GAP safe screening rules for sparsity enforcing penalties

Joseph Salmon
http://josephsalmon.eu
LTCI, CNRS, Télécom Paristech, Université Paris-Saclay

Joint work with:
Olivier Fercoq (Télécom ParisTech) Alexandre Gramfort (Télécom ParisTech) Eugene Ndiaye (Télécom ParisTech)

Table of Contents

Motivation - notation

A convexity toolkit detour

Optimization property for the Lasso

Safe rules

Gap safe rules

Coordinate descent implementation

Sparsity of signals is all around

Signals can often be represented through a combination of a few atoms / features :

- Fourier decomposition for sounds

Sparsity of signals is all around

Signals can often be represented through a combination of a few atoms / features :

- Fourier decomposition for sounds
- Wavelet for images (1990's)

Sparsity of signals is all around

Signals can often be represented through a combination of a few atoms / features :

- Fourier decomposition for sounds
- Wavelet for images (1990's)
- Dictionary learning for images (late 2000's)

Sparsity of signals is all around

Signals can often be represented through a combination of a few atoms / features :

- Fourier decomposition for sounds
- Wavelet for images (1990's)
- Dictionary learning for images (late 2000's)
- etc.

Sparse linear model

Let $y \in \mathbb{R}^{n}$ be a signal

Let $X=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right] \in \mathbb{R}^{n \times p}$ be a collection of atoms/features:
 corresponds to a dictionary
X well suited if one can approximate the signal $y \approx X \beta$ with a sparse vector $\beta \in \mathbb{R}^{p}$

Objectives:

- Estimation β
- Prediction $X \beta$

Constraints: large p, n, sparse β

The Lasso and variations

Vocabulary: the "Modern least square" Candès et al. (2008)

- Statistics: Lasso Tibshirani (1996)
- Signal processing variant: Basis Pursuit Chen et al. (1998)

$$
\hat{\beta}^{(\lambda)} \in \underset{\beta \in \mathbb{R}^{p}}{\arg \min }(\underbrace{\frac{1}{2}\|y-X \beta\|^{2}}_{\text {data fitting term }}+\underbrace{\lambda\|\beta\|_{1}}_{\text {sparsity-inducing penalty }})
$$

- Uniqueness not automatic, see discussion in Tibshirani (2013)
- Solutions are sparse (for well chosen λ 's)
- Need to tune/choose λ (standard is Cross-Validation)
- Theoretical guaranties Bickel, Ritov and Tsybakov (2009)
- Refinements: Adaptive Lasso Zou (2006), $\sqrt{\text { Lasso }}$ Belloni et al. (2011), Scaled Lasso Zhang and Zhang (2012)...

The Lasso: algorithmic point of view

Commonly used algorithms for solving this convex program:

- Homotopy method - LARS: very efficient for small p Osborne et al. (2000), Efron et al. (2004) and full path (i.e., compute solution for "all" λ 's). For limits see Mairal and Yu (2012)
- ISTA, Forward - Backward, proximal algorithm: useful in signal processing where $r \rightarrow X^{\top} r$ is cheap to compute (e.g., FFT, Fast Wavelet Transform, etc.) Beck and Teboulle (2009)
- Coordinate descent:
useful for large p and (unstructured) sparse matrix X, e.g., for text encoding Friedman et al. (2007)

Objective of this work: speed-up Lasso solvers

$$
\hat{\beta}^{(\lambda)} \in \underset{\beta \in \mathbb{R}^{p}}{\arg \min }(\underbrace{\frac{1}{2}\|y-X \beta\|_{2}^{2}}_{\text {data fitting term }}+\underbrace{\lambda\|\beta\|_{1}}_{\text {sparsity-inducing penalty }})
$$

- Compute $\hat{\beta}^{(\lambda)}$ for many λ^{\prime} 's: e.g., T values from $\lambda_{\text {max }}:=\left\|X^{\top} y\right\|_{\infty}$ to $\lambda_{\text {min }}=\epsilon \lambda_{\text {max }}$ on log-scale Default value in R-glmnet : $T=100, \epsilon=0.001$
- Flexible: can be adapted to any iterative solver (but not to LARS!), here focus on Coordinate Descent
- Easy to code contrarily to Strong Rule Tibshirani et al. (2012)
Rem: Starting is clear pick $\lambda=\lambda_{\text {max }}$ but ending is not : $\lambda_{\min }$?

Table of Contents

Motivation - notation

A convexity toolkit detour

Optimization property for the Lasso

Safe rules

Gap safe rules

Coordinate descent implementation

Sub-gradients / sub-differential

Definition: sub-gradient / sub-differential

For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a convex function, $u \in \mathbb{R}^{d}$ is a sub-gradient of f at x^{*}, if for all $x \in \mathbb{R}^{d}$ one has

$$
f(x) \geqslant f\left(x^{*}\right)+\left\langle u, x-x^{*}\right\rangle
$$

The sub-differential is the the set $\partial f\left(x^{*}\right)=\left\{u \in \mathbb{R}^{d}: \forall x \in \mathbb{R}^{d}, f(x) \geqslant f\left(x^{*}\right)+\left\langle u, x-x^{*}\right\rangle\right\}$.

