Linear differential-algebraic systems with selected unknowns

Anton A. Panferov

CMC MSU

March 30, 2016

Differential systems with selected unknowns

Let K be a differential field of characteristic 0 with the derivation $\partial=^{\prime}$.
We consider a system of ordinary differential equations

$$
\begin{equation*}
L(y)=0, \tag{1}
\end{equation*}
$$

where $L \in K[\partial]^{m \times m}$ is a differential operator of full rank, $y=\left(y_{1}, \ldots, y_{m}\right)^{T}$ is a vector of unknowns.

We assume that a part of unknowns (components of the vector y) is of more interest to us than the other unknowns. We call these components selected ones.

We can address a number of problems:

- the check for existence of the solutions whose selected components belong to given classes;
- the search for selected solution components only;
- the check for partial stability over selected components etc.

Contents

(1) AB -algorithm
(2) Extract algorithm
(3) ExtrAB $=$ Extract +AB -algorithm

AB-algorithm

Consider a normal differential system of the form

$$
\begin{equation*}
y^{\prime}=A y, \tag{2}
\end{equation*}
$$

where $y=\left(y_{1}, \ldots, y_{m}\right)^{T}$ is a vector of unknowns, $A \in K^{m \times m}$.
For systems of the form (2) S. A. Abramov and M. Bronstein proposed an algorithm (AB-algorithm) that, for the selected components of the unknown vector, makes it possible to turn to the normal system

$$
\begin{equation*}
z^{\prime}=B z, \tag{3}
\end{equation*}
$$

where the components of z are the selected components of y and, possibly, some their derivatives.

AB-algorithm

$$
y^{\prime}=A y \quad \Longrightarrow \quad z^{\prime}=B z
$$

(The projections of the solution space on selected unknowns in arbitrary differential extension of the initial differential field of the initial system $y^{\prime}=A y$ and the system $z^{\prime}=B z$ are identical.
(1) If the solution to the system $z^{\prime}=B z$ is such that its selected components belong to some differential extension of the initial differential field, then all the components of this solution belong to this extension.
(1) If the size of B is equal to the size of A and the initial system has a solution whose selected components belong to some differential extension of the initial differential field, then all the components of this solution belong to this extension.

AB-algorithm: example

AB-algorithm is implemented in Maple as procedure ReducedSystem that is a part of the standard package OreTools.

Example: $y=\left(y_{1}, \boldsymbol{y}_{2}, y_{3}\right)^{T} \quad \boldsymbol{y}_{2}$ is selected
$y^{\prime}=\left[\begin{array}{ccc}1 & -2 & -1 \\ 1 & -(2 x+1) / x & -1 \\ -1 & 2(x+1) / x & 1\end{array}\right] y \Longrightarrow z^{\prime}=\left[\begin{array}{cc}0 & 1 \\ 1 / x^{2} & -1 / x\end{array}\right] z, \quad z=\left(y_{2}, y_{2}^{\prime}\right)^{T}$

Higher order systems

$$
\begin{gathered}
A_{r} y^{(r)}+A_{r-1} y^{(r-1)}+\ldots+A_{1} y^{\prime}+A_{0} y=0 \\
A_{i} \in K^{m \times m}, y=\left(y_{1}, \ldots, y_{m}\right)^{T}
\end{gathered}
$$

Higher order systems

$$
\begin{gather*}
A_{r} y^{(r)}+A_{r-1} y^{(r-1)}+\ldots+A_{1} y^{\prime}+A_{0} y=0 \tag{4}\\
A_{i} \in K^{m \times m}, y=\left(y_{1}, \ldots, y_{m}\right)^{T} \\
\Downarrow A_{r} \text { is invertible } \\
Y^{\prime}=\left[\begin{array}{cccc}
0 & I_{m} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & I_{m} \\
-A_{r}^{-1} A_{0} & -A_{r}^{-1} A_{1} & \cdots & -A_{r}^{-1} A_{r-1}
\end{array}\right] Y
\end{gather*}
$$

where I_{m} is identity $m \times m$ matrix,

$$
Y=\left(y_{1}, \ldots, y_{m}, y_{1}^{\prime}, \ldots, y_{m}^{\prime}, \ldots, y_{1}^{(r-1)}, \ldots, y_{m}^{(r-1)}\right)^{T}
$$

