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Diffusion in media with interfaces
In many domains, one encounters diffusive behavior in media
presenting discontinuous diffusivity, interfaces, (semi-)permeable
barriers . . .

∙ geophysics: pollutant which diffuses in rocks of different
diffusivities.
∙ population ecology: species (insects, . . .) in different

habitats.
∙ brain imagning: water molecule crossing tissues, cells’

membranes, . . .
∙ etc

Q1 How to model these diffusion at the interfaces?
Q2 How to simulate them? (Monte Carlo are convenient in

large domains, complex geometries, ...).
Q3 How to estimate their parameters?



PDE representation
dim 𝑑 = 1, diffusivity

𝐷 =

{︃
𝐷+ if 𝑥 ≥ 0
𝐷− if 𝑥 < 0

Let us consider

𝜕𝑡𝑢(𝑡, 𝑥) = ℒ𝑢(𝑡, 𝑥) with ℒ𝑓 (𝑥) = 𝐷(𝑥)
2
△𝑓 (𝑥), 𝑥 ̸= 0

The solution is smooth away from 0.

What happens at 0?



Transmission conditions
The point 0 is seen as some interface.
There are many possibilities. One of them is

𝑢(𝑡, 0−) = 𝑢(𝑡, 0+) (♠)

(1 + 𝛽)∇𝑢(𝑡, 0+) = (1− 𝛽)∇𝑢(𝑡, 0−) (♣)

for some parameter 𝛽 ∈ ]−1, 1[.
∙ (♠) means that the concentration of particles is continuous

accross the interface.
∙ (♣) means that the flux 𝐷±∇𝑢(𝑡, 0±) may be discontinu-

ous.
∙ 𝛽 is arbitrary: the problem depends on 3 parameters 𝐷+,
𝐷− and 𝛽.



Special Choices of 𝛽

∙ ℒ𝑓 (𝑥) = 𝐷(𝑥)
2
△𝑓 (𝑥) non-divergence form operator

=⇒ 𝛽 = 0.
Generates a SDE with a discontinuous diffusivity

𝑋𝑡 = 𝑥 +

∫︁ 𝑡

0

√︀
𝐷(𝑋𝑠) d𝐵𝑠

∙ ℒ𝑓 (𝑥) = 1
2
∇(𝐷(𝑥)∇𝑓 (𝑥)) divergence form opertor, very com-

mon in physics (Fick/Darcy law, ...)

Generates a Feller process even if 𝐷 is fully discontinuous
(however bounded and uniformly elliptic) (which one?)

𝛽 =
𝐷+ −𝐷−
𝐷+ +𝐷−

(continuity of the flow 𝐷∇𝑓 )



Simplifying the problem (Lamperti’s type transform, PDE side)

𝑣(𝑡, 𝑥) = 𝑢(𝑡,Φ(𝑥)) with Φ(𝑥) =

{︃√︀
𝐷+𝑥 if 𝑥 ≥ 0√︀
𝐷−𝑥 if 𝑥 < 0

Thus

1

2
△𝑣(𝑡, 𝑥) = 𝐷(𝑥)

2
△𝑢(𝑡,Φ(𝑥))

𝜕𝑡𝑣(𝑡, 𝑥) = 𝜕𝑡𝑢(𝑡, 𝑥)

𝑢(𝑡, 0−) = 𝑢(𝑡, 0+)

The transmission condition is changed into a new one of type

(1 + 𝛾)∇𝑣(𝑡, 0+) = (1− 𝛾)∇𝑣(𝑡, 0−).

=⇒ Reduction to one parameter



Special cases

∙ Non-divergence form operator

ℒ = 𝐷(𝑥)
2
△ =⇒ 𝛾 =

√︀
𝐷− −

√︀
𝐷+√︀

𝐷+ +
√︀
𝐷−

∙ Divergence form operator

ℒ = 1
2
∇(𝐷(𝑥)∇·) =⇒ 𝛾 =

√︀
𝐷+ −

√︀
𝐷−√︀

𝐷+ +
√︀
𝐷−



How to construct a diffusion?
Our aim to to construct a differential operator 𝒜 with domain

Dom(𝒜) = {𝑓 ∈ 𝒞 | 𝒜𝑓 ∈ 𝒞}

which generates a diffusion process.