Rem: if the sub-gradient is unique, you recover the gradient

Fermat's rule: first order condition

Theorem

A point x^{*} is a minimum of a convex function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ if and only if $0 \in \partial f\left(x^{*}\right)$

Proof: use the definition of sub-gradients:

- 0 is a sub-gradient of f at x^{*} if and only if $\forall x \in \mathbb{R}^{d}, f(x) \geqslant f\left(x^{*}\right)+\left\langle 0, x-x^{*}\right\rangle$

Fermat's rule: first order condition

Theorem

A point x^{*} is a minimum of a convex function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ if and only if $0 \in \partial f\left(x^{*}\right)$

Proof: use the definition of sub-gradients:

- 0 is a sub-gradient of f at x^{*} if and only if $\forall x \in \mathbb{R}^{d}, f(x) \geqslant f\left(x^{*}\right)+\left\langle 0, x-x^{*}\right\rangle$
Rem: Visually it corresponds to a horizontal tangent

Sub-differential of the absolute value

Function (abs):

$$
f: \begin{cases}\mathbb{R} & \rightarrow \mathbb{R} \\ x & \mapsto|x|\end{cases}
$$

Sub-differential of the absolute value

Function (abs):

$$
f: \begin{cases}\mathbb{R} & \rightarrow \mathbb{R} \\ x & \mapsto|x|\end{cases}
$$

Sub-differential (sign)

$$
\partial f\left(x^{*}\right)= \begin{cases}\{-1\} & \text { if } \left.x^{*} \in\right]-\infty, 0[\\ \{1\} & \text { if } \left.x^{*} \in\right] 0, \infty[\\ {[-1,1]} & \text { if } x^{*}=0\end{cases}
$$

Sub-differential of the absolute value

Function (abs):

$$
f: \begin{cases}\mathbb{R} & \rightarrow \mathbb{R} \\ x & \mapsto|x|\end{cases}
$$

Sub-differential (sign)

$$
\partial f\left(x^{*}\right)= \begin{cases}\{-1\} & \text { if } \left.x^{*} \in\right]-\infty, 0[\\ \{1\} & \text { if } \left.x^{*} \in\right] 0, \infty[\\ {[-1,1]} & \text { if } x^{*}=0\end{cases}
$$

Sub-differential of the absolute value

Function (abs):

$$
f: \begin{cases}\mathbb{R} & \rightarrow \mathbb{R} \\ x & \mapsto|x|\end{cases}
$$

Sub-differential (sign)

$$
\partial f\left(x^{*}\right)= \begin{cases}\{-1\} & \text { if } \left.x^{*} \in\right]-\infty, 0[\\ \{1\} & \text { if } \left.x^{*} \in\right] 0, \infty[\\ {[-1,1]} & \text { if } x^{*}=0\end{cases}
$$

Sub-differential of the absolute value

Function (abs):

$$
f: \begin{cases}\mathbb{R} & \rightarrow \mathbb{R} \\ x & \mapsto|x|\end{cases}
$$

Sub-differential of the absolute value

Function (abs):

$$
f: \begin{cases}\mathbb{R} & \rightarrow \mathbb{R} \\ x & \mapsto|x|\end{cases}
$$

Sub-differential (sign)

$$
\partial f\left(x^{*}\right)= \begin{cases}\{-1\} & \text { if } \left.x^{*} \in\right]-\infty, 0[\\ \{1\} & \text { if } \left.x^{*} \in\right] 0, \infty[\\ {[-1,1]} & \text { if } x^{*}=0\end{cases}
$$

Sub-differential of the absolute value

Function (abs):

$$
f: \begin{cases}\mathbb{R} & \rightarrow \mathbb{R} \\ x & \mapsto|x|\end{cases}
$$

Sub-differential (sign)

$$
\partial f\left(x^{*}\right)= \begin{cases}\{-1\} & \text { if } \left.x^{*} \in\right]-\infty, 0[\\ \{1\} & \text { if } \left.x^{*} \in\right] 0, \infty[\\ {[-1,1]} & \text { if } x^{*}=0\end{cases}
$$

Sub-differential of the absolute value

Function (abs):

$$
f: \begin{cases}\mathbb{R} & \rightarrow \mathbb{R} \\ x & \mapsto|x|\end{cases}
$$

