov Chain Monte Carlo. *The Annals of Probability*.



Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

Variational Bayes methods

Idea from Bayesian statistics : approximate the posterior distribution $\pi(\theta|x)$. We fix a convenient family of probability distributions \mathcal{F} and approximate the posterior by $\tilde{\pi}(\theta)$:

$$ilde{\pi} = rg\min_{
ho \in \mathcal{F}} \mathcal{K}(
ho, \pi(\cdot|x)).$$

Jordan, M. et al (1999). An Introduction to Variational Methods for Graphical Models. Machine Learning.

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

Variational Bayes methods

Idea from Bayesian statistics : approximate the posterior distribution $\pi(\theta|x)$. We fix a convenient family of probability distributions \mathcal{F} and approximate the posterior by $\tilde{\pi}(\theta)$:

$$ilde{\pi} = rg\min_{
ho \in \mathcal{F}} \mathcal{K}(
ho, \pi(\cdot|x)).$$

Jordan, M. et al (1999). An Introduction to Variational Methods for Graphical Models. Machine Learning.

 ${\cal F}$ is either parametric or non-parametric. In the parametric case, the problem boils down to an optimization problem :

$$\mathcal{F} = \{\rho_a, a \in \mathcal{A} \subset \mathbb{R}^d\} \dashrightarrow \min_{a \in \mathcal{A}} \mathcal{K}(\rho_a, \pi(\cdot | x)).$$

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

Variational Bayes methods

Idea from Bayesian statistics : approximate the posterior distribution $\pi(\theta|x)$. We fix a convenient family of probability distributions \mathcal{F} and approximate the posterior by $\tilde{\pi}(\theta)$:

$$ilde{\pi} = rg\min_{
ho \in \mathcal{F}} \mathcal{K}(
ho, \pi(\cdot|x)).$$

Jordan, M. $et\ al$ (1999). An Introduction to Variational Methods for Graphical Models. Machine Learning.

 ${\cal F}$ is either parametric or non-parametric. In the parametric case, the problem boils down to an optimization problem :

$$\mathcal{F} = \{\rho_a, a \in \mathcal{A} \subset \mathbb{R}^d\} \dashrightarrow \min_{a \in \mathcal{A}} \mathcal{K}(\rho_a, \pi(\cdot | x)).$$

Theoretical guarantees on the approximation?

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

VB in PAC-Bayesian framework

$\hat{\rho}_{\lambda}(\mathrm{d}\theta) \propto \exp\left[-\lambda r(\theta)\right] \pi(\mathrm{d}\theta).$

Then :

$$\begin{split} \mathcal{K}(\rho_{a},\hat{\rho}_{\lambda}) &= \int \log\left[\frac{\mathrm{d}\rho_{a}}{\mathrm{d}\pi}\frac{\mathrm{d}\pi}{\mathrm{d}\hat{\rho}_{\lambda}}\right]\mathrm{d}\rho_{a} \\ &= \lambda \int r(\theta)\rho_{a}(\mathrm{d}\theta) + \mathcal{K}(\rho_{a},\pi) + \log\int \exp[-\lambda r]\mathrm{d}\pi. \end{split}$$

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

VB in PAC-Bayesian framework

$\hat{\rho}_{\lambda}(\mathrm{d}\theta) \propto \exp\left[-\lambda r(\theta)\right] \pi(\mathrm{d}\theta).$

Then :

$$\begin{split} \mathcal{K}(\rho_{a},\hat{\rho}_{\lambda}) &= \int \log\left[\frac{\mathrm{d}\rho_{a}}{\mathrm{d}\pi}\frac{\mathrm{d}\pi}{\mathrm{d}\hat{\rho}_{\lambda}}\right]\mathrm{d}\rho_{a} \\ &= \lambda \int r(\theta)\rho_{a}(\mathrm{d}\theta) + \mathcal{K}(\rho_{a},\pi) + \log\int \exp[-\lambda r]\mathrm{d}\pi. \end{split}$$

We put

$$ilde{a}_{\lambda} = \arg\min_{a\in\mathcal{A}} \left[\lambda \int r(\theta)
ho_{a}(\mathrm{d}\theta) + \mathcal{K}(
ho_{a},\pi)
ight] \,\,\mathrm{and}\,\, ilde{
ho}_{\lambda} =
ho_{\hat{a}_{\lambda}}.$$

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

A PAC-Bound for VB Approximation

Theorem

.

