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Introduction

@ You have users of a system (a social network, an e-commerce
platform, etc.)

@ You want to quantify the level of interaction between users

@ You don't want to use only declared interactions, such as
“friendship” or “likes”. This information is often deprecated,
and not really related to the activity of users

@ You want levels of interaction driven by user’s actions, using the
timestamps’ patterns of actions
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We want to quantify interactions between users:
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Model: Multivariate Hawkes Process (MHP)

@ A d-dimensional counting process N = [Ny, ..., Ng]"
e dis “large”

@ Observed on [0, T]. “Asymptotics” in T — +o0

e N, has intensity A;, namely

P(N; has a jump in [t, ¢t + dt] | F;) = \j(t)dt

for j=1,...,d where F; some filtration



Model: Multivariate Hawkes Process (MHP)

@ MHP assumes the following autoregressive structure:
d
Aj(t) = pi(t) + 0 > eik(t = s)dNi(s),
1) k=1

@ 41j(t) > 0 baseline intensity of the j-th coordinate
o ¢j: RT — RT self-exciting component
@ Write this in matrix form

AE) = i+ /(O Pl S)an(s),

with g0 = [p1, ..., 1] " and @(t) = [ k(t)]1<)k<d-
@ Notation:

/(Ot)go(t—s)de(s): S e(t- Tk

i0<T; k<t



A brief history of MHP

Introduced by Hawkes in 1971

Earthquakes and geophysics : Kagan and Knopoff (1981),
Zhuang, Harte, Werner, Hainzl and Zhou (2012)

Genomics : Reynaud-Bouret and Schbath (2010)

High-frequency Finance : Bacry Delattre Hoffmann and Muzy
(2013)

Terrorist activity : Porter and White (2012)
Neurobiology : Hansen, Reynaud-Bouret and Rivoirard (2012)

Social networks : Carne and Sornette (2008), Simma and
Jordan (2010), Zhou Song and Zha (2013)

And even FPGA-based implementation : Guo and Luk (2013)



A brief history of MHP

e cenesis [ETg

Digital currency research and data
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Estimation for MHP: some references

Parametric estimation (Maximum likelihood)

o First work : Ogata 78

e Simma and Jordan (2010), Zhou Song and Zha (2013)
— Expected Maximization (EM) algorithms, with priors

Non parametric estimation

e Marsan Lengliné (2008), generalized by Lewis, Mohler (2010)
— EM for penalized likelihood function
— Monovariate Hawkes processes, Small amount of data, No
theoretical results
@ Reynaud-Bouret and Schbath (2010)
— Developed for small amount of data (Sparse penalization)
e Bacry and Muzy (2014)
— Larger amount of data



What do we want to do with this?

@ Do inference directly from actions of users

@ Understand the community structure of users underlying the
actions

@ Exploit the hidden lower-dimensional structure of the network
for inference/prediction



MHP in large dimension

Dimension d is large:
@ Need a simple parametric model on p and ¢

@ For inference: we want a tractable and scalable optimization
problem

@ We want to encode some prior assumptions by penalizing the
likelihood



A simple parametrization of the MHP

Simple parametrization:
e Constant baselines 1;(-) = p;
o Take
Pjk(t) = aj e Wkt
® a; = level of interaction between nodes j and k

@ «j = lifetime of instantaneous excitation of node j by node k

The matrix
A = [aj k|1<j k<d

is understood has a weighted adjacency matrix of mutual
excitement of th nodes {1,...,d}

@ A is non-symmetric: oriented graph



A simple parametrization of the MHP

We end up with intensities

d
Nio(t) = pj +/ Z aj’ke_aj’k(t_s)de(S)

0.) =1

for j € {1,...,d} where

0= A
with
: _ T d
e baselines y1 = [p1,...,puq] € RY
e interactions A = [aj x|1<j k<d € RiXd

dxd
o decays o = [ «]i<jk<d € R



A simple parametrization of the MHP

For d = 1, intensity Ay looks like this:
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Maximum Likelihood Estimation

Goodness-of-fit = — log-likelihood is given by:

d T T
_ET(G) = Z {/0 ()\jﬁ(t) — 1)dt — /0 log )\J"g(t)d/\/j(t)}

= 1 +Zalk/ exp (— ajk(t — s)) dNk(s)

(0,t)

where 0 = [u, A, o] with p = [1j], A =[aj k], @ = [ ]



Prior encoding by penalization

Prior assumptions

@ Some users are basically inactive and react only if stimulated:
[ is sparse

@ Everybody does not interact with everybody:
A is sparse

@ Interactions have community structure, , a
small number of factors explain interactions:

