On some p-adic differential equations

(with separation of variables)

Pierre Lairez, Tristan Vaccon

TU Berlin, 立教大学 (Rikkyo University)-JSPS Post-Doctoral Fellow

March. 29th 2016

- 1 p-adic precision: direct approach and differential precision
 - Direct analysis
 - Application in linear algebra
 - The main lemma
- **2** *p*-adic differential equations with separation of variables
 - Isogeny computation
 - The original scheme
- 3 Application of differential precision
 - Applying the lemma
 - A more subtle approach

p-adic methods

■ Working in \mathbb{Q}_p instead of \mathbb{Q} , one can handle more efficiently the coefficients growth ;

p-adic methods

- Working in \mathbb{Q}_p instead of \mathbb{Q} , one can handle more efficiently the coefficients growth ;
- e.g. Dixon's method (used in F4), Polynomial factorization via Hensel's lemma.

p-adic methods

- Working in \mathbb{Q}_p instead of \mathbb{Q} , one can handle more efficiently the coefficients growth ;
- e.g. Dixon's method (used in F4), Polynomial factorization via Hensel's lemma.

p-adic algorithms

■ Going from $\mathbb{Z}/p\mathbb{Z}$ to \mathbb{Z}_p and then back to $\mathbb{Z}/p\mathbb{Z}$ enables more computation,

p-adic methods

- Working in \mathbb{Q}_p instead of \mathbb{Q} , one can handle more efficiently the coefficients growth ;
- e.g. Dixon's method (used in F4), Polynomial factorization via Hensel's lemma.

p-adic algorithms

■ Going from $\mathbb{Z}/p\mathbb{Z}$ to \mathbb{Z}_p and then back to $\mathbb{Z}/p\mathbb{Z}$ enables more computation, *e.g.* the algorithms of Bostan et al. and Lercier et al. using *p*-adic differential equations;

p-adic methods

- Working in \mathbb{Q}_p instead of \mathbb{Q} , one can handle more efficiently the coefficients growth ;
- e.g. Dixon's method (used in F4), Polynomial factorization via Hensel's lemma.

p-adic algorithms

- Going from $\mathbb{Z}/p\mathbb{Z}$ to \mathbb{Z}_p and then back to $\mathbb{Z}/p\mathbb{Z}$ enables more computation, *e.g.* the algorithms of Bostan et al. and Lercier et al. using *p*-adic differential equations ;
- Kedlaya's and Lauder's counting-point algorithms via p-adic cohomology;

p-adic methods

- Working in \mathbb{Q}_p instead of \mathbb{Q} , one can handle more efficiently the coefficients growth ;
- e.g. Dixon's method (used in F4), Polynomial factorization via Hensel's lemma.

p-adic algorithms

- Going from $\mathbb{Z}/p\mathbb{Z}$ to \mathbb{Z}_p and then back to $\mathbb{Z}/p\mathbb{Z}$ enables more computation, e.g. the algorithms of Bostan et al. and Lercier et al. using p-adic differential equations;
- Kedlaya's and Lauder's counting-point algorithms via p-adic cohomology;

My personal (long-term) motivation

Computing (some) moduli spaces of p-adic Galois representations.

Table of contents

- 1 p-adic precision: direct approach and differential precision
 - Direct analysis
 - Application in linear algebra
 - The main lemma
- **2** *p*-adic differential equations with separation of variables
 - Isogeny computation
 - The original scheme
- 3 Application of differential precision
 - Applying the lemma
 - A more subtle approach

Finite-precision p-adics

Elements of \mathbb{Q}_p can be written $\sum_{i=k}^{+\infty} a_i p^i$, with $a_i \in [0, p-1]$, $k \in \mathbb{Z}$ and p a prime number.

While working with a computer, we usually only can consider the beginning of this power serie expansion: we only consider elements of the

following form
$$\sum_{i=l}^{d-1} a_i p^i + O(p^d)$$
 , with $l \in \mathbb{Z}$.

Finite-precision p-adics

Elements of \mathbb{Q}_p can be written $\sum_{i=k}^{+\infty} a_i p^i$, with $a_i \in [0, p-1]$, $k \in \mathbb{Z}$ and p a prime number.

While working with a computer, we usually only can consider the beginning of this power serie expansion: we only consider elements of the

following form
$$\sum_{i=l}^{d-1} a_i p^i + O(p^d)$$
, with $l \in \mathbb{Z}$.

Finite-precision p-adics

Elements of \mathbb{Q}_p can be written $\sum_{i=k}^{+\infty} a_i p^i$, with $a_i \in [0, p-1]$, $k \in \mathbb{Z}$ and p a prime number.

While working with a computer, we usually only can consider the beginning of this power serie expansion: we only consider elements of the

following form $\left[\sum_{i=l}^{d-1} a_i p^i + O(p^d)\right]$, with $l \in \mathbb{Z}$.

