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Sparse linear model

Let y € R” be a signal

Let X = [x1,...,%x,] € R"*? be a
collection of atoms/features:
corresponds to a dictionary

X well suited if one can
approximate the signal y ~ Xj3
with a sparse vector 3 € RP

Objectives:
» Estimation
» Prediction X3

Constraints: large p, n, sparse 3




The Lasso and variations

Vocabulary: the “Modern least square” Candes et al. (2008)
» Statistics: Lasso Tibshirani (1996)
» Signal processing variant: Basis Pursuit Chen et al. (1998)

A« 1
O eagnin (- Jy-X6P o+ Mg
BERP
data fitting term sparsity-inducing penalty

» Uniqueness not automatic, see discussion in Tibshirani (2013)
» Solutions are sparse (for well chosen \'s)

> Need to tune/choose A (standard is Cross-Validation)

» Theoretical guaranties Bickel, Ritov and Tsybakov (2009)

» Refinements: Adaptive Lasso Zou (2006), v/ Lasso Belloni et
al. (2011), Scaled Lasso Zhang and Zhang (2012). ..



The Lasso: algorithmic point of view

Commonly used algorithms for solving this convex program:

» Homotopy method - LARS:
very efficient for small p Osborne et al. (2000), Efron et
al. (2004) and full path (i.e., compute solution for “all” \'s).
For limits see Mairal and Yu (2012)

» ISTA, Forward - Backward, proximal algorithm:
useful in signal processing where  — X T is cheap to
compute (e.g., FFT, Fast Wavelet Transform, etc.) Beck and
Teboulle (2009)

» Coordinate descent:
useful for large p and (unstructured) sparse matrix X, e.g., for
text encoding Friedman et al. (2007)




Objective of this work: speed-up Lasso solvers

. , 1
O eagmin ( Gly-xe3 o+ Nk
BERP
data fitting term sparsity-inducing penalty

» Compute AW for many \'s: e.g., T values from
Amax = | X T 9]0 to Amin = €Amax on log-scale
Default value in R-glmnet : T = 100, ¢ = 0.001

» Flexible: can be adapted to any iterative solver (but not to
LARS!), here focus on Coordinate Descent

» Easy to code contrarily to Strong Rule Tibshirani et
al. (2012)

Rem: Starting is clear pick A = Apax but ending is not : Apin?
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A convexity toolkit detour
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Sub-gradients / sub-differential

Y !

Definition: sub-gradient / sub-differential

For f : R — R a convex function, u € R is a sub-gradient of f
at z*, if for all 2 € R? one has

f(z) = f(z%) + (u,z — 2%)

The sub-differential is the the set
of(z*) = {ue RY: Yz e RY, f(z) > f(z*) + (u, x — 2*)}.

Rem: if the sub-gradient is unique, you recover the gradient



Fermat’s rule: first order condition

Theorem

A point z* is a minimum of a convex function f : R — R if and
only if 0 € of(z*)

Proof: use the definition of sub-gradients:

» 0 is a sub-gradient of f at z* if and only if
VzeRY f(z) = f(a*) + {0,z — 2*)
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Theorem

A point z* is a minimum of a convex function f : R — R if and
only if 0 € of(z*)

Proof: use the definition of sub-gradients:

» 0 is a sub-gradient of f at z* if and only if
VzeRY f(z) = f(a*) + {0,z — 2*)
Rem: Visually it corresponds to a horizontal tangent

Yy f




Sub-differential of the absolute value
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The denoising case: X = Id,

Simple design: n = p and X = Id,, meaning the atoms are
canonical elements: x; = (0,--- ,0, %,O, -, 1), then

J

~ 1
5(/\) € arg min <2|y - B* + )\|5|1>
BeRP

A 1
B = arg min <|y - Bl + >\|ﬁ|1> (strictly convex)
BERP 2
3 — argmin ( L(y; — 8% + M| ),V € [1] (separable)
i ggﬂl{m o\ = Pj il |, Vi€ [n separable
J

Rem: This is called the proximal operator of A|| - |1



Soft-Thresholding

The 1D problem has a closed form solution: Soft-Thresholding:

ST\

_ 2
msraly) = argmin (L2704 )
BER

= sign(y) - (Jyl = )+

where (-)4+ = max(0,-)