The denoising case: $X=\operatorname{Id}_{\mathrm{n}}$

Simple design: $n=p$ and $X=\mathrm{Id}_{\mathrm{n}}$, meaning the atoms are canonical elements: $\mathbf{x}_{j}=(0, \cdots, 0, \underset{\substack{\uparrow}}{1}, 0, \cdots, 1)^{\top}$, then
$\hat{\beta}^{(\lambda)} \in \underset{\beta \in \mathbb{R}^{p}}{\arg \min }\left(\frac{1}{2}\|y-\beta\|^{2}+\lambda\|\beta\|_{1}\right)$
$\hat{\beta}^{(\lambda)}=\underset{\beta \in \mathbb{R}^{p}}{\arg \min }\left(\frac{1}{2}\|y-\beta\|^{2}+\lambda\|\beta\|_{1}\right)$
(strictly convex)
$\hat{\beta}_{j}^{(\lambda)}=\underset{\beta_{j} \in \mathbb{R}}{\arg \min }\left(\frac{1}{2}\left(y_{j}-\beta_{j}\right)^{2}+\lambda\left|\beta_{j}\right|\right), \forall j \in[n]$
Rem: This is called the proximal operator of $\lambda\|\cdot\|_{1}$

Soft-Thresholding

The 1D problem has a closed form solution: Soft-Thresholding:

$$
\begin{aligned}
\eta_{\mathrm{ST}, \lambda}(y) & =\underset{\beta \in \mathbb{R}}{\arg \min }\left(\frac{(y-\beta)^{2}}{2}+\lambda|\beta|\right) \\
& =\operatorname{sign}(y) \cdot(|y|-\lambda)_{+}
\end{aligned}
$$

where $(\cdot)_{+}=\max (0, \cdot)$
Proof: use sub-gradients of $|\cdot|$ and Fermat condition

Rem: systemetic underestimation / contraction bias; coefficients (greater than λ) are shrinked toward zero by a factor λ

Table of Contents

Motivation - notation

A convexity toolkit detour

Optimization property for the Lasso

Safe rules

Gap safe rules

Coordinate descent implementation

Dual problem Kim et al. (2007)

Primal function : $\quad P_{\lambda}(\beta)=\frac{1}{2}\|y-X \beta\|^{2}+\lambda\|\beta\|_{1}$
Dual solution :

$$
\hat{\theta}^{(\lambda)}=\underset{\theta \in \Delta_{X}}{\arg \max } \underbrace{\frac{1}{2}\|y\|^{2}-\frac{\lambda^{2}}{2}\left\|\theta-\frac{y}{\lambda}\right\|^{2}}_{=D_{\lambda}(\theta)}
$$

Dual feasible set :

$$
\Delta_{X}=\left\{\theta \in \mathbb{R}^{n}:\left|\mathbf{x}_{j}^{\top} \theta\right| \leqslant 1, \forall j \in[p]\right\}
$$

- $\Delta_{X}=\left\{\theta \in \mathbb{R}^{n}:\left\|X^{\top} \theta\right\|_{\infty} \leqslant 1\right\}$ is a polyhedron
- The dual solution is the projection of y / λ over this polyhedron:

$$
\hat{\theta}^{(\lambda)}=\underset{\theta \in \Delta_{X}}{\arg \min }\left\|\frac{y}{\lambda}-\theta\right\|^{2}:=\Pi_{\Delta_{X}}\left(\frac{y}{\lambda}\right)
$$

Proof in the next slide

Proof of the dual formulation

$$
\min _{\beta \in \mathbb{R}^{p}} \underbrace{\frac{1}{2}\|y-X \beta\|^{2}}_{f(y-X \beta)}+\lambda \underbrace{\|\beta\|_{1}}_{\Omega(\beta)} \Leftrightarrow \min _{\beta \in \mathbb{R}^{p}, z \in \mathbb{R}^{n}}\left\{\begin{array}{c}
f(z)+\lambda \Omega(\beta) \\
\text { s.t. } \quad z=y-X \beta
\end{array}\right.
$$

Lagrangian: $\quad \mathcal{L}(z, \beta, \theta):=\frac{1}{2}\|z\|^{2}+\lambda \Omega(\beta)+\lambda \theta^{\top}(y-X \beta-z)$.
Find a Lagrangian saddle point $\left(z^{\star}, \hat{\beta}^{(\lambda)}, \hat{\theta}^{(\lambda)}\right)$ (Strong duality):

$$
\begin{aligned}
& \min _{\beta \in \mathbb{R}^{p}, z \in \mathbb{R}^{n}} \max _{\theta \in \mathbb{R}^{n}} \mathcal{L}(z, \beta, \theta)=\max _{\theta \in \mathbb{R}^{n}} \min _{\beta \in \mathbb{R}^{p}, z \in \mathbb{R}^{n}} \mathcal{L}(z, \beta, \theta)= \\
& \max _{\theta \in \mathbb{R}^{n}}\left\{\min _{z \in \mathbb{R}^{n}}\left[f(z)-\lambda \theta^{\top} z\right]+\min _{\beta \in \mathbb{R}^{p}}\left[\lambda \Omega(\beta)-\lambda \theta^{\top} X \beta\right]+\lambda \theta^{\top} y\right\}= \\
& \max _{\theta \in \mathbb{R}^{n}}\left\{-f^{*}(\lambda \theta)-\lambda \Omega^{*}\left(X^{\top} \theta\right)+\lambda \theta^{\top} y\right\}
\end{aligned}
$$

which is the formulation asserted (with conjugacy properties)