Definition

The order, or the absolute precision of $\sum_{i=k}^{d-1} a_i p^i + O(p^d)$ is d.

Finite-precision p-adics

Elements of \mathbb{Q}_p can be written $\sum_{i=k}^{+\infty} a_i p^i$, with $a_i \in [0, p-1]$, $k \in \mathbb{Z}$ and p a prime number.

While working with a computer, we usually only can consider the beginning of this power serie expansion: we only consider elements of the

following form
$$\left(\sum_{i=I}^{d-1} a_i p^i + O(p^d)\right)$$
, with $I \in \mathbb{Z}$.

Definition

The order, or the absolute precision of $\sum_{i=k}^{d-1} a_i p^i + O(p^d)$ is d.

Example

The order of $3 * 7^{-1} + 4 * 7^{0} + 5 * 7^{1} + 6 * 7^{2} + O(7^{3})$ is 3.

The quintessential idea of the step-by-step analysis is the following:

Proposition (p-adic errors don't add)

Indeed.

$$(a + O(p^k)) + (b + O(p^k)) = a + b + O(p^k).$$

That is to say, if a and b are known up to precision $O(p^k)$, then so is a+b.

The quintessential idea of the step-by-step analysis is the following:

Proposition (p-adic errors don't add)

Indeed,

$$(a + O(p^{k})) + (b + O(p^{k})) = a + b + O(p^{k}).$$

That is to say, if a and b are known up to precision $O(p^k)$, then so is a + b.

The quintessential idea of the step-by-step analysis is the following:

Proposition (p-adic errors don't add)

Indeed,

$$(a + O(p^{k})) + (b + O(p^{k})) = a + b + O(p^{k}).$$

That is to say, if a and b are known up to precision $O(p^k)$, then so is a + b.

Remark

It is quite the opposite to when dealing with real numbers, because of **Round-off error**:

$$(1+5*10^{-2})+(2+6*10^{-2})=3+1*10^{-1}+1*10^{-2}.$$

That is to say, if a and b are known up to precision 10^{-n} , then a+b is known up to $10^{(-n+1)}$.

The quintessential idea of the step-by-step analysis is the following:

Proposition (p-adic errors don't add)

Indeed,

$$(a + O(p^{k})) + (b + O(p^{k})) = a + b + O(p^{k}).$$

That is to say, if a and b are known up to precision $O(p^k)$, then so is a + b.

Remark

It is quite the opposite to when dealing with real numbers, because of **Round-off error** :

$$(1+5*10^{-2})+(2+6*10^{-2})=3+1*10^{-1}+1*10^{-2}.$$

That is to say, if a and b are known up to precision 10^{-n} , then a + b is known up to $10^{(-n+1)}$.

Precision formulae

Proposition (addition)

$$(x_0 + O(p^{k_0})) + (x_1 + O(p^{k_1})) = x_0 + x_1 + O(p^{min(k_0, k_1)})$$

Precision formulae

Proposition (addition)

$$(x_0 + O(p^{k_0})) + (x_1 + O(p^{k_1})) = x_0 + x_1 + O(p^{min(k_0, k_1)})$$

Proposition (multiplication)

$$(x_0 + O(p^{k_0})) * (x_1 + O(p^{k_1})) = x_0 * x_1 + O(p^{min(k_0 + v_p(x_1), k_1 + v_p(x_0))})$$

Precision formulae

Proposition (addition)

$$(x_0 + O(p^{k_0})) + (x_1 + O(p^{k_1})) = x_0 + x_1 + O(p^{min(k_0, k_1)})$$

Proposition (multiplication)

$$(x_0 + O(p^{k_0})) * (x_1 + O(p^{k_1})) = x_0 * x_1 + O(p^{min(k_0 + \nu_p(x_1), k_1 + \nu_p(x_0))})$$

Proposition (division)

$$\frac{xp^{a} + O(p^{b})}{vp^{c} + O(p^{d})} = x * y^{-1}p^{a-c} + O(p^{min(d+a-2c,b-c)})$$

In particular,
$$\frac{1}{p^c y + O(p^d)} = y^{-1} p^{-c} + O(p^{d-2c})$$

Table of contents

- 1 p-adic precision: direct approach and differential precision
 - Direct analysis
 - Application in linear algebra
 - The main lemma
- **2** *p*-adic differential equations with separation of variables
 - Isogeny computation
 - The original scheme
- 3 Application of differential precision
 - Applying the lemma
 - A more subtle approach

A little warm-up on computing determinants : expansion

An example of determinant computation

$$\left[\begin{array}{ccc} p^5 + O(p^{10}) & 1 + O(p^{10}) & 1 + p^3 + O(p^{10}) \\ O(p^{10}) & 1 + O(p^{10}) & 1 + O(p^{10}) \\ 2p^6 + O(p^{10}) & 2p + O(p^{10}) & 2p + p^5 + O(p^{10}) \end{array}\right]$$