Alquier, P., Ridgway, J. & Chopin, N. (2015). On the Properties of Variational Approximations of Gibbs Posteriors. *Preprint*.

$$\begin{aligned} \forall \lambda > 0, \quad \mathbb{P} \left\{ \int R(\theta) \tilde{\rho}_{\lambda}(\mathrm{d}\theta) \\ &\leq \inf_{a \in \mathcal{A}} \left[\int R(\theta) \rho_{a}(\mathrm{d}\theta) + \frac{\lambda}{n} + \frac{2}{\lambda} \left[\mathcal{K}(\rho_{a}, \pi) + \log\left(\frac{2}{\varepsilon}\right) \right] \right] \right\} \\ &\geq 1 - \varepsilon. \end{aligned}$$

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

A PAC-Bound for VB Approximation

Theorem

Alquier, P., Ridgway, J. & Chopin, N. (2015). On the Properties of Variational Approximations of Gibbs Posteriors. *Preprint*.

$$\begin{aligned} \forall \lambda > 0, \quad \mathbb{P} \left\{ \int R(\theta) \tilde{\rho}_{\lambda}(\mathrm{d}\theta) \\ &\leq \inf_{a \in \mathcal{A}} \left[\int R(\theta) \rho_{a}(\mathrm{d}\theta) + \frac{\lambda}{n} + \frac{2}{\lambda} \left[\mathcal{K}(\rho_{a}, \pi) + \log\left(\frac{2}{\varepsilon}\right) \right] \right] \right\} \\ &\geq 1 - \varepsilon. \end{aligned}$$

 $-- \rightarrow$ if we can derive a tight oracle inequality from this bound, we know that the VB approximation is sensible!

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

Application to a linear classification problem

• (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n) iid from \mathbb{P} .

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

Application to a linear classification problem

• (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n) iid from \mathbb{P} . • $f_{\theta}(x) = \mathbf{1}(\langle \theta, x \rangle \geq 0)$, $x, \theta \in \mathbb{R}^d$.

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

- $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$ iid from \mathbb{P} .
- $f_{\theta}(x) = \mathbf{1}(\langle \theta, x \rangle \geq 0), x, \theta \in \mathbb{R}^{d}.$
- $R(\theta) = \mathbb{P}[Y \neq f_{\theta}(X)].$

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

- (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n) iid from \mathbb{P} .
- $f_{\theta}(x) = \mathbf{1}(\langle \theta, x \rangle \geq 0)$, $x, \theta \in \mathbb{R}^{d}$.
- $R(\theta) = \mathbb{P}[Y \neq f_{\theta}(X)].$
- $r_n(\theta) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}[Y_i \neq f_{\theta}(X_i)].$

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

- (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n) iid from \mathbb{P} .
- $f_{\theta}(x) = \mathbf{1}(\langle \theta, x \rangle \geq 0)$, $x, \theta \in \mathbb{R}^{d}$.
- $R(\theta) = \mathbb{P}[Y \neq f_{\theta}(X)].$
- $r_n(\theta) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}[Y_i \neq f_{\theta}(X_i)].$
- Gaussian prior $\pi = \mathcal{N}(\mathbf{0}, \vartheta I)$.

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

- (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n) iid from \mathbb{P} .
- $f_{\theta}(x) = \mathbf{1}(\langle \theta, x \rangle \geq 0)$, $x, \theta \in \mathbb{R}^{d}$.
- $R(\theta) = \mathbb{P}[Y \neq f_{\theta}(X)].$
- $r_n(\theta) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}[Y_i \neq f_{\theta}(X_i)].$
- Gaussian prior $\pi = \mathcal{N}(\mathbf{0}, \vartheta I)$.
- Gaussian approx. of the posterior : $\mathcal{F} = \left\{ \mathcal{N}(\mu, \Sigma), \mu \in \mathbb{R}^d, \Sigma \text{ s. pos. def.} \right\}.$