Conjugation

For any $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the (Fenchel) conjugate f^{*} is defined as

$$
f^{*}(z)=\sup _{x \in \mathbb{R}^{n}} x^{\top} z-f(x)
$$

- If $f(\cdot)=\|\cdot\|^{2} / 2$ then $f^{*}(\cdot)=f(\cdot)$
- If $f(\cdot)=\Omega(\cdot)$ is a norm, then $f^{*}(\cdot)=\iota_{\mathcal{B}_{*}(0,1)}(\cdot)$, i.e., it is the indicator function of the dual norm unit ball, where the dual norm Ω^{*} is defined by:

$$
\Omega^{*}(z)=\sup _{x: \Omega(x) \leqslant 1} x^{\top} z=\iota_{\mathcal{B}(0,1)}^{*}
$$

and

$$
\iota_{\mathcal{B}}(x)=\left\{\begin{array}{ll}
0 & \text { if } x \in \mathcal{B} \\
+\infty & \text { otherwise }
\end{array}, \text { where } \mathcal{B}=\left\{x \in \mathbb{R}^{n}: \Omega(x) \leqslant 1\right\}\right.
$$

Geometric interpretation

The dual optimal solution is the projection of y / λ over the dual feasible set $\Delta_{X}=\left\{\theta \in \mathbb{R}^{n}:\left\|X^{\top} \theta\right\|_{\infty} \leqslant 1\right\}: \hat{\theta}^{(\lambda)}=\Pi_{\Delta_{X}}(y / \lambda)$

- $\frac{y}{\lambda}$

Geometric interpretation

The dual optimal solution is the projection of y / λ over the dual feasible set $\Delta_{X}=\left\{\theta \in \mathbb{R}^{n}:\left\|X^{\top} \theta\right\|_{\infty} \leqslant 1\right\}: \hat{\theta}^{(\lambda)}=\Pi_{\Delta_{X}}(y / \lambda)$

- $\frac{y}{\lambda}$

Geometric interpretation

The dual optimal solution is the projection of y / λ over the dual feasible set $\Delta_{X}=\left\{\theta \in \mathbb{R}^{n}:\left\|X^{\top} \theta\right\|_{\infty} \leqslant 1\right\}: \hat{\theta}^{(\lambda)}=\Pi_{\Delta_{X}}(y / \lambda)$

Fermat rule / KKT conditions

- Primal solution : $\hat{\beta}^{(\lambda)} \in \mathbb{R}^{p}$
- Dual solution : $\hat{\theta}^{(\lambda)} \in \Delta_{X} \subset \mathbb{R}^{n}$

$$
\text { Primal/Dual link: } \quad y=X \hat{\beta}^{(\lambda)}+\lambda \hat{\theta}^{(\lambda)}
$$

Necessary and sufficient optimality conditions:
KKT/Fermat: $\forall j \in[p], \mathbf{x}_{j}^{\top} \hat{\theta}^{(\lambda)} \in\left\{\begin{array}{lll}\left\{\operatorname{sign}\left(\hat{\beta}_{j}^{(\lambda)}\right)\right\} & \text { if } & \hat{\beta}_{j}^{(\lambda)} \neq 0, \\ {[-1,1]} & \text { if } & \hat{\beta}_{j}^{(\lambda)}=0 .\end{array}\right.$
Mother of safe rules: Fermat's rule implies that if $\lambda \geqslant \lambda_{\max }=\left\|X^{\top} y\right\|_{\infty}=\max _{j \in[p]}\left|\mathbf{x}_{j}^{\top} \hat{\theta}^{(\lambda)}\right|$, then $0 \in \mathbb{R}^{p}$ is the (unique here) primal solution

Proof in next slide

Proof Fermat/KKT + primal/dual link

Lagrangian: $\mathcal{L}(z, \beta, \theta):=\underbrace{\frac{1}{2}\|z\|^{2}}_{f(z)}+\lambda \underbrace{\|\beta\|_{1}}_{\Omega(\beta)}+\lambda \theta^{\top}(y-X \beta-z)$.
A saddle point $\left(z^{\star}, \hat{\beta}^{(\lambda)}, \hat{\theta}^{(\lambda)}\right)$ of the Lagrangian satisfies:

$$
\left\{\begin{array}{l}
0=\frac{\partial \mathcal{L}}{\partial z}\left(z^{\star}, \hat{\beta}^{(\lambda)}, \hat{\theta}^{(\lambda)}\right)=\nabla f\left(z^{\star}\right)=z^{\star}-\lambda \hat{\theta}^{(\lambda)} \\
0 \in \partial \mathcal{L}\left(z^{\star}, \cdot, \hat{\theta}^{(\lambda)}\right)\left(\hat{\beta}^{(\lambda)}\right)=-\lambda X^{\top} \hat{\theta}^{(\lambda)}+\lambda \partial \Omega\left(\hat{\beta}^{(\lambda)}\right) \\
0=\frac{\partial \mathcal{L}}{\partial \theta}\left(z^{\star}, \hat{\beta}^{(\lambda)}, \hat{\theta}^{(\lambda)}\right)=y-X \hat{\beta}^{(\lambda)}-z^{\star} .
\end{array}\right.
$$