A little warm-up on computing determinants : expansion

An example of determinant computation

$$\left[\begin{array}{cccc} p^5 + O(p^{10}) & 1 + O(p^{10}) & 1 + p^3 + O(p^{10}) \\ O(p^{10}) & 1 + O(p^{10}) & 1 + O(p^{10}) \\ 2p^6 + O(p^{10}) & 2p + O(p^{10}) & 2p + p^5 + O(p^{10}) \end{array} \right]$$

Direct expansion

If we expand directly using the expression of the determinant in terms of the coefficients, we get:

A little warm-up on computing determinants : expansion

An example of determinant computation

$$\left[egin{array}{cccc} p^5 + O(p^{10}) & 1 + O(p^{10}) & 1 + p^3 + O(p^{10}) \ O(p^{10}) & 1 + O(p^{10}) & 1 + O(p^{10}) \ 2p^6 + O(p^{10}) & 2p + P^5 + O(p^{10}) \end{array}
ight]$$

Direct expansion

If we expand directly using the expression of the determinant in terms of the coefficients, we get:

$$-2p^9+O(p^{10}),$$

because of $1 \times 1 \times O(p^{10})$.

Application in linear algebra

A little warm-up on computing determinants : row-echelon form computation

An example of determinant computation

$$\left[\begin{array}{cccc} \rho^5 + O(\rho^{10}) & 1 + O(\rho^{10}) & 1 + \rho^3 + O(\rho^{10}) \\ O(\rho^{10}) & 1 + O(\rho^{10}) & 1 + O(\rho^{10}) \\ O(\rho^{10}) & O(\rho^{10}) & -2\rho^4 + \rho^5 + O(\rho^{10}) \end{array} \right]$$

A little warm-up on computing determinants : row-echelon form computation

An example of determinant computation

$$\left[\begin{array}{cccc} p^5 + O(p^{10}) & 1 + O(p^{10}) & 1 + p^3 + O(p^{10}) \\ O(p^{10}) & 1 + O(p^{10}) & 1 + O(p^{10}) \\ O(p^{10}) & O(p^{10}) & -2p^4 + p^5 + O(p^{10}) \end{array} \right]$$

Row-echelon form computation

If we compute approximate row-echelon form, we still get:

A little warm-up on computing determinants : row-echelon form computation

An example of determinant computation

$$\begin{bmatrix} p^5 + O(p^{10}) & 1 + O(p^{10}) & 1 + p^3 + O(p^{10}) \\ O(p^{10}) & 1 + O(p^{10}) & 1 + O(p^{10}) \\ O(p^{10}) & O(p^{10}) & -2p^4 + p^5 + O(p^{10}) \end{bmatrix}$$

Row-echelon form computation

If we compute approximate row-echelon form, we still get:

$$-2p^9 + O(p^{10}),$$

because of $1 \times 1 \times O(p^{10})$.

A little warm-up on computing determinants : SNF

An example of determinant computation

$$egin{bmatrix} 1 + O(
ho^{10}) & O(
ho^{10}) & O(
ho^{10}) \ O(
ho^{10}) &
ho^3 + O(
ho^{10}) & O(
ho^{10}) \ O(
ho^{10}) & O(
ho^{10}) & -2
ho^6 + O(
ho^{10}) \ \end{bmatrix}$$

A little warm-up on computing determinants : SNF

An example of determinant computation

Smith Normal Form (SNF) computation

If we compute approximate SNF, we now get:

A little warm-up on computing determinants : SNF

An example of determinant computation

$$egin{bmatrix} 1 + O(
ho^{10}) & O(
ho^{10}) & O(
ho^{10}) \ O(
ho^{10}) &
ho^3 + O(
ho^{10}) & O(
ho^{10}) \ O(
ho^{10}) & O(
ho^{10}) & -2
ho^6 + O(
ho^{10}) \ \end{pmatrix}$$

Smith Normal Form (SNF) computation

If we compute approximate SNF, we now get:

$$-2p^9+O(p^{13}),$$

because of $1 \times p^3 \times O(p^{10}) = O(p^{13})$.

Direct method for precision

Direct method for precision

■ Has often been enough to get a first view of the problem.

Direct method for precision

- Has often been enough to get a first view of the problem.
- Depends heavily on the algorithm chosen for the computation

Direct method for precision

- Has often been enough to get a first view of the problem.
- Depends heavily on the algorithm chosen for the computation
- No idea on what is **optimal**.

Table of contents

- 1 p-adic precision: direct approach and differential precision
 - Direct analysis
 - Application in linear algebra
 - The main lemma
- **2** *p*-adic differential equations with separation of variables
 - Isogeny computation
 - The original scheme
- 3 Application of differential precision
 - Applying the lemma
 - A more subtle approach

The Main lemma of p-adic differential precision

Lemma (CRV14)

Let $f: \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) differentiable mapping.