W. Feller: local character + maximum principle
=⇒ 𝒜 = 1

2
𝐷𝑀𝐷𝑆 with

𝐷𝜈𝑓 = lim
𝜀→0
𝑓 (𝑥 + 𝜀)− 𝑓 (𝑥)
𝜈[𝑥, 𝑥 + 𝜀[

, for a measure 𝜈

∙ 𝑆 increasing convex function (scale function) identified with
a measure
∙ 𝑀 measure (speed measure)



How to construct a diffusion?
𝒜𝑓 (𝑥) = 1

2
△𝑓 (𝑥), 𝑥 ̸= 0 + transmission condition

One easily check that

𝑆(𝑥) =

{︃
𝑥
1+𝛾

if 𝑥 ≥ 0
𝑥
1−𝛾 if 𝑥 < 0

𝑀( d𝑥) =

{︃
(1 + 𝛾) d𝑥 if 𝑥 ≥ 0
(1− 𝛾) d𝑥 if 𝑥 < 0

seems to be a correct guess : for any function 𝑓 ∈ 𝒞2(R∖{0})
which sastisfies the transmission condition,
∙ 𝐷𝑆𝑓 is continuous accross 0,
∙ 1
2
𝐷𝑀𝐷𝑆𝑓 (𝑥) =

1
2
△𝑓 (𝑥), 𝑥 ̸= 0.



How to construct a diffusion?
𝜆 ∈ C, 𝒜𝑓 (𝑥) = 1

2
△𝑓 (𝑥), 𝑥 ̸= 0 + transmission condition

Solve

𝜆𝑢𝜆(𝑥) = 𝒜𝑢𝜆(𝑥), 𝑥 ∈ R, 𝑢𝜆, 𝒜𝑢𝜆 ∈ 𝒞(R,R)

For any 𝜆 > 0, there are
∙ one positive solution 𝑢+𝜆 which decreases to 0,
∙ one positive solution 𝑢−𝜆 which increases from 0.

Actually

𝑢±𝜆 (𝑥) =

{︃
𝑐±1 𝑒

−
√
2𝜆𝑥 + 𝑐±2 𝑒

√
2𝜆𝑥 if 𝑥 ≥ 0

𝑐±3 𝑒
−
√
2𝜆𝑥 + 𝑐±4 𝑒

√
2𝜆𝑥 if 𝑥 < 0

Note: there is no problem in adding boundary conditions



Construction of the resolvent
For 𝑥 ≤ 𝑦 , set

𝑔𝜆(𝑥, 𝑦) =
𝑢+𝜆 (𝑥)𝑢

−
𝜆 (𝑦)

𝑢+𝜆 (𝑥)𝐷𝑆𝑢
−
𝜆 (𝑥)−𝐷𝑆𝑢+𝜆 (𝑥)𝑢−𝜆 (𝑥)

and 𝑔𝜆(𝑥, 𝑦) = 𝑔𝜆(𝑦 , 𝑥) for 𝑥 > 𝑦 .
𝑔𝜆 is the density of the resolvent:

𝜆𝑔𝜆(𝑥, 𝑦)−𝒜𝑔𝜆(𝑥, 𝑦) = 𝛿𝑦(𝑥)

(𝜆−𝒜)ℎ(𝑥) = 𝑓 (𝑥) with ℎ(𝑥) =
∫︁
R
𝑔𝜆(𝑥, 𝑦)𝑓 (𝑦)𝑀( d𝑦).

The resolvent is related to a density through

𝑔𝜆(𝑥, 𝑦) =

∫︁ +∞

0

𝑒−𝜆𝑡 ̃︀𝑝(𝑡, 𝑥, 𝑦) d𝑡.
(̃︀𝑝 density w.r.t. the measure 𝑀)



Explicit expression for the density
After Laplace inversion, (𝑝 density w.r.t. Lebesgue Measure)

𝑝(𝑡, 𝑥, 𝑦) = 𝑞(𝑡, 𝑥 − 𝑦) + sgn(𝑦)𝛾𝑞(𝑡, |𝑥 |+ |𝑦 |)

with 𝑞(𝑡, 𝑧) =
1√
2𝜋𝑡
exp

(︂−𝑧2
2

)︂
,{︃

𝜕𝑡𝑢(𝑡, 𝑥) = 𝒜𝑢(𝑡, 𝑥)
𝑢(0, 𝑥) = 𝑓 (𝑥)

is 𝑢(𝑡, 𝑥) =
∫︁
R
𝑝(𝑡, 𝑥, 𝑦)𝑓 (𝑦) d𝑦 .

This density is already known: it is the one of the Skew Brow-
nian motion (SBM).
There are many ways to construct the SBM.
Its density, derived by J.B. Walsh, follows easily from the
following one, due to K. Itô & H.P. McKean.



Density of the Skew Brownian motion
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The Skew Brownian motion
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The Skew Brownian motion
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The Skew Brownian motion
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The Skew Brownian motion
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The Skew Brownian motion
The SBM is a unique strong solution to (J.M. Harrison &
L.A. Shepp):

𝑋𝑡 = 𝑥 + 𝐵𝑡 + 𝛾𝐿
0
𝑡 (𝑋),

with

∙ 𝐵 Brownian motion,

∙ 𝐿0𝑡 (𝑋) symmetric local time at 0.