Hence, $y-X \hat{\beta}^{(\lambda)}=z^{\star}=\lambda \hat{\theta}^{(\lambda)}$ and $X^{\top} \hat{\theta}^{(\lambda)} \in \partial \Omega\left(\hat{\beta}^{(\lambda)}\right)$ so

$$
\forall j \in\{1, \ldots, p\}, \quad \mathbf{x}_{j}^{\top} \hat{\theta}^{(\lambda)} \in \partial\|\cdot\|_{1}\left(\hat{\beta}^{(\lambda)}\right)
$$

Geometric interpretation (II)

A simple dual point is: $y / \lambda_{\max } \in \Delta_{X}$ where $\lambda_{\max }=\left\|X^{\top} y\right\|_{\infty}$

Table of Contents

Motivation - notation

A convexity toolkit detour

Optimization property for the Lasso

Safe rules

Gap safe rules

Coordinate descent implementation

Safe rules - safe regions El Ghaoui et al. (2012)

Screening thanks to Fermat's Rule: \quad If $\left|\mathbf{x}_{j}^{\top} \hat{\theta}^{(\lambda)}\right|<1$ then, $\hat{\beta}_{j}^{(\lambda)}=0$
Beware: $\hat{\theta}^{(\lambda)}$ is unknown, but one can consider a safe region $\mathcal{C} \subset \mathbb{R}^{n}$ containing $\hat{\theta}^{(\lambda)}$, i.e., $\hat{\theta}^{(\lambda)} \in \mathcal{C}$, leading to :

$$
\text { safe rule : } \quad \text { If } \sup _{\theta \in \mathcal{C}}\left|\mathbf{x}_{j}^{\top} \theta\right|<1 \text { then } \hat{\beta}_{j}^{(\lambda)}=0
$$

The new goal is simple, find a region \mathcal{C} :

- as narrow as possible containing $\hat{\theta}^{(\lambda)}$
- such that $\mu_{\mathcal{C}}:\left\{\begin{array}{ll}\mathbb{R}^{n} & \mapsto \mathbb{R}^{+} \\ \mathbf{x} & \rightarrow \sup _{\theta \in \mathcal{C}}\left|\mathbf{x}^{\top} \theta\right|\end{array}\right.$ is easy to compute

Safe sphere rules

Let $\mathcal{C}=B(c, r)$ be a ball of center $c \in \mathbb{R}^{n}$ and radius $r>0$, then

$$
\mu_{\mathcal{C}}(\mathbf{x}):=\sup _{\theta \in \mathcal{C}}\left|\mathbf{x}^{\top} \theta\right|=\left|\mathbf{x}^{\top} c\right|+r\|\mathbf{x}\|
$$

so the safe rule becomes

$$
\begin{equation*}
\text { If }\left|\mathbf{x}_{j}^{\top} c\right|+r\left\|\mathbf{x}_{j}\right\|<1 \text { then } \hat{\beta}_{j}^{(\lambda)}=0 \tag{1}
\end{equation*}
$$

Screen-out the all variables \mathbf{x}_{j} satisfying (1), and remove them from the optimization problem.

New objective:

- find r as small as possible
- find c as close to $\hat{\theta}^{(\lambda)}$ as possible.

Static safe rules: El Ghaoui et al. (2012)

Properties of static safe rules

Static safe region: useful prior any optimization, for a fix λ.

$$
\mathcal{C}=B(c, r)=B\left(y / \lambda,\left\|y / \lambda_{\max }-y / \lambda\right\|\right)
$$

$$
\text { If }\left|\mathbf{x}_{j}^{\top} y\right|<\lambda\left(1-\left\|y / \lambda_{\max }-y / \lambda\right\|\left\|\mathbf{x}_{j}\right\|\right) \text { then } \hat{\beta}_{j}^{(\lambda)}=0
$$

- Reinterprets screening methods for variable selection: "If $\left|\mathbf{x}_{j}^{\top} y\right|$ is small, discard \mathbf{x}_{j} " as a safe rule for the Lasso
- The corresponding safe test is useless as soon as:

$$
\frac{\lambda}{\lambda_{\max }} \leqslant \min _{j \in[p]}\left(\frac{1+\left|\mathbf{x}_{j}^{\top} y\right| /\left(\left\|\mathbf{x}_{j}\right\|\|y\|\right)}{1+\lambda_{\max } /\left(\left\|\mathbf{x}_{j}\right\|\|y\|\right)}\right)
$$

meaning that no variable would be screened-out for such λ 's

Dynamic safe rules Bonnefoy et al. (2014)

Dynamic safe rules Bonnefoy et al. (2014)

Dynamic safe rules Bonnefoy et al. (2014)