Higher order systems

$$
\begin{gather*}
A_{r} y^{(r)}+A_{r-1} y^{(r-1)}+\ldots+A_{1} y^{\prime}+A_{0} y=0, \tag{4}\\
\\
{\left[\begin{array}{ccc}
A_{i} \in K^{m \times m}, y=\left(y_{1}, \ldots, y_{m}\right)^{T} \\
\Downarrow & & \\
& I_{m} & \\
& & \ddots \\
0 & & \\
& & \\
& A_{r}
\end{array}\right] Y^{\prime}+\left[\begin{array}{cccc}
0 & -I_{m} & & 0 \\
& \ddots & \ddots & \\
0 & & 0 & -I_{m} \\
A_{0} & A_{1} & \ldots & A_{r-1}
\end{array}\right] Y=0}
\end{gather*}
$$

where I_{m} is identity $m \times m$ matrix,

$$
Y=\left(y_{1}, \ldots, y_{m}, y_{1}^{\prime}, \ldots, y_{m}^{\prime}, \ldots, y_{1}^{(r-1)}, \ldots, y_{m}^{(r-1)}\right)^{T}
$$

Extract algorithm

Consider a differential system of the form

$$
\begin{equation*}
A_{1} y^{\prime}+A_{0} y=0, \tag{5}
\end{equation*}
$$

where $A_{1}, A_{0} \in K^{m \times m}$ are leading and trailing matrices, $y=\left(y_{1}, \ldots, y_{m}\right)^{T}$ is unknown vector, some components of which are selected

Suppose $A_{1} \not \equiv 0$ and $\operatorname{det} A_{1} \equiv 0$.
Such systems are called differential-algebraic systems.
For such systems the Extract algorithm produces the normal differential system

$$
\begin{equation*}
\tilde{y}^{\prime}=A \tilde{y} \tag{6}
\end{equation*}
$$

for the part of components of $y(\tilde{y} \subset y)$.
The selected components of y that are not the part of \tilde{y} are linearly expressed only via the selected unknowns from \tilde{y}.

Extract algorithm

Input: the differential-algebraic system $A_{1} y^{\prime}+A_{0} y=0$ in a row-reduced form and the set of the selected unknowns.

The algorithm consists of three stages:
(1) elimination of unselected unknowns (from the differential part of the system);
(2) elimination of selected unknowns;
(3) expression of the eliminated selected unknowns via the selected unknowns remained in the differential system.

Output: matrices of the new differential system and the algebraic system.

Extract algorithm

Extract algorithm

Extract algorithm

$$
\begin{gather*}
S: A_{1} y^{\prime}+A_{0} y=0 \\
\text { selected unknowns: } s=s_{1} \cup s_{2}\left(s_{1} \cap s_{2}=\varnothing\right) \\
S_{d}: \tilde{y}^{\prime}=A \tilde{y} \\
(\tilde{y} \subset y)
\end{gather*}
$$

Extract algorithm

$$
S: A_{1} y^{\prime}+A_{0} y=0
$$

Definition

The systems S_{d}, S_{a} are said to be consistent with (S, s), if the projection of the solution space of S on s coincides with the projection of the solution space of S_{d}, S_{a} on s in arbitrary differential extension of the initial differential field.

Extract algorithm

$$
S: A_{1} y^{\prime}+A_{0} y=0
$$

R is a matrix over K

Definition

The systems S_{d}, S_{a} are said to be consistent with (S, s), if the projection of the solution space of S on s coincides with the projection of the solution space of S_{d}, S_{a} on s in arbitrary differential extension of the initial differential field.

Proposition

Let S_{d}, S_{a} be consistent with (S, s). Then the size of S_{a} is uniquely determined only by the initial system S and the set of the selected unknowns s.