A is low-rank
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@ Decays « are not sparse, but «; , should be regularized
proportionaly to aj x



Prior encoding by penalization

Standard convex relaxations [Tibshirani (01), ..., Srebro et
al. (05), Bach (08), Candés & Recht (08), ...]

o Convex relaxation of [|Allo =3, 1a;,>0 is £1-norm:
IAllz = Al
j)k

@ Convex relaxation of rank is trace-norm:

1AL = 05(A) = llo(A)

Jj

where o1(A) > -+ > 04(A) singular values of A



Prior encoding by penalization

So, we use the following penalizations

@ Use /1 penalization on u
@ Use /1 penalization on A
@ Use trace-norm penalization on A

e Use /2 penalization on «, weighted by A

[but other choices might be interesting...]

NB1: to induce sparsity AND low-rank on A, we use the mixed

penalization
A s w, Al + wil|All

NB2: recent work by Richard et al (2013): better way to induce
sparsity and low-rank than the sum



Sparse and low-rank matrices

Ve e

{A: Al <1} {A: Al <1} {A:[AlL+ Al < 1}

The balls are computed on the set of 2 x 2 symmetric matrices,
which is identified with R3.



Penalized maximum likelihood

Finally, consider

A . 1
0 argmin {——07(0)+ 7l + ] Al
0=(p,A,cx)

K
+ Al + S A ® al} ]

where we recall

_%gT(e) - ;_ZCI:{/()TAJ79(t)dt— /OT|ogAJ-,9(t)d/vj(t)}

j=1



Penalized maximum likelihood: a problem

Problem: 6 — —¢1(0) not convex! Indeed
(a, ) — ahy(t)
never convex when « — h,(t) is convex

We want convexity for:
e Convergence to a global optimum
@ Plethora of optimization algorithm

e If smooth (Lispchitz gradient): optimal first-order techniques
[first order=mandatory for large scale problems]

Generic in the chosen penalization [if proximal operator easy to
compute]



Penalized maximum likelihood

A solution: the perspective function trick:

o If a > hy(t) is convex, then
(a,@) = ahq 5(t)

is convex!

@ Reparametrization 3 x = aj x«; k, leading to

: Bj k
Njo(t) = pj + ; 3.k /(OJ) exp ( — (- 5)) dNk(s)

aj,k

with 0 = [u, A, B] for B = [B) kl1<j k<d
e With this reparametrization

0 — )\jjg(t)

is convex!



Penalized maximum likelihood

The reparametrization 8 = A ® «a leads to

A . 1
6 argmin {——(r(6) + 7l + Al
0=(n,A,B) (1)

K
+ Al + S 1813 }

where
1 1 d T T
_TeT(e):T;{/O )\w(t)dt—/() 08 Ay ()N (1) }
with
d



Convex optimization — numerical aspects

@ Can be solved using optimal first-order routines

@ Gradient of —¢7(0) using a recursion formula [Ogata (1988)]

— When carefully done complexity of one gradient is O(nd) (instead

of O(n?d) for the naive approach), where n = number of events (very
large)

— We have scalable / parallelized code for this: the gradient on each
node j € {1,...,d} can be computed in a distributed fashion

@ Computation bootleneck is the heavy use of exp and log [accelerated
using some ugly hacking]

@ Proximal of trace norm requires many truncated SVD: we use the
default's Lanczos’s implementation of Python, fast enough when using
incremental truncation



Numerical experiment

Toy example: take matrix A as




Numerical experiment: dimension 10, 210 parameters
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Numerical experiment: dimension 100, 20100 parameters

No penalization {1 penalization
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Theoretical guarantees

A simplified framework: fix a set {hj, :1 < j, k < d} and
intensities

= pj + /( Zaj khj k(t — s)dN(s),
0,t)

where 0 = [M7 A] with p = [/,Ll7 c. 7,I,Ld]T and A = [aj?k]lghkgd

Instead of — log likelihood, consider least squares

d
2
R7(0) = [ Ml% — = / i g(t)dN;(t
7(0) = || Mol T; o j.0(t)dN;(t)

where H)\9H2 = </\9, )\9>T with

d
</\97 )\6" = Z / J 9/(t)dt



Least-squares goodness-of-fit

d
2
R7(0) = [ Ml% — = / i g(t)dN;(t
7(0) = || Mol T; o j.o(t)dN;(t)

is natural : if N has ground truth intensity A*:
EIRr(9)] = E|Mll3 — 2E(\g, )7 = ElAg — XI5 — [I*]17
where we used “signal + noise” decomposition (Doob-Meyer):
dN;(t) = N*(t)dt + dM;(t)

where M; martingale



Introduce
0 € argmin {Rr(0)+ pen(6)},

9ERY xRY*?
with
pen(6) = llulla + l[Ally v + x| Al

e Penalization tuned by data-driven weights w, W and W,

@ Comes from sharp controls of the noise terms, using new
probabilistic tools



Towards a statistical guarantee: first order condition can be
written as: for any 0