Dynamic safe rule

Dynamic point of view: build $\theta_{k} \in \Delta_{X}$, evolving with the solver iterations to get refined safe rules Bonnefoy et al. $(2014,2015)$

Remind link at optimum: $\quad \lambda \hat{\theta}^{(\lambda)}=y-X \hat{\beta}^{(\lambda)}$
Current residual for primal point $\beta_{k}: \quad \rho_{k}=y-X \beta_{k}$
Dual candidate: choose θ_{k} proportional to the residual

$$
\theta_{k}=\alpha_{k} \rho_{k},
$$

where $\quad \alpha_{k}=\min \left[\max \left(\frac{y^{\top} \rho_{k}}{\lambda\left\|\rho_{k}\right\|^{2}}, \frac{-1}{\left\|X^{\top} \rho_{k}\right\|_{\infty}}\right), \frac{1}{\left\|X^{\top} \rho_{k}\right\|_{\infty}}\right]$.
Motivation: projecting over the convex set $\Delta_{X} \cap \operatorname{Span}\left(\rho_{k}\right)$ is cheap

Creating dual points: project on a segment

Limits of previous dynamic rules

For $B(c, r)=B\left(\theta_{k}, r_{k}\right)$ with $r_{k}=\left\|\theta_{k}-y / \lambda\right\|$, the radius does not converge to zero, even when $\beta_{k} \rightarrow \hat{\beta}^{(\lambda)}$ and $\theta_{k} \rightarrow \hat{\theta}^{(\lambda)}$ (converging solver). The limiting safe sphere is

$$
\mathcal{C}=B\left(y / \lambda,\left\|\Pi_{\Delta_{X}}(y / \lambda)-y / \lambda\right\|\right)
$$

Sequential safe rule Wang et al. (2013)

Warm start main idea: to compute the Lasso for T different λ 's, say $\lambda_{0}, \cdots, \lambda_{T-1}$, reuse computation done at λ_{t-1} to get $\hat{\beta}^{\left(\lambda_{t}\right)}$:

- Warm start (for the primal) = standard trick to accelerate iterative solvers: Initialize to $\hat{\beta}^{\left(\lambda_{t-1}\right)}$ to compute $\hat{\beta}^{\left(\lambda_{t}\right)}$
- Warm start (for the dual) $=$ sequential safe rule use $\hat{\theta}^{\left(\lambda_{t-1}\right)}$ to help screening for $\hat{\beta}^{\left(\lambda_{t}\right)}$.
Major issue: in prior works $\hat{\theta}^{\left(\lambda_{t-1}\right)}$ needs to be known exactly!
Rem: Unrealistic except for $\hat{\theta}^{\left(\lambda_{0}\right)}=y / \lambda_{\max }=y /\left\|X^{\top} y\right\|_{\infty}$

EDDP Wang et al. (2013) can remove useful variables

Duality Gap properties

- Primal objective: P_{λ}
- Dual objective: D_{λ}
- Primal solution: $\hat{\beta}^{(\lambda)} \in \mathbb{R}^{p}$
- Primal solution: $\hat{\theta}^{(\lambda)} \in \Delta_{X} \subset \mathbb{R}^{n}$,

Duality gap: for any $\beta \in \mathbb{R}^{p}, \theta \in \Delta_{X}, G_{\lambda}(\beta, \theta)=P_{\lambda}(\beta)-D_{\lambda}(\theta)$

$$
G_{\lambda}(\beta, \theta)=\frac{1}{2}\|X \beta-y\|^{2}+\lambda\|\beta\|_{1}-\left(\frac{1}{2}\|y\|^{2}-\frac{\lambda^{2}}{2}\left\|\theta-\frac{y}{\lambda}\right\|^{2}\right)
$$

Strong duality: for any $\beta \in \mathbb{R}^{p}, \theta \in \Delta_{X}$,

$$
D_{\lambda}(\theta) \leqslant D_{\lambda}\left(\hat{\theta}^{(\lambda)}\right)=P_{\lambda}\left(\hat{\beta}^{(\lambda)}\right) \leqslant P_{\lambda}(\beta)
$$

Consequences:

- $G_{\lambda}(\beta, \theta) \geqslant 0$, for any $\beta \in \mathbb{R}^{p}, \theta \in \Delta_{X}$ (weak duality)
- $G_{\lambda}(\beta, \theta) \leqslant \epsilon \Rightarrow P_{\lambda}(\beta)-P_{\lambda}\left(\hat{\beta}^{(\lambda)}\right) \leqslant \epsilon$ (stopping criterion!)