𝐿0𝑡 (𝑋) = lim
𝜀→0
1

2𝜀

∫︁ 𝑡

0

1[−𝜀,𝜀](𝑋𝑠) d𝑠.



SDE with local time
More generally, we could consider SDE with local time

𝑋𝑡 = 𝑥 +

∫︁ 𝑡

0

𝜎(𝑋𝑠) d𝐵𝑠 +

∫︁ 𝑡

0

𝑏(𝑋𝑠) d𝑠 +

𝑚∑︁
𝑖=0

𝜃𝑖𝐿
𝑥𝑖
𝑡 (𝑋).

∙ Existence, uniqueness, properties, ... J.-F. Le Gall
∙ This class is stable under transforms for 𝑓 ∈ 𝒞 which are

piecewise 𝒞2 (Itô-Tanaka)
∙ Using Lamperti’s type transforms 𝑋  𝑌 = Φ(𝑋) where
𝑌 is locally a SBM.



Divergence and non-divergence form operators

Φ(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑥√︀
𝐷+

if 𝑥 ≥ 0
𝑥√︀
𝐷−

if 𝑥 ≤ 0

∙ ℒ = 1
2
𝐷(𝑥)△

𝑋𝑡 = 𝑥 +

∫︁ 𝑡

0

√︀
𝐷(𝑋𝑠) d𝐵𝑠

𝑌𝑡 = Φ(𝑋𝑡) = 𝑥 + 𝐵𝑡 +

√︀
𝐷− −

√︀
𝐷+√︀

𝐷+ +
√︀
𝐷−
𝐿0𝑡 (𝑌 )



∙ ℒ = 1
2
∇(𝐷(𝑥)∇·)

𝑋𝑡 = 𝑥 +

∫︁ 𝑡

0

√︀
𝐷(𝑋𝑠) d𝐵𝑠 +

𝐷+ −𝐷−
𝐷+ +𝐷−

𝐿0𝑡 (𝑋)

𝑌𝑡 = Φ(𝑋𝑡) = 𝑥 + 𝐵𝑡 +

√︀
𝐷+ −

√︀
𝐷−√︀

𝐷+ +
√︀
𝐷−
𝐿0𝑡 (𝑌 )

∙ Using Φ, the processes have only a different behavior at 0.
⋆ For Non-divergence form op., the process tends to go where

the diffusivity is smaller.
⋆ For divergence form op., the process tends to go where the

diffusivity is higher.

Appropriate numerical scheme?



Numerical scheme
Old heuristic: discontinuity ≡ permeable barrier ≡ the particle
goes to one side or the other with a given probability.

Rigorously, it means nothing unless the time
and the position is given.

�

However, many schemes may be given
∙ L. Lenôtre : using resolvent (allows drift terms, ...).
∙ AL & G. Pichot : using the density (exact)
∙ P. Étoré & M. Martinez, S. Mazzonetto : “exact simula-

tion”
∙ M. Martinez & D. Talay : Euler-like scheme
∙ P. Étoré : using random walk (Donsker’s generalization)
∙ AL & M. Martinez : using random walks on a suitable grid
∙ S. Niglitschek-Soto & D. Talay : Euler scheme, 𝑑 > 1
∙ S. Maire, G. Uffink, ...



Diffusion in media with membranes: example from brain imaging
In diffusion Magnetic Resonance Imaging, the mean square
displacement of water is recorded.
The media is heterogeneous due to tissues, cells, ...
Cells are surrounded by membranes with low diffusivity.
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The thin layer problem

κε 11diffusivity
−ε ε

u(ε)− u(−ε)
≈ 2ε∇u(−ε+)
≈ 2ε∇u(+ε−)

∇u(−ε−) = κε∇u(−ε+) κε∇u(ε−) = ∇u(ε+)

As 𝜀→ 0,
∇𝑢(0+) = ∇𝑢(0−), 𝜅(𝑢(0+)− 𝑢(0−)) = 2∇𝑢(0)



Probabilistic representation for the thin layer problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜕𝑡𝑢(𝑡, 𝑥) =

1
2
△𝑢(𝑡, 𝑥)

∇𝑢(𝑡, 0+) = ∇𝑢(𝑡, 0−)
𝜅(𝑢(𝑡, 0+)− 𝑢(𝑡, 0−)) = 2∇𝑢(𝑡, 0)
𝑢(0, 𝑥) = 𝑓 (𝑥)

Is there exists a process such that 𝑢(𝑡, 𝑥) = E𝑥 [𝑓 (𝑋𝑡)] ?

Obviously, such a process should live on R− ∪ R+ in order to
separate 0− from 0+.

The effect at 0 is that of a semi-permeable membrane.



