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Introduction

Why should one work with p-adic numbers ?

p-adic methods
Working in Qp instead of Q, one can handle more efficiently the
coefficients growth ;

e.g. Dixon’s method (used in F4), Polynomial factorization via
Hensel’s lemma.

p-adic algorithms
Going from Z/pZ to Zp and then back to Z/pZ enables more
computation, e.g. the algorithms of Bostan et al. and Lercier et al.
using p-adic differential equations ;
Kedlaya’s and Lauder’s counting-point algorithms via p-adic
cohomology ;

My personal (long-term) motivation
Computing (some) moduli spaces of p-adic Galois representations.
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p-adic precision: direct approach and differential precision

Direct analysis

Definition of the precision

Finite-precision p-adics

Elements of Qp can be written
∑+∞

i=k aipi , with ai ∈ J0, p − 1K, k ∈ Z
and p a prime number.
While working with a computer, we usually only can consider the
beginning of this power serie expansion: we only consider elements of the
following form

∑d−1
i=l aipi + O(pd) , with l ∈ Z.

Definition

The order, or the absolute precision of
∑d−1

i=k aipi + O(pd) is d .

Example
The order of 3 ∗ 7−1 + 4 ∗ 70 + 5 ∗ 71 + 6 ∗ 72 + O(73) is 3.
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p-adic precision: direct approach and differential precision

Direct analysis

p-adic precion vs real precision
The quintessential idea of the step-by-step analysis is the following :

Proposition (p-adic errors don’t add)
Indeed,

(a + O(p k )) + (b + O(p k )) = a + b + O(p k ).

That is to say, if a and b are known up to precision O(pk), then so is
a + b.

Remark
It is quite the opposite to when dealing with real numbers, because of
Round-off error :

(1 + 5 ∗ 10−2) + (2 + 6 ∗ 10−2) = 3 + 1 ∗ 10−1 + 1 ∗ 10−2.

That is to say, if a and b are known up to precision 10−n, then a + b is

known up to 10(−n +1 )
.
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Direct analysis

Precision formulae

Proposition (addition)

(x0 + O(pk0)) + (x1 + O(pk1)) = x0 + x1 + O(pmin(k0,k1))

Proposition (multiplication)

(x0 + O(pk0)) ∗ (x1 + O(pk1)) = x0 ∗ x1 + O(pmin(k0+vp(x1),k1+vp(x0)))

Proposition (division)

xpa + O(pb)
ypc + O(pd) = x ∗ y−1pa−c + O(pmin(d+a−2c,b−c))

In particular, 1
pcy + O(pd) = y−1p−c + O(pd−2c)
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Application in linear algebra

A little warm-up on computing determinants : expansion

An example of determinant computation

p5 + O(p10) 1 + O(p10) 1 + p3 + O(p10)

O(p10) 1 + O(p10) 1 + O(p10)

2p6 + O(p10) 2p + O(p10) 2p + p5 + O(p10)




Direct expansion
If we expand directly using the expression of the determinant in terms of
the coefficients, we get:

−2p9 + O(p10),

because of 1× 1× O(p10).
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A little warm-up on computing determinants : row-echelon
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An example of determinant computation

p5 + O(p10) 1 + O(p10) 1 + p3 + O(p10)

O(p10) 1 + O(p10) 1 + O(p10)

O(p10) O(p10) −2p4 + p5 + O(p10)




Row-echelon form computation
If we compute approximate row-echelon form, we still get:

−2p9 + O(p10),

because of 1× 1× O(p10).
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A little warm-up on computing determinants : row-echelon
form computation

An example of determinant computation
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A little warm-up on computing determinants : SNF

An example of determinant computation

1 + O(p10) O(p10) O(p10)

O(p10) p3 + O(p10) O(p10)

O(p10) O(p10) −2p6 + O(p10)




Smith Normal Form (SNF) computation
If we compute approximate SNF, we now get:

−2p9 + O(p13),

because of 1× p3 × O(p10) = O(p13).
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Summary: precision and p-adic computations

Direct method for precision

Has often been enough to get a first view of the problem.
Depends heavily on the algorithm chosen for the computation
No idea on what is optimal.
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The Main lemma of p-adic differential precision

Lemma (CRV14)
Let f : Qn

p → Qm
p be a (strictly) differentiable mapping.