The Main lemma of p-adic differential precision

Lemma (CRV14)

Let $f: \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) **differentiable** mapping. Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is **surjective**.

The Main lemma of p-adic differential precision

Lemma (CRV14)

Let $f: \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) differentiable mapping. Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is surjective. Then for any ball B = B(0,r) small enough,

The Main lemma of p-adic differential precision

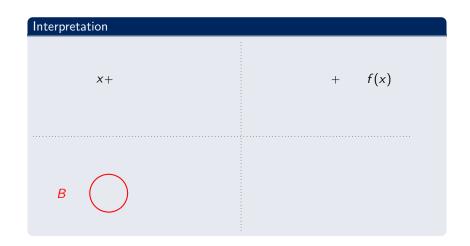
Lemma (CRV14)

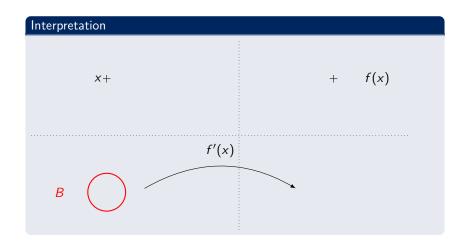
Let $f: \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) **differentiable** mapping.

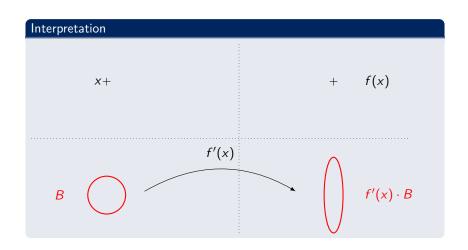
Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is **surjective**.

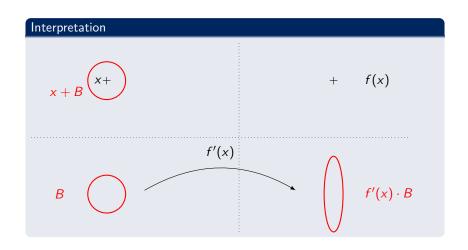
Then for any ball B = B(0, r) small enough,

$$f(x+B)=f(x)+f'(x)\cdot B.$$

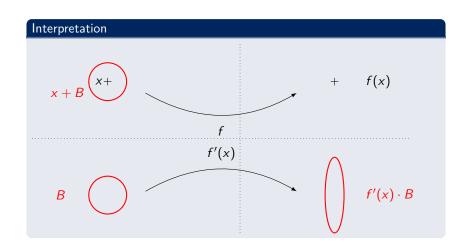




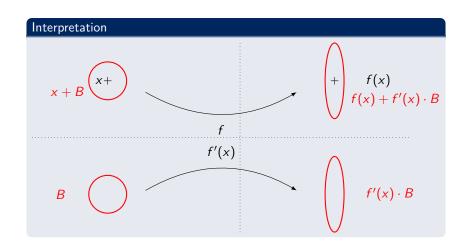




The main lemma



The main lemma



On some p-adic differential equations

p-adic precision: direct approach and differential precision

The main lemma

Lattices

Lattices

Lemma

Let $f: \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) differentiable mapping. Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is surjective. Then for any ball B = B(0,r) small enough,

$$f(x+B)=f(x)+f'(x)\cdot B.$$

Lattices

Lemma

Let $f: \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) **differentiable** mapping.

Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is **surjective**.

Then for any ball B = B(0, r) small enough, for any open lattice $H \subset B$

$$f(x+H)=f(x)+f'(x)\cdot H.$$

☐The main lemma

Lattices

Lemma

Let $f: \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) **differentiable** mapping.

Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is **surjective**.

Then for any ball B = B(0, r) small enough, for any open lattice $H \subset B$

$$f(x+H)=f(x)+f'(x)\cdot H.$$

Remark

This allows more models of precision, like

$$(x,y) = (1 + O(p^{10}), 1 + O(p)).$$

Lattices

Lemma

Let $f: \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) **differentiable** mapping.

Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is **surjective**.

Then for any ball B = B(0, r) small enough, for any open lattice $H \subset B$

$$f(x+H)=f(x)+f'(x)\cdot H.$$

Remark

This allows more models of precision, like

$$(x,y) = (1 + O(p^{10}), 1 + O(p)).$$

Remark

Our framework can be extended to **(complete) ultrametric** K-vector spaces (e.g. being $\mathbb{F}_p((X))^n$, $\mathbb{Q}((X))^m$, $\mathbb{R}((\varepsilon))^s$).

Higher differentials

Higher differentials

What is small enough?

How can we determine when the lemma applies ?

Higher differentials

What is small enough?