Example

$$
K=\mathbb{Q}(x), \quad \partial=\frac{d}{d x}
$$

$$
\left[\begin{array}{ccc}
x & 1 & 0 \\
x^{2} & 0 & 0 \\
0 & 0 & 0
\end{array}\right] y^{\prime}+\left[\begin{array}{ccc}
-1 & -1 & 0 \\
-1 & 0 & 0 \\
-x & 0 & 1
\end{array}\right] y=0,
$$

where $y=\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \boldsymbol{y}_{3}\right)^{T}$. All unknowns are selected.
(1) The result of Extract:

$$
\begin{aligned}
& S_{d}: \tilde{y}^{\prime}=\left[\begin{array}{cc}
1 / x & 0 \\
0 & 1
\end{array}\right] \tilde{y}, \quad \tilde{y}=\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)^{T} \\
& S_{a}: \boldsymbol{y}_{3}=x \boldsymbol{y}_{\mathbf{1}}
\end{aligned}
$$

2) Inconsistent systems to get rational solutions:

Example

$$
K=\mathbb{Q}(x), \quad \partial=\frac{d}{d x}
$$

$$
\left[\begin{array}{ccc}
x & 1 & 0 \\
x^{2} & 0 & 0 \\
0 & 0 & 0
\end{array}\right] y^{\prime}+\left[\begin{array}{ccc}
-1 & -1 & 0 \\
-1 & 0 & 0 \\
-x & 0 & 1
\end{array}\right] y=0
$$

where $y=\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \boldsymbol{y}_{3}\right)^{T}$. All unknowns are selected.
(1) The result of Extract:

$$
\begin{aligned}
& S_{d}: \tilde{y}^{\prime}=\left[\begin{array}{cc}
1 / x & 0 \\
0 & 1
\end{array}\right] \tilde{y}, \quad \tilde{y}=\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)^{T} \\
& S_{a}: \boldsymbol{y}_{3}=x \boldsymbol{y}_{1}
\end{aligned}
$$

(2) Inconsistent systems to get rational solutions:

$$
S_{d}: \boldsymbol{y}_{\mathbf{1}}^{\prime}=\frac{1}{x} \boldsymbol{y}_{1} \quad S_{a}:\left\{\begin{array}{l}
\boldsymbol{y}_{2}=0 \\
\boldsymbol{y}_{3}=x \boldsymbol{y}_{\mathbf{1}}
\end{array}\right.
$$

Extract algorithm

Extract algorithm

For the given differential-algebraic system S and the set of the selected unknowns s there are infinite number of pairs of consistent systems S_{d}, S_{a}. The size of S_{d} is unbounded.

Extract: example

Suppose S_{d} is a differential system constructed by the Extract algorithm; then the size of S_{d} is not always minimal.

$$
\begin{gathered}
S:\left[\begin{array}{llll}
x & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] y^{\prime}+\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-x & 0 & 0 & 1
\end{array}\right] y=0 \\
y=\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, y_{3}, y_{4}\right)^{T}, \quad y_{1}, y_{2} \text { are selected } \\
S_{d}: \tilde{y}^{\prime}=\left[\begin{array}{ccc}
-1 / x & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right] \tilde{y}, \quad \tilde{y}=\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, y_{3}\right)^{T}
\end{gathered}
$$

Extract: example

Suppose S_{d} is a differential system constructed by the Extract algorithm; then the size of S_{d} is not always minimal.

ExtrAB $=$ Extract +AB -algorithm

ExtrAB algorithm

(z is a part of the selected unknowns of y and some their derivatives)
(expressions of the selected components of y, that are not the part of z)

ExtrAB algorithm

(z is a part of the selected unknowns of y and some their derivatives)
(expressions of the selected components of y, that are not the part of z)

Theorem

The systems S_{d}^{AB} and S_{a} produced by ExtrAB algorithm
(1) are consistent with (S, s);
(2) have the minimal sizes.

ExtrAB algorithm: example

$$
\left.\begin{array}{cccccc}
{\left[\begin{array}{ccccc}
-1 & 0 & -x & 0 & x
\end{array} 0\right.} \\
0 & 0 & (x+1) x & 0 & 0 & x \\
0 & 0 & x & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] y^{\prime}+\left[\begin{array}{cccccc}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & -1 & 0 & -(x+1) \\
0 & 0 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & 0 \\
-1 & 0 & 0 & 1 & 0 & 1 \\
1 & x & 0 & 0 & 0 & 0
\end{array}\right] y=0
$$

This system does not have Laurent series solutions with nonzero y_{1}, y_{2}. At the same time it has solutions where y_{1}, y_{2} are nonzero Laurent series. We will show how to use ExtrAB algorithm to find them.