Proof: use sub-gradients of | - |
and Fermat condition

Rem: systemetic underestimation / contraction bias; coefficients
(greater than \) are shrinked toward zero by a factor A
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Optimization property for the Lasso



Dual problem Kim et al. (2007)

1
Primal function : P\(B) = ny - X5H2 + A Bl

)\2 2

Dual solution : 6P = arg max - ||y]| — '«9 Y
OeAx \ 2 >\ ,
D)
Dual feasible set : Ax ={0eR" : |x/0] <1,Vje [p]}

» Ax = {0 eR": [ XT0|, < 1} is a polyhedron
» The dual solution is the projection of y/\ over this
polyhedron:

A .Y Y
6N — ar%rr;m HX — 0] =T, (X)

Proof in the next slide




Proof of the dual formulation

min Ly~ X8+ 18], = min {f(z”m(m

BeRP 2 BeRP zeR™ | st z=1y— X[3

fly—XB) Q(B)

1
Lagrangian :  L(z,0,0) := §Hz||2 +2Q(8) + M0 (y — XB — 2).
Find a Lagrangian saddle point (z*,,@’()‘),é()‘)) (Strong duality):

min  max L(z,6,0) =max min L(z,3,0) =
BERP,zeR™ HeR™ (2,8,0) feR" BeRP,zeR" (2,8,0)

- T - T T, _
%%%{gﬁ@%[f(z) A0 z]+ge111[§rzl)[>\9(ﬁ) A0 X B+ N0 y}

max {=F*(A0) = XQ*(X0) + A0y}
e n

which is the formulation asserted (with conjugacy properties)



Conjugation

For any f : R™ — R, the (Fenchel) conjugate f* is defined as

f*(2) = sup ¢z — f(x)

zeR™

»If f() =+ [?/2 then f*(-) = f(")

» If f() = Q(-) is a norm, then f*(-) = t5,(0,1)(*), i-e., it is the
indicator function of the dual norm unit ball, where the dual
norm * is defined by:

0*(z) = S(UI)) 1$Tz = UB(0,1)
z:(2)<

and

0 if B
g(z) = | xe. , where B={zeR":Q(z) <1}
+00  otherwise



Geometric interpretation
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Fermat rule / KKT conditions

» Primal solution : ,5’()‘) e R?

» Dual solution : ™ ¢ Ax c R"?

Primal/Dual link: |y = XM 4+ AW

Necessary and sufficient optimality conditions:

KKT/Fermat: |Vj € [p], X;ré()‘) € {

Mother of safe rules: Fermat's rule |mp||es that

if A= Amax = | X y]o = maxje ]xTG )|, then 0 € R? is the
(unique here) primal solution

Proof in next slide




Proof Fermat/KKT + primal/dual link

1

Lagrangian :  L(z,0,6) := §Hz|\2 A Bl +MT(y — XB - 2).
f(2) Q(B)

A saddle point (z*,B(’\),GA(A)) of the Lagrangian satisfies:

=2 — AW,

0 = (2", BN, 0W) = ( ") =
AXTHA >+Aaﬂ(5< )
Xp™

0 € 0L(z*,-,0W) (W) =
0 = %(z ,3@) 0Ny =y

A

Hence, y — XBN = z* = X0W) an

o

XT0M € 09(B™) so

Vie{l,...,p}, x/0Wed|-[1(BW)



Geometric interpretation (l1)

A simple dual point is: y/Amax € Ax where Apax = ||XTy||oo

M




Table of Contents

Safe rules



Safe rules - safe regions
El Ghaoui et al. (2012)

Screening thanks to Fermat's Rule:

If ‘X}ré(/\)’ < 1 then, BA]()‘) =0

Beware: ") is unknown, but one can consider a safe region
C < R™ containing O e, N e, leading to :

safe rule : If sup ]ijH] < 1 then ﬁ](’\) =0 (*)

oeC

The new goal is simple, find a region C:

> as narrow as possible containing 8V

R" — Rt
» such that uc : {

X — Supgec|x' 0]

is easy to compute




Safe sphere rules

Let C = B(e,r) be a ball of center ¢ € R™ and radius r > 0, then
pe(x) = sup|x 0] = [x"¢| + 7]
oeC

so the safe rule becomes

If \ijc] + r|x;| <1 then B](/\) =0 (1)

Screen-out the all variables x; satisfying (1), and remove them
from the optimization problem.