Table of Contents

Motivation - notation

A convexity toolkit detour

Optimization property for the Lasso

Safe rules

Gap safe rules

Coordinate descent implementation

GAP Safe sphere

For any $\beta \in \mathbb{R}^{p}, \theta \in \Delta_{X}$

$$
G_{\lambda}(\beta, \theta)=\frac{1}{2}\|X \beta-y\|^{2}+\lambda\|\beta\|_{1}-\left(\frac{1}{2}\|y\|^{2}-\frac{\lambda^{2}}{2}\left\|\theta-\frac{y}{\lambda}\right\|^{2}\right)
$$

Gap Safe ball: $B\left(\theta, r_{\lambda}(\beta, \theta)\right)$, where $r_{\lambda}(\beta, \theta)=\sqrt{2 G_{\lambda}(\beta, \theta)} / \lambda$
Rem: If $\beta_{k} \rightarrow \hat{\beta}^{(\lambda)}$ and $\theta_{k} \rightarrow \hat{\theta}^{(\lambda)}$ then $G_{\lambda}\left(\beta_{k}, \theta_{k}\right) \rightarrow 0:$ a converging solver leads to a converging safe rule!

Proof in next slide (if any interest)

The GAP SAFE sphere is safe:

- $D_{\lambda}\left(\hat{\theta}^{(\lambda)}\right) \leqslant P_{\lambda}\left(\beta_{k}\right)$ (weak Duality)
- D_{λ} is λ^{2}-strongly concave so for any $\theta_{1}, \theta_{2} \in \mathbb{R}^{n}$,

$$
D_{\lambda}\left(\theta_{1}\right) \leqslant D_{\lambda}\left(\theta_{2}\right)+\left\langle\nabla D_{\lambda}\left(\theta_{2}\right), \theta_{1}-\theta_{2}\right\rangle-\frac{\lambda^{2}}{2}\left\|\theta_{1}-\theta_{2}\right\|_{2}^{2}
$$

- $\hat{\theta}^{(\lambda)}$ maximizes D_{λ} over Δ_{X}, so Fermat's rule yields

$$
\forall \theta \in \Delta_{X}, \quad\left\langle\nabla D_{\lambda}\left(\hat{\theta}^{(\lambda)}\right), \theta-\hat{\theta}^{(\lambda)}\right\rangle \leqslant 0
$$

To conclude, for any $\theta \in \Delta_{X}$:

$$
\begin{aligned}
\frac{\lambda^{2}}{2}\left\|\theta-\hat{\theta}^{(\lambda)}\right\|_{2}^{2} & \leqslant D_{\lambda}\left(\hat{\theta}^{(\lambda)}\right)-D_{\lambda}(\theta)+\left\langle\nabla D_{\lambda}\left(\hat{\theta}^{(\lambda)}\right), \theta-\hat{\theta}^{(\lambda)}\right\rangle \\
& \leqslant P_{\lambda}\left(\beta_{k}\right)-D_{\lambda}(\theta)
\end{aligned}
$$

Dynamic safe sphere Bonnefoy et al. (2014)

Dynamic safe sphere Fercoq et al. (2015)

Table of Contents

Motivation - notation

A convexity toolkit detour

Optimization property for the Lasso

Safe rules

Gap safe rules

Coordinate descent implementation

Recap for safe spheres

$\mathcal{C}_{k}=B\left(\theta_{k}, r_{\lambda}\left(\beta_{k}, \theta_{k}\right)\right)$ where β_{k} and θ_{k} are the current approximation of the primal and dual solution β_{k} and θ_{k}

Active set: $\quad A^{(\lambda)}\left(\mathcal{C}_{k}\right)=\left\{j \in[p]: \mu_{\mathcal{C}_{k}}\left(\mathbf{x}_{j}\right) \geqslant 1\right\}$
where

$$
\mu_{\mathcal{C}_{k}}(\mathbf{x}):=\sup _{\theta \in \mathcal{C}_{k}}\left|\mathbf{x}^{\top} \theta\right|=\left|\mathbf{x}^{\top} \theta_{k}\right|+r_{\lambda}\left(\beta_{k}, \theta_{k}\right)\|\mathbf{x}\|
$$

Rem: The active set is guaranteed to contain the variable that are in the support of an optimal solution

Algorithm 1 Coordinate descent (Lasso)
Input: $X, y, \epsilon, K, F,\left(\lambda_{t}\right)_{t \in[T-1]}$
1: Initialization: $\quad \lambda_{0}=\lambda_{\max }, \quad \beta^{\lambda_{0}}=0$
2: for $t \in[T-1]$ do
3: $\quad \beta \leftarrow \beta^{\lambda_{t-1}}$
4: \quad for $k \in[K]$ do
5: if $k \bmod F=0$ then $\quad \triangleright$ Screen every F epoch
6:
7:
8:
9:
10:
11:
12:
13:
14: end for
15: end for
16: end for

Algorithm 2 Coordinate descent (Lasso) with GAP Safe screening Input: $X, y, \epsilon, K, F,\left(\lambda_{t}\right)_{t \in[T-1]}$
1: Initialization: $\quad \lambda_{0}=\lambda_{\max }, \quad \beta^{\lambda_{0}}=0$
2: for $t \in[T-1]$ do
3: $\quad \beta \leftarrow \beta^{\lambda_{t-1}}$
\triangleright Loop over λ 's
\triangleright previous ϵ-solution

4: \quad for $k \in[K]$ do
5: if $k \bmod F=0$ then $\quad \triangleright$ Screen every F epoch

6:
7:
8:
9:
10:
11:
12:
13:
14: end for
15: end for
16: end for

Gap safe rules: benefits?