Probabilistic representation for the thin layer problem
Heuristic derivation

After scaling 𝑎 1, 𝜂 =
√
𝜀/
√
𝜅

1− 𝜃𝜀 = 1−
1−√𝜅𝜀
1 +
√
𝜅𝜀
∼ 2
√
𝜅𝜀

𝑋𝜀𝑡 = 𝑥 + 𝐵𝑡 −𝜃𝜀𝐿−𝜂𝑡 (𝑋𝜀)⏟  ⏞  
push ←

+𝜃𝜀𝐿
𝜂
𝑡 (𝑋

𝜀)⏟  ⏞  
push →

− 𝜂 𝜂

∙ At 𝜂, P[𝑋 reaches 0 before 2𝜂] = (1− 𝜃𝜀)/2 ∼
√
𝜅𝜀

∙ At −𝜂, P[𝑋 reaches 0 before − 2𝜂] = (1− 𝜃𝜀)/2 ∼
√
𝜅𝜀

∙ In the local time clock, excursions from ±𝜂 of height ≥ 𝜂
occurs at rate exp(

√
𝜅/𝜂).

=⇒ In the local time clock, 𝑋𝑡 = 0 occurs at rate exp(𝜅).
∙ At 0, the process starts afresh, and Law(𝑋𝑡) is symmetric.



Construction of the Snapping out Brownian motion

η =
√
ε√
κ

−η

proba ≈ 1−√κε

`

happens when
Lηt (X) ≥ ζ ∼ exp(

√
κ/`)

and sign ≤ 0 happens when
Lηt (X) ≥ ξ ∼ exp(κ)



The dynamic of the Snapping out Brownian motion

¬ The process behaves like a (≥ 0 or ≤ 0) reflected Brownian
motion

­ Until 𝜏 = inf{𝑡 |𝐿𝑡 ≥ 𝜉}, 𝜉 ∼ exp(𝜅), 𝐿𝑡 local time at 0.
® Then it starts afresh by choosing its side (≥ 0 or ≤ 0) with
P[sign ≥ 0] = 1/2.

Construction through its resolvent:

𝐺𝛼𝑓 (𝑥) = E𝑥
[︂∫︁ +∞

0

𝑒−𝛼𝑡𝑓 (𝑋𝑡) d𝑡

]︂
, 𝛼 > 0

𝐺𝛼𝑓 (𝑥) = E𝑥
[︂∫︁ 𝜏

0

𝑒−𝛼𝑡𝑓 (𝑋𝑡) d𝑡

]︂
+ E𝑥 [exp(−𝛼𝜏)]

1

2
(𝐺𝛼𝑓 (0+) + 𝐺𝛼𝑓 (0−))

(♣)



Robin boundary condition and elastic Brownian motion

𝑣(𝑡, 𝑥) = E𝑥 [𝑓 (|𝐵𝑡 |);𝐿𝑡 ≤ 𝜉] = E𝑥 [exp(−𝜆𝐿𝑡)𝑓 (|𝐵𝑡 |)]
is solution to⎧⎪⎨⎪⎩

𝜕𝑡𝑣(𝑡, 𝑥) =
1
2
△𝑣(𝑡, 𝑥), 𝑡 > 0, 𝑥 > 0

∇𝑣(𝑡, 0) = 𝜆𝑣(𝑡, 0)
𝑣(0, 𝑥) = 𝑓 (𝑥), 𝑥 > 0

(♠)

The Brownian motion killed when 𝐿𝑡 ≥ 𝜉 ∼ exp(𝜆) is the
elastic Brownian motion (EBM).
(♠) + (♣) =⇒ probabilistic representation of the thin layer
problem ≡ EBM with rebirths.

E𝑥 [𝑓 (𝑋𝑡)] = E𝑥
[︂
1 + 𝑒−𝜅𝐿𝑡

2
𝑓 (|𝐵𝑡 |)

]︂
+ E𝑥

[︂
1− 𝑒−𝜅𝐿𝑡
2

𝑓 (−|𝐵𝑡 |)
]︂
, 𝑥 ≥ 0.



Example of simulation
Goal: Computing the mean residence time 𝜃 in a cell sur-
rounded by two membranes in a periodic media.
𝜃 is related to rate of convergence toward equilibrium of
P[𝑋𝑡 ∈ cell], estimated by

Monte Carlo and logarithmic regression
(vs) the first eigenvalue 𝜆1 ∝ 𝜃−1 of the corresponding PDE
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Unless 𝜅 is too small, the estimations are satisfactory.



Conclusion and perspectives

⋆ Diffusion in media with permeable or semi-permeable mem-
branes are ubiquitous.

⋆ Monte Carlo simulations require first a deep understanding
of diffusion in such media.

⋆ Fine techniques and objects of stochastic analysis (local
time, ...) are required.

⋆ Nice interplay between stochastic and PDE analysis.

⋆ The one-dimensional situation is now largely understood,
with a growing body of works.

⋆ The multi-dimensional case remains largely open, with only
a few works, and is strongly challenging.