New objective:
» find 7 as small as possible
» find ¢ as close to OV as possible.



Static safe rules: El Ghaoui et al. (2012)




Properties of static safe rules

Static safe region: useful prior any optimization, for a fix A.

C = B(C, 7’) = B(y/)‘a Hy/Amax - y/)‘H)

IF 1] 9] < A1 — |5/ Amax — 9/Al5;]) then B =0

» Reinterprets screening methods for variable selection:
“If |X3Ty| is small, discard x;" as a safe rule for the Lasso

» The corresponding safe test is useless as soon as:

A (LIl
X ImMin
Amax — gelp] \ 1+ Amax/ (%] |y])

meaning that no variable would be screened-out for such A’s




Dynamic safe rules Bonnefoy et al. (2014)

¥
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Dynamic safe rule

Dynamic point of view: build 6, € Ax, evolving with the solver

iterations to get refined safe rules Bonnefoy et al. (2014, 2015)

Remind link at optimum: AW = Yy — XB()‘)
Current residual for primal point S;:  pr = v — X%

Dual candidate: choose 8}, proportional to the residual

O =Pk,

where  ay, :min[max< yT'Okz, T_l >, Tl ]
Morl? 1X okl ) T IX Tkl

Motivation: projecting over the convex set Ax n Span(py) is cheap



Creating dual points: project on a segment

span(px) ' X
pk

11 A x nspan(px) ( % )




Limits of previous dynamic rules

For B(c,r) = B(0g, r) with r; =
converge to zero, even when 5 — BN and Gk — 9( (converging
solver). The limiting safe sphere is

C = B(y/ [Ma (y/A) — y/Al)




Sequential safe rule Wang et al. (2013)

Warm start main idea: to compute the Lasso for T different \'s,
say Ag,--- ,Ar_1, reuse computation done at A\;_; to get B

» Warm start (for the primal) = standard trick to accelerate
iterative solvers: Initialize to 3*=1) to compute (M)

» Warm start (for the dual) = sequential safe rule use §(*t-1)
to help screening for S

Major issue: in prior works 6X—1) needs to be known exactly!

Rem: Unrealistic except for Ho) — Y/ Amax = ¥/ X Ty oo



EDDP Wang et al. (2013) can remove useful
variables

Log(gap)

=—= GAP SAFE (sphere) -
+— EDPP (R/lambda)

a—a EDPP (R/||XT R||)
-10- ; ‘ ‘
0.0 0.5 1.0 1.5

-Log(alpha)



Duality Gap properties

» Primal objective: Py » Primal solution: B()‘) e RP
» Dual objective: D, » Primal solution: 6 e Ax c R,

Duality gap: for any S € RP 0 € Ax, G\(B,0) = P\(B) — Dx(0)

)

1 2 Lo =X H Y
62(6.0) =3 168 — ol + A3l — (5 Il — 5 o - 2
Strong duality: for any S € RP,0 € Ay,

Dx(0) < DA(6™) = PA(B™) < PA(B)

Consequences:
» G\(B,60) =0, for any € RP, 0 € Ax (weak duality)
» Gy(B,0) < e = Py(8) — PA(BW) < e (stopping criterion!)
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GAP Safe sphere

For any S e RP,0 e Ax

sl
A

1 1
6x(5.6) =3 15 =+ A3l — (5 1ol = 5 [

)

Gap Safe ball: | B(0, r\(53,0)), where r\(5,0) = A/2G\(5,0)/\

Rem: If 8, — B(A) and 0, — O™ then G\(Br,0r) — 0: a
converging solver leads to a converging safe rule!

Proof in next slide (if any interest)




The GAP SAFE sphere is safe:

» Dy (™) < Py(Bi) (weak Duality)
» Dy is A\?-strongly concave so for any 61,6, € R,
A2 )
Dy(01) < DA(02) + <V Dx(82), 01 — b2) — = |61 — a5

» O maximizes D) over Ay, so Fermat's rule yields
Ve Ax,  (VD\(AM),0 — 6™y <0

To conclude, for any § € Ax :
2

7 lo-2)

, < DA(@™) = DA(9) + (VDA(O™), 0 — 6%
P

\(Br) — Da(9)

<
<



Dynamic safe sphere Bonnefoy et al. (2014)




Dynamic safe sphere Fercoq et al. (2015)

C = B(e,r) r = 1/2G(3,0)/)?