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

Application to a linear classification problem

- (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n) iid from \mathbb{P} .
- $f_{\theta}(x) = \mathbf{1}(\langle \theta, x \rangle \geq 0), x, \theta \in \mathbb{R}^{d}.$
- $R(\theta) = \mathbb{P}[Y \neq f_{\theta}(X)].$
- $r_n(\theta) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}[Y_i \neq f_{\theta}(X_i)].$
- Gaussian prior $\pi = \mathcal{N}(\mathbf{0}, \vartheta I)$.
- Gaussian approx. of the posterior : $\mathcal{F} = \left\{ \mathcal{N}(\mu, \Sigma), \mu \in \mathbb{R}^{d}, \Sigma \text{ s. pos. def.} \right\}.$

Optimization criterion :

$$\frac{\lambda}{n}\sum_{i=1}^{n}\Phi\left(\frac{-Y_{i}\left\langle X_{i},\mu\right\rangle}{\sqrt{\left\langle X_{i},\Sigma X_{i}\right\rangle}}\right)+\frac{\|\mu\|^{2}}{2\vartheta}+\frac{1}{2}\left(\frac{1}{\vartheta}\mathrm{tr}(\Sigma)-\log|\Sigma|\right)$$

using deterministic annealing and gradient descent.

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

Application of the main theorem

Corollary

Assume that, for $\|\theta\| = \|\theta'\| = 1$, $\mathbb{P}(\langle \theta, X \rangle \langle \theta', X \rangle) \leq c \|\theta - \theta'\|$ and take $\lambda = \sqrt{nd}$ and $\vartheta = 1/\sqrt{d}$. Then

$$\mathbb{P}\left\{\int R(heta) ilde{
ho}_{\lambda}(\mathrm{d} heta) \leq \inf_{ heta} R(heta) + \sqrt{rac{d}{n}} \Big[\log(4n\mathrm{e}^2) + c\Big] + rac{2\log\left(rac{2}{arepsilon}
ight)}{\sqrt{nd}}
ight\} \geq 1 - arepsilon.$$

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

Application of the main theorem

Corollary

Assume that, for $\|\theta\| = \|\theta'\| = 1$, $\mathbb{P}(\langle \theta, X \rangle \langle \theta', X \rangle) \leq c \|\theta - \theta'\|$ and take $\lambda = \sqrt{nd}$ and $\vartheta = 1/\sqrt{d}$. Then

$$\mathbb{P}iggl\{\int R(heta) ilde{
ho}_{\lambda}(\mathrm{d} heta) \leq \inf_{ heta} R(heta) + \sqrt{rac{d}{n}} \Big[\log(4n\mathrm{e}^2) + c \Big] + rac{2\log\left(rac{2}{arepsilon}
ight)}{\sqrt{nd}} iggr\} \geq 1 - arepsilon.$$

N.B : under margin assumption, possible to obtain d/n rates...

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

Test on real data

Dataset	Covariates	VB	SMC	SVM
Pima	7	21.3	22.3	30.4
Credit	60	33.6	32.0	32.0
DNA	180	23.6	23.6	20.4
SPECTF	22	06.9	08.5	10.1
Glass	10	19.6	23.3	4.7
Indian	11	25.5	26.2	26.8
Breast	10	1.1	1.1	1.7

Table: Comparison of misclassification rates (%). Last column : kernel-SVM with radial kernel. The hyper-parameters λ and ϑ are chosen by cross-validation.

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

Convexification of the loss

Can replace the 0/1 loss by a convex surrogate at "no" cost :

Zhang, T. (2004). Statistical behavior and consistency of classification methods based on convex risk minimization. *Annals of Statistics*.

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

Convexification of the loss

Can replace the 0/1 loss by a convex surrogate at "no" cost :

Zhang, T. (2004). Statistical behavior and consistency of classification methods based on convex risk minimization. *Annals of Statistics*.

• $R(\theta) = \mathbb{E}[(1 - Yf_{\theta}(X))_+]$ (hinge loss).