Let x ∈ Qn
p. We assume that f ′(x) is surjective.

Then for any ball B = B(0, r) small enough,

f (x + B) = f (x) + f ′(x) · B.
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Geometrical meaning

Interpretation

x

B

f (x)
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B

f (x)

f ′(x)
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B

f (x)

f ′(x)

f ′(x) · B
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The main lemma

Lattices

Lemma
Let f : Qn

p → Qm
p be a (strictly) differentiable mapping.

Let x ∈ Qn
p. We assume that f ′(x) is surjective.

Then for any ball B = B(0, r) small enough,

f (x + ) = f (x) + f ′(x) · .

Remark
This allows more models of precision, like

(x , y) = (1 + O(p10), 1 + O(p)).

Remark
Our framework can be extended to (complete) ultrametric K -vector
spaces (e.g. being Fp((X ))n, Q((X ))m, R((ε))s).
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The main lemma

Higher differentials

What is small enough ?
How can we determine when the lemma applies ?
When f is locally analytic, it essentially corresponds to

+∞∑
k=2

1
k! f (k)(x) · Hk ⊂ f ′(x) · H.

This can be determined with Newton-polygon techniques.
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The main lemma

Looking back to the case of the determinant

Differential of the determinant
It is well known:

det ′(M) : dM 7→ Tr(Com(M) · dM).

Consequence on precision
Loss in precision: coefficient of Com(M) with smallest valuation.
Corresponds to the products of the n − 1-first invariant factors.
Approximate SNF is optimal.
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An example of p-adic algorithm

Isogeny and Differential equations (cf Schoof-Elkies-Atkin algorithm,
Bostan-Morain-Salvy-Schost 08, Lercier-Sirvent 08, . . . )

Let E and Ẽ be two elliptic curves over Z/pZ :

E : y2 = x3 + Ax + B,

Ẽ : y2 = x3 + Ãx + B̃.

Let us assume that there exists some normalized isogeny I between E
and Ẽ . Then, for some rational fraction U,

I(x , y) = (U(x), yU ′(x)),

Writing U = 1
S( 1√

x )2 , we get :

(Bx6 + Ax4 + 1)S ′2 = 1 + ÃS4 + B̃S6.
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Change of variable and the differential equation

The differential equation
Let S be such that

U = 1
S( 1√

x )2 .

Then if A, B, Ã, B̃ are in Zp,

S ∈ Zp[[t]]

We have the following differential equation for S :

(Bx6 + Ax4 + 1)S ′2 = 1 + ÃS4 + B̃S6.
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A p-adic computation of a solution

Computing the isogeny

Given E and Ẽ , the goal is to compute the isogeny I via the differential
equation: {

S(0) = 0,

(Bx6 + Ax4 + 1)S ′2 = 1 + ÃS4 + B̃S6.

Going through Zp

Not easy to solve a differential equation in Z/pZ.

Consequently:
1 Lift (consistently) from Z/pZ to Zp.

2 Solve the differential equation in Zp.

3 Reduce mod p to get the solution in Z/pZ.
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The original scheme

Change of equation
When p ̸= 2, we can replace y ′2 × G = H(y) by y ′ = g × h(y) with
g , h ∈ Z×

p .

Direct analysis
Newton scheme to solve y ′ = g × h(y) :

Ng,h(u)← u − h(u)
∫ (

u′

h(u) − g
)

.

Remark ∫
O(pm)xk = O(pm)

k + 1 xk+1.

One loses O(N) digits at each step, for N the order of truncation.
To compute y mod x2N +1, we need an initial precision of O(N2) digits.
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Applying the lemma

Differential and differential equation

Theorem
Let Φ : (g , h) 7→ y such that y(0) = 0 and y ′ = gh(y). Then,

Φ′(g , h) · (δg , δh) = h(y)
∫

δg + gδh(y)
h(y) .