How can we determine when the lemma applies ? When f is locally analytic, it essentially corresponds to

$$\sum_{k=2}^{+\infty} \frac{1}{k!} f^{(k)}(x) \cdot H^k \subset f'(x) \cdot H.$$

The main lemma

Higher differentials

What is small enough?

How can we determine when the lemma applies ? When f is locally analytic, it essentially corresponds to

$$\sum_{k=2}^{+\infty} \frac{1}{k!} f^{(k)}(x) \cdot H^k \subset f'(x) \cdot H.$$

This can be determined with **Newton-polygon** techniques.

Looking back to the case of the determinant

Differential of the determinant

It is well known:

$$\det'(M): dM \mapsto \mathsf{Tr}(\mathsf{Com}(M) \cdot dM).$$

Looking back to the case of the determinant

Differential of the determinant

It is well known:

$$\det'(M): dM \mapsto \mathsf{Tr}(\mathsf{Com}(M) \cdot dM).$$

Consequence on precision

• Loss in precision: coefficient of Com(M) with smallest valuation.

Looking back to the case of the determinant

Differential of the determinant

It is well known:

$$\det'(M): dM \mapsto \mathsf{Tr}(\mathsf{Com}(M) \cdot dM).$$

Consequence on precision

- Loss in precision: coefficient of Com(M) with smallest valuation.
- lacksquare Corresponds to the products of the n-1-first invariant factors.

☐The main lemma

Looking back to the case of the determinant

Differential of the determinant

It is well known:

$$\det'(M): dM \mapsto \mathsf{Tr}(\mathsf{Com}(M) \cdot dM).$$

Consequence on precision

- Loss in precision: coefficient of Com(M) with smallest valuation.
- Corresponds to the products of the n-1-first invariant factors.
- Approximate SNF is optimal.

Table of contents

- 1 p-adic precision: direct approach and differential precision
 - Direct analysis
 - Application in linear algebra
 - The main lemma
- 2 p-adic differential equations with separation of variables
 - Isogeny computation
 - The original scheme
- 3 Application of differential precision
 - Applying the lemma
 - A more subtle approach

Isogeny and Differential equations (cf Schoof-Elkies-Atkin algorithm, Bostan-Morain-Salvy-Schost 08, Lercier-Sirvent 08, ...)

Let E and \tilde{E} be two elliptic curves over $\mathbb{Z}/p\mathbb{Z}$:

$$E: y^2 = x^3 + Ax + B,$$

$$\tilde{E}$$
: $y^2 = x^3 + \tilde{A}x + \tilde{B}$.

Isogeny and Differential equations (cf Schoof-Elkies-Atkin algorithm, Bostan-Morain-Salvy-Schost 08, Lercier-Sirvent 08, ...)

Let E and \tilde{E} be two elliptic curves over $\mathbb{Z}/p\mathbb{Z}$:

$$E : y^2 = x^3 + Ax + B,$$

$$\tilde{E}$$
: $y^2 = x^3 + \tilde{A}x + \tilde{B}$.

Let us assume that there exists some normalized isogeny I between E and \tilde{E} . Then, for some rational fraction U,

$$I(x,y) = (U(x), yU'(x)),$$

Isogeny and Differential equations (cf Schoof-Elkies-Atkin algorithm, Bostan-Morain-Salvy-Schost 08, Lercier-Sirvent 08, ...)

Let E and \tilde{E} be two elliptic curves over $\mathbb{Z}/p\mathbb{Z}$:

$$E: y^2 = x^3 + Ax + B,$$

$$\tilde{E}$$
: $y^2 = x^3 + \tilde{A}x + \tilde{B}$.

Let us assume that there exists some normalized isogeny I between E and \tilde{E} . Then, for some rational fraction U,

$$I(x,y)=(U(x),yU'(x)),$$

Writing $U = \frac{1}{S(\frac{1}{\sqrt{c}})^2}$, we get :

$$(Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6.$$

Change of variable and the differential equation

The differential equation

Let S be such that

$$U=\frac{1}{S(\frac{1}{\sqrt{x}})^2}.$$

Then if $A, B, \tilde{A}, \tilde{B}$ are in \mathbb{Z}_p ,

$$S \in \mathbb{Z}_p[[t]]$$

We have the following differential equation for S:

$$(Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6.$$

Computing the isogeny

Given E and \widetilde{E} , the goal is to compute the isogeny I via the differential equation:

$$\begin{cases} S(0) = 0, \\ (Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6. \end{cases}$$

Going through \mathbb{Z}_p

Not easy to solve a differential equation in $\mathbb{Z}/p\mathbb{Z}$.