Max (%)
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Recap for safe spheres

Cr = B(0g, (B, 0x)) where S and 0y, are the current
approximation of the primal and dual solution 8; and 6

Active set : A(’\)( Cr) ={jelp]: pe,(x5) =1}
where pe, (x) := sup ]xT9] = |XT91¢\ + 7 (Br, Or) x|

QECk

Rem: The active set is guaranteed to contain the variable that are
in the support of an optimal solution



Algorithm 1 Coordinate descent (Lasso)
InPUt: X7 Y, €, K7 F7 ()‘t)tE[Tfl]
1: Initialization: Ao = Amax, 30 =0

2: for te [T — 1] do > Loop over \'s

3: B — pri-1 > previous e-solution

4: for k € [K] do

5: if £ mod F =0 then > Screen every F' epoch

6: Construct 0 € Ay

7: if G\,(8,0) <ethen = Stop if duality gap small

8: pM — B

9: break

10: end if

11 end if

12: for je[p ] do > Soft-Threshold coordinates
(x

1 By = ST (i B = |x[|5| ?)

14: end for

15: end for
16: end for




Algorithm 2 Coordinate descent (Lasso) with GAP Safe screening
InPUt: X7 Y€ K7 F7 ()‘t)tE[Tfl]
1: Initialization: Ao = A\pax, BAO =0

2: for te [T — 1] do > Loop over \'s

3: B — pri-1 > previous e-solution

4: for k € [K] do

5: if £ mod F =0 then > Screen every F' epoch

6: Construct 0 € Ay, AM(C) = {j e [p]: pe(x;) = 1}

7: if G\,(8,0) <ethen = Stop if duality gap small

8: BN — B

9: break

10: end if

11 end if

12: for je AN (C) do > Soft-Threshold coordinates
(X

1 By = ST (i B - |x[|5| ?)

14: end for

15: end for
16: end for




Gap safe rules: benefits?

» it is a dynamic rule (by construction)
> it is a sequential rule (without any more effort)
> the safe region is converging toward {§(M}

» it works better in practice

No screening

SAFE (EI Ghaoui et al.) 0-3

0.7

Y] (Bannefoy etal.)

0.6
0.5

SAFE (Bonnefoy et al.)|
0.4

03
"I-. GAP SAFE (sphere)
.

P h-' 02

GAP SAFE (dome) o 1
'I-
S S - o 0
1.0 15 2.0 2 5 3.0
~logl0(A/Nyuaz)

Proportion of active variables as a function of A and the number of
iterations K on the Leukemia dataset (n = 72, p = 7129)



Computing time

5- | -
B No screening

4 mmm SAFE (El Ghaoui et al.) -
E 3. - ST3 (Bonnefoy et al.) )
) Bmm SAFE (Bonnefoy et al.)
£ 2 GAP SAFE (sphere) :
= | GAP SAFE (dome)

0- wmEmCE III. | | L

o o0}

—IoglO duality gap

Figure: Time to reach convergence using various screening rules on the
Leukemia dataset (dense data: n = 72,p = 7129).



Conclusion and future work

New safe screening rule based on duality gap for the Lasso
Convergent safe regions (support identification in finite time)
Improved computational efficiency for Coordinate Descent

Other regularization can be simply handled: Elastic Net,
Group-Lasso

Other data fitting term: logistic regression for classification (f
smooth: gradient Lipschitz)

On going work: Sparse Group-Lasso (¢1+/1/¢2) more intricate
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“Mind the duality gap: safer rules for the Lasso”
Fercoq, Gramfort and S., ICML 2015

“GAP Safe screening rules for sparse multi-task and
multi-class models”
Ndiaye, Fercoq, Gramfort and S., NIPS 2015

Python Code on demand (soon available in scikit-learn
Pedregosa et al. (2011))
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Powered with MooseTeX
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