1Ag = X*[1F + 1125 = MallF — 126 = X*[|F
2

T<2‘_A72T>7

~ 2 R -

for 05 € O pen(0) and we use 2(A—A,Z7) < 2|A— Al Z7|lop



My = [fOT dMy(t) --- fOT dMy(t)] "and Z; matrix martingale
with entries

(Z = | /( ks (), )

or :
2.~ | disgldMJH..
0

with H; predictable process with entries
(He)jjr :/ hjjr(t — s)dNj (s)
(0,t)
Noise term is a matrix-martingale in continuous time:
1
=Z
TET

wee need to control +|Z1]lop



A consequence of our new concentration inequalities:

[Z¢ellop - [2v(x +log(2d)) = b(x + log(2d))
P[ t Z\/ t * 3t ’

b: < b, )\max(vt) < V:| < e—x’
for any v, x, b > 0, where
1 t H *
V.= t/ IHs |2 [d'ag“s] 0 ]ds
0

2000 H/ diag[H;H! ]! diag[\:]H,
and br = supsco, 4 [|Hsll2,00 (II - l2,00 = maximum £2 row norm)

Useless for statistical learning! Event Apax(V:) < v is annoying
and V, is not observable (depends on \*)!



Theorem [Something better]. For any x > 0, we have

HZtHOp < 8\/(X + |0g d ‘|’ gx,t)kmax(‘/\/t)

t t
N (x + log d + £,.+)(10.34 + 2.65b;)
t
with a probability larger than 1 — 84.9e™, where
N 1/t > |diag[dNs] 0
Ve= t/o IHsll2.0c [ 0 H! diag[H H /]! diag[dN,]H, ds

and small ugly term:

2max(Ve) + 2(4 + b7 /3)x

lﬁx,t = 4log log (
X

\/e) + 2log log (b? Ve).

This is a non-commutative deviation inequality with observable
variance



@ These concentration inequalities leads to a data-driven tuning of
penalization

@ Solves the “scaling” problem in this context = features
scaling in supervised learning

Controls on || Z1||cc = max; « |Aj | and || Z1]op leads to the
following tuning of the penalizations



For ¢1 penalization of p: ||p|l1,4 = 27:1 Wil ] with

logd + 0, : 7)N;([0, T])/ T
V@j:@\/ﬁ\/(x+°€ + Ley, 7)N;([0, T])/
T
x+|ogd+l?X,j,T
T

+27.93

where N;([0, T]) = fOT dN;(t), namely

o [N TY/T
J T

e Each coordinate j of y is penalized (roughly) by N;([0, T)]/T:
estimated average intensity of events of node j



For {1 penalization of A: [|All; i, = > 1<) k<4 |/AVJ-7;<|AJ-,/<| with

Wk_4[2\/(x+2|ogd+éx,j,k,7)\“/j,k(r)
e T

18 62(X+2|Ogd+ng,k,T)Bj,k(T)

T
where
Bj,k(t): SUP/ hjyk(t—s)d/\/k(s)
s€[0,t] J/(0,t)
~ 1 [t 2
Vi@ =7 [ ([ sts = wyami(w)) " ani(s)
0 (0,s)
namely

A V(T)
Wikr~c J#

V; «(t) estimates the variance of self-excitements between nodes
and k



For trace-norm penalization of A: W, | A||. with

. \/ (x +108.d + b 1)V 7)

Wy = T
L 2x+logd + EX,TT)(10.34 + 2.65b;)
namely
i~ Amax(V 1)

T



Data-driven weights that comes from “empirical” Bernstein's
inequalities, entrywise and for operator norm of Z

V, k(t) and Amax(V;) are estimations (based on optional
variation) of the variance terms from Bernstein's inequality

B; «(t) and b; are L* terms (sub-exponential actually) from

these Bernstein's inequalities

Leads to a data-driven scaling of penalization: deals correctly
with the inhomogeneity of information over nodes
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A sharp oracle inequality

o Recall (A1, \o)7 = 2 320 [ Avj(t)Aay(t)dt and
IAIF = (A A7
@ Assume RE in our setting (Restricted Eigenvalues), which is a

standard assumption to obtain fast rates for the Lasso (and
other convex-relaxation based procedures)

Theorem. We have

* * 5 ~
10 = X1 < inf {20 = 213 + 50 (Z1(W)suppi
9, .4 9,
+ SIOW ) uppa [ + 52 rank(A)) }
with a probability larger than 1 — 146e™*.

