Computing the Lie algebra of the differential Galois group of a linear differential system (2/2)

Thomas Dreyfus ¹ Joint work with A. Aparicio-Monforte ² and J.-A. Weil ³

¹University of Lyon, France

²Dawson College, Montreal, Canada

³University of Limoges, France

<ロト
・<一
・<三
・<三
・<三
・<三
・<三
・<三
・<1/20

Abstract

In this talk we explain how to compute the Lie algebra of the differential Galois group of some convenient ∂Y = AY, using reduced forms.

 Then, we obtain an effective way to check the Morales-Ramis-Simó criterion. **Differential Galois theory**

How to compute a reduced form?

Application: effective Morales-Ramis-Simó theorem

• Let (\mathbf{k}, ∂) be a field equipped with a derivation.

 \rightarrow Take for example $\mathbf{k} := \mathbb{C}(z)$ with classical derivation.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

- Let C := {α ∈ k|∂α = 0} and assume that C is algebraically closed.
- We consider

$$\partial Y = AY$$
, with $A \in Mat(\mathbf{k})$. (1)

Picard-Vessiot extension

$$\partial Y = AY$$
 with $A \in Mat(\mathbf{k})$. (1)

<ロト</th>
●
●
●
●
●
●
●
●
●
●
●
●
●
●
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

A Picard-Vessiot extension for (1) is a diff. field extension $K|\mathbf{k}$ such that

- There exists $U \in GL(K)$ such that $\partial U = AU$.
- $K | \mathbf{k}$ is generated by the entries of U.

•
$$\{\alpha \in K | \partial \alpha = \mathbf{0}\} = \{\alpha \in \mathbf{k} | \partial \alpha = \mathbf{0}\} = \mathbf{C}.$$

Proposition

There exists an unique Picard-Vessiot extension for (1).

Differential Galois group

Definition

The differential Galois group G of (1) is the group of field automorphisms of K, commuting with the derivation and leaving all elements of **k** invariant.

$$\begin{array}{rcl} \rho_{\boldsymbol{U}} : & \boldsymbol{G} & \longrightarrow & \operatorname{GL}(\boldsymbol{C}) \\ & \varphi & \longmapsto & \boldsymbol{U}^{-1}\varphi(\boldsymbol{U}), \end{array}$$

Theorem The image $\rho_U(G)$ is a linear algebraic group.

Gauge transformation

Let $A \in Mat(\mathbf{k})$, $P \in GL(\mathbf{k})$. We have

$$\partial Y = AY \iff \partial [PY] = P[A] PY,$$

with

$$P[A] := PAP^{-1} + \partial(P)P^{-1}.$$

<ロト

Lie algebra of a matrix

A Wei-Norman decomposition of A is a finite sum of the form

$$A=\sum a_iM_i,$$

where M_i has coefficients in C and the $a_i \in \mathbf{k}$ form a basis of the C-vector space spanned by the entries of A.

• Let Lie(A) be the Lie algebra generated by the M_i .

4

 \rightarrow Independent of the choice of the a_i .

Kolchin-Kovacic reduction theorem

Theorem (Kolchin-Kovacic reduction theorem)

Assume that **k** is a C^1 -field ¹ and **G** is connected. Let \mathfrak{g} be the Lie algebra of **G**. Let $H \supset \mathbf{G}$ be a connected linear algebraic group with Lie algebra \mathfrak{h} such that $\operatorname{Lie}(A) \subset \mathfrak{h}$. Then, there exists a gauge transformation $P \in H(\mathbf{k})$ such that $\operatorname{Lie}(P[A]) \in \mathfrak{g}$.

Definition

If $\operatorname{Lie}(A) \in \mathfrak{g}$ we will say that (1) is in reduced form.

¹Remind that C(x) is a C^1 -field and any algebraic extension of a C^1 -field is a C^1 -field.

Algorithm for reducing $\partial Y = AY$

1. Factorize (1). We may then write

$$A = \left(egin{array}{ccc} A_k & & 0 \ & \ddots & & \ & & A_2 & \ & S_k & & S_2 & A_1 \end{array}
ight)$$

2. Compute the reduced form of $\partial Y = \text{Diag}(A_k, \ldots, A_1)Y$.

→ See previous talk.

3. For ℓ from 2 to k compute the reduced form of

$$\partial \mathbf{Y} = \widetilde{\mathbf{A}_{\ell}} \mathbf{Y},$$

where $\widetilde{A_{\ell}}$ is the triangular bloc matrices with blocs $A_1, \ldots, A_k, S_2, \ldots, S_{\ell}$ as in *A* and with zeros elsewhere.

→ See what follows.

10/20

At the end, we have computed the reduced form of $\partial Y = AY!$

Our goal

Let us consider

$$\partial Y = \left(\begin{array}{c|c} A_1 & 0 \\ \hline S & A_2 \end{array} \right) Y = AY, A \in \operatorname{Mat}(\mathbf{k}).$$
 (2)

Assume that $\partial Y = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} Y = A_{\text{diag}} Y$ is in reduced form with an abelian Lie algebra. We want to put (2) in reduced form.