•
$$r_n(\theta) = \frac{1}{n} \sum_{i=1}^n (1 - Y_i f_{\theta}(X_i))_+.$$

• Gaussian approx. : $\mathcal{F} = \{\mathcal{N}(\mu, \sigma^2 I), \mu \in \mathbb{R}^d, \sigma > 0\}$.

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

Convexification of the loss

Can replace the 0/1 loss by a convex surrogate at "no" cost :

Zhang, T. (2004). Statistical behavior and consistency of classification methods based on convex risk minimization. *Annals of Statistics*.

•
$$R(\theta) = \mathbb{E}[(1 - Yf_{\theta}(X))_+]$$
 (hinge loss).

•
$$r_n(\theta) = \frac{1}{n} \sum_{i=1}^n (1 - Y_i f_\theta(X_i))_+$$
.

• Gaussian approx. :
$$\mathcal{F} = \left\{ \mathcal{N}(\mu, \sigma^2 I), \mu \in \mathbb{R}^d, \sigma > \mathsf{0} \right\}$$
 .

---- the following criterion (which turns out to be convex !) :

$$\frac{1}{n}\sum_{i=1}^{n}\left(1-Y_{i}\left\langle\mu,X_{i}\right\rangle\right)\Phi\left(\frac{1-Y_{i}\left\langle\mu,X_{i}\right\rangle}{\sigma\|X_{i}\|_{2}}\right)$$
$$+\frac{1}{n}\sum_{i=1}^{n}\sigma\|X_{i}\|\varphi\left(\frac{1-Y_{i}\left\langle\mu,X_{i}\right\rangle}{\sigma\|X_{i}\|_{2}}\right)+\frac{\|\mu\|_{2}^{2}}{2\vartheta}+\frac{d}{2}\left(\frac{\vartheta}{\sigma^{2}}-\log\sigma^{2}\right).$$

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

Application of the main theorem

Optimization with stochastic gradient descent on a ball of radius M. On this ball, the objetive function is *L*-Lipschitz. After k step, we have the approximation $\tilde{\rho}_{\lambda}^{(k)}$ of the posterior.

Corollary

Assume
$$||X|| \leq c_x$$
 a.s., take $\lambda = \sqrt{nd}$ and $\vartheta = 1/\sqrt{d}$. Then

$$\mathbb{P}\left\{\int R(\theta)\tilde{\rho}_{\lambda}^{(k)}(\mathrm{d}\theta) \leq \inf_{\theta} R(\theta) + \frac{LM}{\sqrt{1+k}} + \frac{c_{x}}{2}\sqrt{\frac{d}{n}}\log\left(\frac{n}{d}\right) + \frac{\frac{c_{x}^{2}+1}{2c_{x}} + 2c_{x}\log\left(\frac{2}{\varepsilon}\right)}{\sqrt{nd}}\right\} \geq 1 - \varepsilon.$$

Introduction : Learning with PAC-Bayes Bounds	Monte-Carlo
Three Types of PAC-Bayesian Bounds	Variational Bayes Methods
Computational Issues	PAC Analysis of Variational Bayes Approximations

Dataset	Convex VB	VB	SMC	SVM
Pima	21.8	21.3	22.3	30.4
Credit	27.2	33.6	32.0	32.0
DNA	4.2	23.6	23.6	20.4
SPECTF	19.2	06.9	08.5	10.1
Glass	26.1	19.6	23.3	4.7
Indian	26.2	25.5	26.2	26.8
Breast	0.5	1.1	1.1	1.7

-

Table: Comparison of misclassification rates (%), including the convexified version of VB.

Monte-Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

Convergence graphs

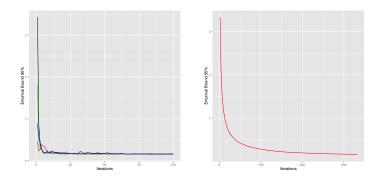


Figure: Stochastic gradient descent, Pima and Adult datasets.

Introduction : Learning with PAC-Bayes Bounds Three Types of PAC-Bayesian Bounds Computational Issues Data Structure Carlo Variational Bayes Methods PAC Analysis of Variational Bayes Approximations

Thanks & best wishes for 2016 !