@ Leading constant 1



Roughly, 6 achieves an optimal tradeoff between approximation
and complexity given by

[l4llo(x + log d)

max ([0, T])/ T

T
|Allo(x + 2log d) -

+ T max V; (T)
rank(A)(x + log d A

A osd) gy

@ Complexity measured both by sparsity and rank

e Convergence has shape (logd)/ T, where T = length of the
observation interval

@ These terms are balanced by the empirical variance terms



Concentration inequalities for matrix martingales in continuous time

Main tool: new concentration inequalities for matrix martingales in
continuous time

Introduce .
Z, _/ A.(C.® dM.,)B.,
0

where {A:}, {C:} and {B;} predictable and where {M;};>¢ is a
“white” matrix martingale, in the sense that [vecM]; is diagonal

NB: entries of Z; are given by



@ (M), = entrywise predictable quadratic variation, so that
M2 — (M),

martingale

@ vectorization operator vec : RP*9 — RPY stacks vertically the
columns of X

e (vecM); is the pg x pg matrix with entries that are all pairwise
quadratic covariations, so that

vec(My)vec(M;)T — (vecM),

is a martingale.



o M, = M¢ + MY, where M¢ is a continuous martingale and M¢
is a purely discountinuous martingale. lts (entrywise) quadratic
variation is defined as

[M]e = (M) + ) (AM,)?, (3)

0<s<t

and its quadratic covariation by

[vecM]; = (vecM®); + Z vec(AMg)vec(AM,)T.
0<s<t

We say that M is purely discontinuous if the process (vecM®),
is identically the zero matrix.



Concentration for purely discountinuous matrix martingale:

@ M.; is purely discountinuous and we have

(M), :/OtAsds

for a non-negative and predictable intensity process {A¢}+>0.

e Standard moment assumptions (subexponential tails)

Introduce .
V- / A2 | Bs|[2 o Wods
0
where .
(w0
we= 5w “

Wi = A, diag[A] A;] diag [(CP? © Ap)1] A/
W? = B/ diag[B.B/] 'diag [(CY? ® A;) 1] B,



Introduce also

be = sup [|As[loo2/|Bsl|2,00/| Cslloo-

s€[0,t]

Theorem.

b(x + log(m + n))
3 Y

P|[|Z¢llop >+/2v(x + log(m + n)) +

bt < b7 )\max(vt) <v| < e_X7

@ First result of this type for matrix-martingale in continuous time



Corollary. {N.} a p x g matrix, each (N);; is an independent
inhomogeneous Poisson processes with intensity (A;); ;. Consider the
martingale M; = N, — A;, where A; = jg Asds and let {C,} be
deterministic and bounded. We have

op

H /Otcs © d(N, — A,)

t t
<2l [ et o], v [ e it osto o

SUPseo,1] | Cslloc(x + log(p + q))
* 3

X

holds with a probability larger than 1 — e™.



Corollary. Even more particualar: N random matrix where N ;
are independent Poisson variables with intensity A; ;. We have

IN = Allop < \/2(H>\H1,oo V [ Alloo,1)(x + log(p + 9))

+ log(p +
L X gép q)'

@ Up to our knowledge, not previously stated in literature

@ NB: In the Gaussian case: variance depends on maximum />
norm of rows and columns (cf. Tropp (2011))



@ We have as well a non-commutative Hoeffding's inequality when
M has continuous paths, with a similar variance term

@ Tools from stochastic calculus, use of the dilation operator and
some classical matrix inequalities about the trace exponential
and the SDP order.

A difficult proposition: a control of the quadratic variation of the
pure jump process

vi= Y (e“W(ZS)—uAy(zs)—l)

0<s<t

given by

t As||loo 2| Bsll2.00|| Cs oo
<U£>tj/ @(f” slloosell 5|2|2, 1Cs|l )Wsds,
0 1Cs15%

where p(x) = e¥ — x — 1.



Conclusion

@ Theoretical study of learning algorithms for “time-oriented”
models need new probabilistic results

@ In our case new concentration results for matrix martingales in
continuous time

@ Solves the scaling problem of penalizations

Perpectives:

@ Experiments on Twitter, BlogoSphere and High-frequency
Finance (ongoing)

@ Superposition of Hawkes for viral diffusion of contents

@ Better solvers using stochastic gradient based algorithms
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