Computing the isogeny

Given E and \widetilde{E} , the goal is to compute the isogeny I via the differential equation:

$$\begin{cases} S(0) = 0, \\ (Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6. \end{cases}$$

Going through \mathbb{Z}_p

Not easy to solve a differential equation in $\mathbb{Z}/p\mathbb{Z}$. Consequently:

Computing the isogeny

Given E and E, the goal is to compute the isogeny I via the differential equation:

$$\begin{cases} S(0) = 0, \\ (Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6. \end{cases}$$

Going through \mathbb{Z}_n

Not easy to solve a differential equation in $\mathbb{Z}/p\mathbb{Z}$. Consequently:

1 Lift (consistently) from $\mathbb{Z}/p\mathbb{Z}$ to \mathbb{Z}_p .

Computing the isogeny

Given E and E, the goal is to compute the isogeny I via the differential equation:

$$\begin{cases} S(0) = 0, \\ (Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6. \end{cases}$$

Going through \mathbb{Z}_n

Not easy to solve a differential equation in $\mathbb{Z}/p\mathbb{Z}$. Consequently:

- 1 Lift (consistently) from $\mathbb{Z}/p\mathbb{Z}$ to \mathbb{Z}_p .
- 2 Solve the differential equation in \mathbb{Z}_p .

Computing the isogeny

Given E and \widetilde{E} , the goal is to compute the isogeny I via the differential equation:

$$\begin{cases} S(0) = 0, \\ (Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6. \end{cases}$$

Going through \mathbb{Z}_p

Not easy to solve a differential equation in $\mathbb{Z}/p\mathbb{Z}$. Consequently:

- **1** Lift (consistently) from $\mathbb{Z}/p\mathbb{Z}$ to \mathbb{Z}_p .
- 2 Solve the differential equation in \mathbb{Z}_p .
- **3** Reduce mod p to get the solution in $\mathbb{Z}/p\mathbb{Z}$.

Table of contents

- 1 p-adic precision: direct approach and differential precision
 - Direct analysis
 - Application in linear algebra
 - The main lemma
- 2 p-adic differential equations with separation of variables
 - Isogeny computation
 - The original scheme
- 3 Application of differential precision
 - Applying the lemma
 - A more subtle approach

The original scheme

Change of equation

When $p \neq 2$, we can replace $y'^2 \times G = H(y)$ by $y' = g \times h(y)$ with $g, h \in \mathbb{Z}_p^{\times}$.

The original scheme

Change of equation

When $p \neq 2$, we can replace $y'^2 \times G = H(y)$ by $y' = g \times h(y)$ with $g, h \in \mathbb{Z}_p^{\times}$.

Direct analysis

Newton scheme to solve $y' = g \times h(y)$:

The original scheme

Change of equation

When $p \neq 2$, we can replace $y'^2 \times G = H(y)$ by $y' = g \times h(y)$ with $g, h \in \mathbb{Z}_p^{\times}$.

Direct analysis

Newton scheme to solve $y' = g \times h(y)$:

$$N_{g,h}(u) \leftarrow u - h(u) \int \left(\frac{u'}{h(u)} - g\right).$$

Change of equation

When $p \neq 2$, we can replace $y'^2 \times G = H(y)$ by $y' = g \times h(y)$ with $g, h \in \mathbb{Z}_p^{\times}$.

Direct analysis

Newton scheme to solve $y' = g \times h(y)$:

$$N_{g,h}(u) \leftarrow u - h(u) \int \left(\frac{u'}{h(u)} - g\right).$$

Remark

$$\int O(p^m)x^k = \frac{O(p^m)}{k+1}x^{k+1}.$$

Change of equation

When $p \neq 2$, we can replace $y'^2 \times G = H(y)$ by $y' = g \times h(y)$ with $g, h \in \mathbb{Z}_p^{\times}$.

Direct analysis

Newton scheme to solve $y' = g \times h(y)$:

$$N_{g,h}(u) \leftarrow u - h(u) \int \left(\frac{u'}{h(u)} - g\right).$$

Remark

$$\int O(p^m)x^k = \frac{O(p^m)}{k+1}x^{k+1}.$$

One loses O(N) digits at each step, for N the order of truncation.

Change of equation

When $p \neq 2$, we can replace $y'^2 \times G = H(y)$ by $y' = g \times h(y)$ with $g, h \in \mathbb{Z}_p^{\times}$.

Direct analysis

Newton scheme to solve $y' = g \times h(y)$:

$$N_{g,h}(u) \leftarrow u - h(u) \int \left(\frac{u'}{h(u)} - g\right).$$

Remark

$$\int O(p^m)x^k = \frac{O(p^m)}{k+1}x^{k+1}.$$

One loses O(N) digits at each step, for N the order of truncation. To compute $y \mod x^{2^N+1}$, we need an initial precision of $O(N^2)$ digits.