- it is a dynamic rule (by construction)
- it is a sequential rule (without any more effort)
- the safe region is converging toward $\left\{\hat{\theta}^{(\lambda)}\right\}$
- it works better in practice

Proportion of active variables as a function of λ and the number of iterations K on the Leukemia dataset $(n=72, p=7129)$

Computing time

Figure: Time to reach convergence using various screening rules on the Leukemia dataset (dense data: $n=72, p=7129$).

Conclusion and future work

- New safe screening rule based on duality gap for the Lasso
- Convergent safe regions (support identification in finite time)
- Improved computational efficiency for Coordinate Descent
- Other regularization can be simply handled: Elastic Net, Group-Lasso
- Other data fitting term: logistic regression for classification (f smooth: gradient Lipschitz)
- On going work: Sparse Group-Lasso $\left(\ell_{1}+\ell_{1} / \ell_{2}\right)$ more intricate

More info

- "Mind the duality gap: safer rules for the Lasso" Fercoq, Gramfort and S., ICML 2015
- "GAP Safe screening rules for sparse multi-task and multi-class models"
Ndiaye, Fercoq, Gramfort and S., NIPS 2015
- Python Code on demand (soon available in scikit-learn Pedregosa et al. (2011))

Powered with MooseTeX

Références I

- A. Belloni, V. Chernozhukov, and L. Wang.

Square-root Lasso: Pivotal recovery of sparse signals via conic programming. Biometrika, 98(4):791-806, 2011.

- A. Bonnefoy, V. Emiya, L. Ralaivola, and R. Gribonval.

Dynamic Screening: Accelerating First-Order Algorithms for the Lasso and Group-Lasso.
ArXiv e-prints, 2014.

- A. Bonnefoy, V. Emiya, L. Ralaivola, and R. Gribonval.

A dynamic screening principle for the lasso.
In EUSIPCO, 2014.

- P. J. Bickel, Y. Ritov, and A. B. Tsybakov.

Simultaneous analysis of Lasso and Dantzig selector.
Ann. Statist., 37(4):1705-1732, 2009.

- A. Beck and M. Teboulle.

A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci., 2(1):183-202, 2009.

Références II

- S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit.
SIAM J. Sci. Comput., 20(1):33-61 (electronic), 1998.
- E. J. Candès, M. B. Wakin, and S. P. Boyd.

Enhancing sparsity by reweighted l_{1} minimization.
J. Fourier Anal. Applicat., 14(5-6):877-905, 2008.

- B. Efron, T. Hastie, I. M. Johnstone, and R. Tibshirani.

Least angle regression.
Ann. Statist., 32(2):407-499, 2004.
With discussion, and a rejoinder by the authors.

- L. El Ghaoui, V. Viallon, and T. Rabbani.

Safe feature elimination in sparse supervised learning.
J. Pacific Optim., 8(4):667-698, 2012.

- O. Fercoq, A. Gramfort, and J. Salmon.

Mind the duality gap: safer rules for the lasso.
In ICML, 2015.

Références III

- J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani.

Pathwise coordinate optimization.
Ann. Appl. Stat., 1(2):302-332, 2007.

- S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky.

An interior-point method for large-scale l_{1}-regularized least squares.
IEEE J. Sel. Topics Signal Process., 1(4):606-617, 2007.

- J. Mairal and B. Yu.

Complexity analysis of the lasso regularization path.
In ICML, 2012.

- M. R. Osborne, B. Presnell, and B. A. Turlach.

A new approach to variable selection in least squares problems.
IMA J. Numer. Anal., 20(3):389-403, 2000.

- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.

Scikit-learn: Machine learning in Python.
J. Mach. Learn. Res., 12:2825-2830, 2011.

Références IV

- R. Tibshirani, J. Bien, J. Friedman, T. Hastie, N. Simon, J. Taylor, and R. J. Tibshirani.
Strong rules for discarding predictors in lasso-type problems.
J. Roy. Statist. Soc. Ser. B, 74(2):245-266, 2012.
- R. Tibshirani.

Regression shrinkage and selection via the lasso.
J. Roy. Statist. Soc. Ser. B, 58(1):267-288, 1996.

- R. J. Tibshirani.

The lasso problem and uniqueness.
Electron. J. Stat., 7:1456-1490, 2013.

- J. Wang, J. Zhou, P. Wonka, and J. Ye.

Lasso screening rules via dual polytope projection.
In NIPS, pages 1070-1078, 2013.

- H. Zou.

The adaptive lasso and its oracle properties.
J. Am. Statist. Assoc., 101(476):1418-1429, 2006.

Références V

- C.-H. Zhang and T. Zhang.

A general theory of concave regularization for high-dimensional sparse estimation problems.
Statistical Science, 27(4):576-593, 2012.