ExtrAB algorithm: example

$$
\begin{gathered}
{\left[\begin{array}{cccccc}
-1 & 0 & -x & 0 & x & 0 \\
0 & 0 & (x+1) x & 0 & 0 & x \\
0 & 0 & x & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] y^{\prime}+\left[\begin{array}{cccccc}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & -1 & 0 & -(x+1) \\
0 & 0 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & 0 \\
-1 & 0 & 0 & 1 & 0 & 1 \\
1 & x & 0 & 0 & 0 & 0
\end{array}\right] y=0} \\
y=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right)^{T}, \quad y_{1}, y_{2} \text { are selected }
\end{gathered}
$$

Step 1: Extract

$$
\begin{aligned}
& S_{d}: \tilde{y}^{\prime}=\left[\begin{array}{cccc}
1-1 / x & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 / x & 0 \\
1 & 0 & x+1 & 1
\end{array}\right] \tilde{y}, \quad \tilde{y}=\left(\boldsymbol{y}_{2}, y_{3}, y_{5}, y_{6}\right)^{T} \\
& S_{a}: \boldsymbol{y}_{\mathbf{1}}=-x \boldsymbol{y}_{2}
\end{aligned}
$$

ExtrAB algorithm: example

$$
\begin{gathered}
{\left[\begin{array}{cccccc}
-1 & 0 & -x & 0 & x & 0 \\
0 & 0 & (x+1) x & 0 & 0 & x \\
0 & 0 & x & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] y^{\prime}+\left[\begin{array}{cccccc}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & -1 & 0 & -(x+1) \\
0 & 0 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & 0 \\
-1 & 0 & 0 & 1 & 0 & 1 \\
1 & x & 0 & 0 & 0 & 0
\end{array}\right] y=0} \\
y=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right)^{T}, \\
y_{1}, y_{2} \text { are selected }
\end{gathered}
$$

Step 1: Extract

$$
\begin{aligned}
& S_{d}: \tilde{y}^{\prime}=\left[\begin{array}{cccc}
1-1 / x & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 / x & 0 \\
1 & 0 & x+1 & 1
\end{array}\right] \tilde{y}, \quad \tilde{y}=\left(\boldsymbol{y}_{2}, y_{3}, y_{5}, y_{6}\right)^{T} \\
& S_{a}: \boldsymbol{y}_{1}=-x \boldsymbol{y}_{2}
\end{aligned}
$$

Step 2: $A B$-algorithm

$$
S_{d} \Longrightarrow S_{d}^{\mathrm{AB}}: z^{\prime}=\left[\begin{array}{cc}
0 & 1 \\
1 / x & 1-2 / x
\end{array}\right] z, \quad z=\left(\boldsymbol{y}_{2}, \boldsymbol{y}_{2}^{\prime}\right)^{T}
$$

ExtrAB algorithm: example

$$
\begin{gathered}
{\left[\begin{array}{cccccc}
-1 & 0 & -x & 0 & x & 0 \\
0 & 0 & (x+1) x & 0 & 0 & x \\
0 & 0 & x & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] y^{\prime}+\left[\begin{array}{cccccc}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & -1 & 0 & -(x+1) \\
0 & 0 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & 0 \\
-1 & 0 & 0 & 1 & 0 & 1 \\
1 & x & 0 & 0 & 0 & 0
\end{array}\right] y=0} \\
y=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right)^{T}, \quad y_{1}, y_{2} \text { are selected }
\end{gathered}
$$

Produced systems:

$$
S_{d}^{\mathrm{AB}}: z^{\prime}=\left[\begin{array}{cc}
0 & 1 \\
1 / x & 1-2 / x
\end{array}\right] z, \quad z=\left(\boldsymbol{y}_{2}, \boldsymbol{y}_{2}^{\prime}\right)^{T} \quad S_{a}: \boldsymbol{y}_{1}=-x \boldsymbol{y}_{2}
$$