Table of contents

- 1 p-adic precision: direct approach and differential precision
 - Direct analysis
 - Application in linear algebra
 - The main lemma
- **2** *p*-adic differential equations with separation of variables
 - Isogeny computation
 - The original scheme
- 3 Application of differential precision
 - Applying the lemma
 - A more subtle approach

Differential and differential equation

Theorem

Let
$$\Phi$$
: $(g,h) \mapsto y$ such that $y(0) = 0$ and $y' = gh(y)$. Then,

$$\Phi'(g,h)\cdot(\delta g,\delta h)=h(y)\int\delta g+\frac{g\delta h(y)}{h(y)}.$$

Differential and differential equation

Theorem

Let
$$\Phi$$
: $(g,h) \mapsto y$ such that $y(0) = 0$ and $y' = gh(y)$. Then,

$$\Phi'(g,h)\cdot(\delta g,\delta h)=h(y)\int\delta g+\frac{g\delta h(y)}{h(y)}.$$

Proposition

In our case,
$$p \neq 2$$
, $y, g, h \in \mathbb{Z}_p[\![x]\!]$, $g(0) = h(0) = 1$. If $\delta g = \delta h = O(p^k)$, then

Differential and differential equation

Theorem |

Let
$$\Phi:(g,h)\mapsto y$$
 such that $y(0)=0$ and $y'=gh(y)$. Then,

$$\Phi'(g,h)\cdot(\delta g,\delta h)=h(y)\int\delta g+\frac{g\delta h(y)}{h(y)}.$$

Proposition

In our case,
$$p \neq 2$$
, $y, g, h \in \mathbb{Z}_p[\![x]\!]$, $g(0) = h(0) = 1$. If $\delta g = \delta h = O(p^k)$, then

$$\Phi'(y) \cdot (\delta g, \delta h) \mod x^{2^N+1} \in \frac{O(p^k)}{p^N} \mathbb{Z}_p[\![x]\!].$$

First conclusion on the application of the lemma

Proposition

 $\Phi(g,h) \mod (p,t^{2^n})$ is determined by $g,h \mod (p^{1+\log_p 2^n},t^{2^n})$). In other words, we have a logarithmic loss in precision.

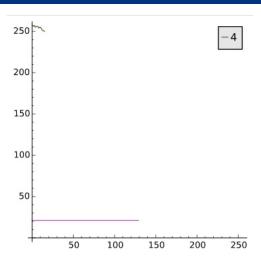


Figure: Precision over the output

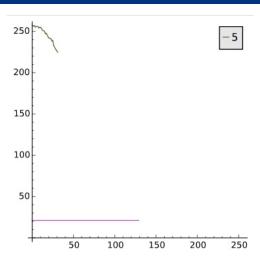


Figure: Precision over the output

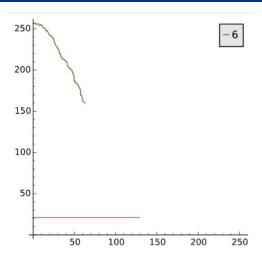


Figure: Precision over the output

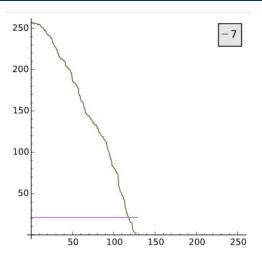


Figure: Precision over the output

Table of contents

- 1 p-adic precision: direct approach and differential precision
 - Direct analysis
 - Application in linear algebra
 - The main lemma
- **2** *p*-adic differential equations with separation of variables
 - Isogeny computation
 - The original scheme
- 3 Application of differential precision
 - Applying the lemma
 - A more subtle approach

Another take on the computation

Another take on the computation

■ In the previous computation, we start with some given approximations of g, h, u0 and try **to follow** the algorithm for the exact counterparts of g, h, u0.

Another take on the computation

■ In the previous computation, we start with some given approximations of g, h, u0 and try **to follow** the algorithm for the exact counterparts of g, h, u0. This is somehow **much stronger** than our desire: computing a good approximate solution.

Another take on the computation

- In the previous computation, we start with some given approximations of g, h, u_0 and try **to follow** the algorithm for the exact counterparts of g, h, u_0 . This is somehow **much stronger** than our desire: computing a good approximate solution.
- Another way is then to modify the current g, h, u_0 at each step, in a consistent way, so as to keep on getting better approximate solutions.

Another take on the computation

- In the previous computation, we start with some given approximations of g, h, u_0 and try **to follow** the algorithm for the exact counterparts of g, h, u_0 . This is somehow **much stronger** than our desire: computing a good approximate solution.
- Another way is then to modify the current g, h, u0 at each step, in a consistent way, so as to keep on getting better approximate solutions.
- A third way here will be to work entirely in $\mathbb{Z}/p^{\kappa}\mathbb{Z}$.

New framework

In this new computation, we consider h as given, and not varying for the lemma.