 \rightarrow In a work in progress with Weil, we treat the case of non abelian Lie algebra.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Shape of the gauge transformation

Let
$$A_{\text{sub}} := \left(\begin{array}{c|c} 0 & 0 \\ \hline S & 0 \end{array} \right).$$

Proposition (A-M,D,W)

There exists a gauge transformation

$$P \in \Big\{ \mathrm{Id} + B, B \in \mathrm{Lie}(A_{\mathrm{sub}}) \otimes \mathbf{k} \Big\},$$

such that $\partial Y = P[A]Y$ is in reduced form.

Corollary Let $P \in \{ \text{Id} + B, B \in \text{Lie}(A_{\text{sub}}) \otimes \mathbf{k} \}$, and assume that for all $Q \in \{ \text{Id} + B, B \in \text{Lie}(A_{\text{sub}}) \otimes \mathbf{k} \}$, Lie(Q[P[A]]) = Lie(P[A]). Then, $\partial Y = P[A]Y$ is in reduced form.

The adjoin action

Proposition (A-M,D,W)

If $P := \text{Id} + \sum f_i B_i$, with $f_i \in \mathbf{k}$, $B_i \in \text{Lie}(A_{\text{sub}})$. Then

$$P[A] = A + \sum f_i[B_i, A_{\text{diag}}] - \sum \partial(f_i)B_i$$

Remark

The fact that $\partial Y = A_{\text{diag}}Y$ has an abelian Lie algebra implies that we may easily compute a Jordan normal form of $\Psi : X \mapsto [X, A_{\text{diag}}]$. Furthermore the eigenvalues of Ψ belongs to **k**.

Let λ_i be the eigenvalues of Ψ . We have the decomposition:

$$\operatorname{Lie}(\boldsymbol{A}_{\operatorname{sub}})\otimes \boldsymbol{\mathsf{k}} = \bigoplus_{i,j} \boldsymbol{E}_{\lambda_j}^{(i)} \bigcap \operatorname{Lie}(\boldsymbol{A}_{\operatorname{sub}})\otimes \boldsymbol{\mathsf{k}},$$

where

$$m{\mathcal{E}}_{\lambda_{j}}^{(i)}:= \mathsf{ker}\left(\left(\Psi-\lambda_{j}\mathrm{Id}
ight)^{i}
ight)/\mathsf{ker}\left(\left(\Psi-\lambda_{j}\mathrm{Id}
ight)^{i-1}
ight).$$

<ロ > < 部 > < 目 > < 目 > 目 の 94/20

We are going to perform the reduction on the $E_{\lambda_i}^{(i)}$ separately.

Reduction in a very particular case

Assume that $A_{sub} = bB$, $b \in \mathbf{k}$, B constant, and $\Psi = \lambda Id$, $\lambda \in \mathbf{k}$. Then

<ロト

Reduction on one level of a characteristic space

► Fix $m \in \mathbb{N}$. Write $A_{sub} = \overline{A} + \sum_{i} b_i B_i$, where $b_i \in \mathbf{k}$, B_i form a constant basis of $E_{\lambda}^{(m)} \cap \text{Lie}(A_{sub}) \otimes \mathbf{k}$.

- ► Compute a basis $((g_j, \underline{c}_{(\bullet,j)}))$ of elements in $\mathbf{k} \times C$ such that $\partial g_j = \lambda g_j + \sum_i c_{i,j} b_i$.
- Construct a constant invertible matrix Q
 ∈ GL(C) whose first columns are the <u>c</u>(•,j). Let (γ_{i,j}) = Q⁻¹.

<ロト

• Let
$$f_i := \sum_j \gamma_{i,j} g_j$$
. Perform $P_{\lambda}^{(m)} := \mathrm{Id} + \sum_i f_i B_i$.

Reduction in general

Theorem (A-M,D,W) Let $P := \prod_{i,j} P_{\lambda_j}^{(i)}$. Then, $\partial Y = P[A]Y$ is in reduced form.

General principle of the Morales-Ramis-Simó theorem

・ロット (雪) (日) (日) (日)

18/20

 $\begin{array}{ccc} \text{Hamiltonian complex system} \\ \downarrow & \text{Linearization} \\ \text{Variational equations} \\ \downarrow \\ \text{Differential Galois groups} \end{array}$

General principle of the Morales-Ramis-Simó theorem

Integrable Hamiltonian complex system ↓ Linearization Variational equations ↓
Differential Galois groups with abelian Lie algebra

Theorem (Morales-Ramis-Simó)

Let us consider an Hamiltonian system and let G_p be the differential Galois group of the variational equation of order p. If the Hamiltonian system is integrable, then for all p, the Lie algebra of G_p is abelian.

<ロト

18/20

Shape of the variational equations

Let $\partial Y = A_p Y$ be the variational equation of order *p*. We have

<ロ > < @ > < E > < E > E ? 19/20

Reduction of $\partial Y = A_{p+1}Y$

- ▶ Let $p \in \mathbb{N}$. Assume that $\partial Y = A_p Y$ is in reduced form and G_p has an abelian Lie algebra.
- ► We use our previous work to put ∂Y = A_{p+1}Y in reduced form.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

► If G_{p+1} has an abelian Lie algebra, we may put $\partial Y = A_{p+2}Y$ in reduced form.