Proposition
In our case, p ̸= 2, y , g , h ∈ ZpJxK, g(0) = h(0) = 1. If
δg = δh = O(pk), then

Φ′(y) · (δg , δh) mod x2N +1 ∈ O(pk)
pN ZpJxK.
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First conclusion on the application of the lemma

Proposition

Φ(g , h) mod (p, t2n ) is determined by g , h mod (p1+logp 2n
, t2n )). In

other words, we have a logarithmic loss in precision.
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What happens in practice ?

Figure: Precision over the output



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

On some p-adic differential equations
Application of differential precision

Applying the lemma

What happens in practice ?

Figure: Precision over the output



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

On some p-adic differential equations
Application of differential precision

Applying the lemma

What happens in practice ?

Figure: Precision over the output



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

On some p-adic differential equations
Application of differential precision

Applying the lemma

What happens in practice ?

Figure: Precision over the output



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

On some p-adic differential equations
Application of differential precision

A more subtle approach

Table of contents

1 p-adic precision: direct approach and differential precision
Direct analysis
Application in linear algebra
The main lemma

2 p-adic differential equations with separation of variables
Isogeny computation
The original scheme

3 Application of differential precision
Applying the lemma
A more subtle approach



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

On some p-adic differential equations
Application of differential precision

A more subtle approach

Different way of representing the p-adics

Another take on the computation

In the previous computation, we start with some given
approximations of g , h, u0 and try to follow the algorithm for the
exact counterparts of g , h, u0. This is somehow much stronger than
our desire: computing a good approximate solution.
Another way is then to modify the current g , h, u0 at each step, in
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New framework

In this new computation, we consider h as given, and not varying for the
lemma.

Lemma
Let Y : g 7→ y such that y(0) = 0 and y ′ = gh(y). Then,

Y ′(g) · (δg) = h(y)
∫

δg .
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A consequence of the lemma

Corollary
Let n > 0 and κ > 1 be integers, and let g ∈ ZpJtK such that Y (g)
(mod tn+1) has integer coefficients. For any y ∈ QpJtK the following are
equivalent:

1 y = Y (ḡ) (mod tn+1) for some power series ḡ ∈ ZpJtK such
that

∫
(ḡ − g) = 0 (mod pκ);

2 y = Y (g) (mod pκ, tn+1).
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Final take on the Newton scheme

As a consequence, we can prove that it is harmless to work in Z/pkZ for
our computation.

Proposition
We can obtain the solution Φ(g , h) mod (p, tn+1) knowing g , h
mod (p⌊logp n⌋+1, tn+1) and applying the following iteration:

Ng,h(u)← u − h(u)
∫ (

u′

h(u) − g
)

,

modulo p⌊logp n⌋+1 and growing order of truncation.
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Timings
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Figure: Timings in seconds, measured on a laptop, of our Algorithm run at
precision λold (upper curve) and λnew (lower curve) in order to compute an
approximation modulo (5, t4m+1) of some given m-isogenies.
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Speedup
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Figure: Practical speedup obtained with the new precision analysis compared
with the theoretical improvement (m-axis in logarithmic scale). (�) is the ratio
on precisions, (•) is the actual speedup.
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To sum up

On p-adic precision

Step-by-step analysis : as a first step. Can show differentiability and
naïve loss in precision during the computation.
Differential calculus : intrinsic and can handle both gain and loss.
Can stabilize and attain optimal precision, even though naïve
computation lose too much precision.

On differential equations
Can attain optimal loss in precision for differential equations with
separation of variables.
Future works: higher order and p = 2.
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Thank you for your attention
Thanks

x + B

f

B

f ′(x)

f (x) + f ′(x) · B

f ′(x) · B

f̃

x

x + O(pN′) y + O(pM′) ⊂ f (x) + O(pN)
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