Lemma

Let
$$Y: g \mapsto y$$
 such that $y(0) = 0$ and $y' = gh(y)$. Then,

$$Y'(g)\cdot(\delta g)=h(y)\int\delta g.$$

A consequence of the lemma

Corollary

Let n > 0 and $\kappa > 1$ be integers, and let $g \in \mathbb{Z}_p[\![t]\!]$ such that Y(g) (mod t^{n+1}) has integer coefficients. For any $y \in \mathbb{Q}_p[\![t]\!]$ the following are equivalent:

- **1** $y = Y(\bar{g}) \pmod{t^{n+1}}$ for some power series $\bar{g} \in \mathbb{Z}_p[\![t]\!]$ such that $\int (\bar{g} g) = 0 \pmod{p^{\kappa}}$;
- $y = Y(g) \pmod{p^{\kappa}, t^{n+1}}.$

Final take on the Newton scheme

As a consequence, we can prove that it is harmless to work in $\mathbb{Z}/p^k\mathbb{Z}$ for our computation.

Proposition

We can obtain the solution $\Phi(g,h) \mod (p,t^{n+1})$ knowing g, h mod $(p^{\lfloor \log_p n \rfloor + 1}, t^{n+1})$ and applying the following iteration:

$$N_{g,h}(u) \leftarrow u - h(u) \int \left(\frac{u'}{h(u)} - g\right),$$

Final take on the Newton scheme

As a consequence, we can prove that it is harmless to work in $\mathbb{Z}/p^k\mathbb{Z}$ for our computation.

Proposition

We can obtain the solution $\Phi(g,h) \mod (p,t^{n+1})$ knowing $g,h \mod (p^{\lfloor \log_p n \rfloor + 1},t^{n+1})$ and applying the following iteration:

$$N_{g,h}(u) \leftarrow u - h(u) \int \left(\frac{u'}{h(u)} - g\right),$$

modulo $p^{\lfloor \log_p n \rfloor + 1}$ and growing order of truncation.

Timings

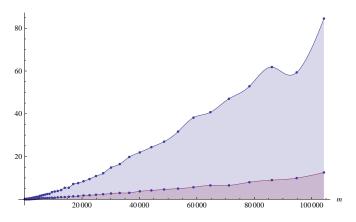


Figure: Timings in seconds, measured on a laptop, of our Algorithm run at precision $\lambda_{\rm old}$ (upper curve) and $\lambda_{\rm new}$ (lower curve) in order to compute an approximation modulo $(5,t^{4m+1})$ of some given m-isogenies.

Speedup

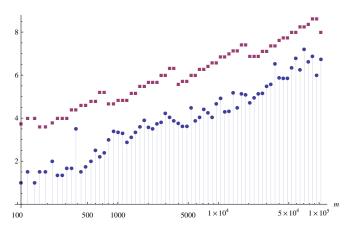


Figure: Practical speedup obtained with the new precision analysis compared with the theoretical improvement (m-axis in logarithmic scale). (\blacksquare) is the ratio on precisions, (\bullet) is the actual speedup.

```
On p-adic precision
```

On p-adic precision

■ Step-by-step analysis : as a first step. Can show differentiability and naïve loss in precision during the computation.

On p-adic precision

- Step-by-step analysis: as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : intrinsic and can handle both gain and loss.

On p-adic precision

- Step-by-step analysis: as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : **intrinsic** and can handle both **gain** and **loss**.
- Can stabilize and attain optimal precision, even though naïve computation lose too much precision.

On p-adic precision

- Step-by-step analysis: as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : **intrinsic** and can handle both **gain** and **loss**.
- Can stabilize and attain optimal precision, even though naïve computation lose too much precision.

On differential equations

On p-adic precision

- Step-by-step analysis: as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : **intrinsic** and can handle both **gain** and **loss**.
- Can stabilize and attain optimal precision, even though naïve computation lose too much precision.

On differential equations

Can attain optimal loss in precision for differential equations with separation of variables.

On p-adic precision

- Step-by-step analysis: as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : **intrinsic** and can handle both **gain** and **loss**.
- Can stabilize and attain optimal precision, even though naïve computation lose too much precision.

On differential equations

- Can attain optimal loss in precision for differential equations with separation of variables.
- Future works: higher order and p = 2.

On p-adic precision

- Step-by-step analysis: as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : **intrinsic** and can handle both **gain** and **loss**.
- Can stabilize and attain optimal precision, even though naïve computation lose too much precision.

On differential equations

- Can attain optimal loss in precision for differential equations with separation of variables.
- Future works: higher order and p = 2.

References

Initial article

 XAVIER CARUSO, DAVID ROE AND TRISTAN VACCON Tracking p-adic precision, ANTS XI, 2014.

Linear Algebra

■ XAVIER CARUSO, DAVID ROE AND TRISTAN VACCON *p*-adic stability in linear algebra, ISSAC 2015.

Differential equations

 PIERRE LAIREZ AND TRISTAN VACCON On p-adic differential equations with separation of variables, arXiv:1602.00244.

Thank you for your attention