ExtrAB algorithm: example

$$
\begin{gathered}
{\left[\begin{array}{cccccc}
-1 & 0 & -x & 0 & x & 0 \\
0 & 0 & (x+1) x & 0 & 0 & x \\
0 & 0 & x & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] y^{\prime}+\left[\begin{array}{cccccc}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & -1 & 0 & -(x+1) \\
0 & 0 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & 0 \\
-1 & 0 & 0 & 1 & 0 & 1 \\
1 & x & 0 & 0 & 0 & 0
\end{array}\right] y=0} \\
y=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right)^{T}, \\
y_{1}, y_{2} \text { are selected }
\end{gathered}
$$

Produced systems:

$$
S_{d}^{\mathrm{AB}}: z^{\prime}=\left[\begin{array}{cc}
0 & 1 \\
1 / x & 1-2 / x
\end{array}\right] z, \quad z=\left(\boldsymbol{y}_{2}, \boldsymbol{y}_{2}^{\prime}\right)^{T} \quad S_{a}: \boldsymbol{y}_{1}=-x \boldsymbol{y}_{2}
$$

Rational solutions for y_{1}, y_{2} :

$$
S_{d}^{\mathrm{AB}} \Rightarrow \boldsymbol{y}_{\mathbf{2}}=C / x, \quad S_{a} \Rightarrow \boldsymbol{y}_{\mathbf{1}}=C
$$

ExtrAB algorithm: example

$$
\left.\begin{array}{cccccc}
{\left[\begin{array}{ccccc}
-1 & 0 & -x & 0 & x
\end{array} 0\right.} \\
0 & 0 & (x+1) x & 0 & 0 & x \\
0 & 0 & x & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] y^{\prime}+\left[\begin{array}{cccccc}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & -1 & 0 & -(x+1) \\
0 & 0 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & 0 \\
-1 & 0 & 0 & 1 & 0 & 1 \\
1 & x & 0 & 0 & 0 & 0
\end{array}\right] y=0
$$

Produced systems:

$$
S_{d}^{\mathrm{AB}}: z^{\prime}=\left[\begin{array}{cc}
0 & 1 \\
1 / x & 1-2 / x
\end{array}\right] z, \quad z=\left(y_{2}, \boldsymbol{y}_{2}^{\prime}\right)^{T} \quad S_{a}: \boldsymbol{y}_{1}=-x \boldsymbol{y}_{2}
$$

Rational solutions for y_{1}, y_{2} :

$$
S_{d}^{\mathrm{AB}} \Rightarrow \boldsymbol{y}_{\mathbf{2}}=C / x, \quad S_{a} \Rightarrow \boldsymbol{y}_{\mathbf{1}}=C
$$

Laurent series solutions for y_{1}, y_{2} :

$$
S_{d}^{\mathrm{AB}} \Rightarrow \boldsymbol{y}_{\mathbf{2}}=\left(C_{1} e^{x}+C_{2}\right) / x, \quad S_{a} \Rightarrow \boldsymbol{y}_{\mathbf{1}}=C_{1} e^{x}+C_{2}
$$

Implementation (http://www.ccas.ru/ca/extract)
$\left[\begin{array}{cccccc}-1 & 0 & -x & 0 & x & 0 \\ 0 & 0 & (x+1) x & 0 & 0 & x \\ 0 & 0 & x & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right] y^{\prime}+\left[\begin{array}{cccccc}0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & -1 & 0 & -(x+1) \\ 0 & 0 & 0 & -1 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & 1 & 0 & 1 \\ 1 & x & 0 & 0 & 0 & 0\end{array}\right] y=0$

$$
y=\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right)^{T}, \quad y_{1}, y_{2} \text { are selected }
$$

> Extract(A1, A0, $\{1,2\}, R)$

$$
\left[\begin{array}{cccc}
1-1 / x & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 / x & 0 \\
1 & 0 & x+1 & 1
\end{array}\right],\{[2,1]\},[-x],\{[1,1]\}
$$

> ReducedSystem (\% [1], \{1\}, R)

$$
\left[\left[\begin{array}{cc}
0 & 1 \\
1 / x & 1-2 / x
\end{array}\right],\{[1,1]\}\right]
$$

