Computing the Lie algebra of the differential Galois group of a linear differential system (2/2)

Thomas Dreyfus ${ }^{1}$
Joint work with A. Aparicio-Monforte ${ }^{2}$ and J.-A. Weil ${ }^{3}$
${ }^{1}$ University of Lyon, France
${ }^{2}$ Dawson College, Montreal, Canada
${ }^{3}$ University of Limoges, France

Abstract

- In this talk we explain how to compute the Lie algebra of the differential Galois group of some convenient $\partial Y=A Y$, using reduced forms.
- Then, we obtain an effective way to check the Morales-Ramis-Simó criterion.

Differential Galois theory

How to compute a reduced form?

Application: effective Morales-Ramis-Simó theorem

- Let (\mathbf{k}, ∂) be a field equipped with a derivation.
\rightarrow Take for example $\mathbf{k}:=\mathbb{C}(z)$ with classical derivation.
- Let $C:=\{\alpha \in \mathbf{k} \mid \partial \alpha=0\}$ and assume that C is algebraically closed.
- We consider

$$
\begin{equation*}
\partial Y=A Y, \text { with } A \in \operatorname{Mat}(\mathbf{k}) \tag{1}
\end{equation*}
$$

Picard-Vessiot extension

$$
\begin{equation*}
\partial Y=A Y \text { with } A \in \operatorname{Mat}(\mathbf{k}) \tag{1}
\end{equation*}
$$

A Picard-Vessiot extension for (1) is a diff. field extension $K \mid \mathbf{k}$ such that

- There exists $U \in \mathrm{GL}(K)$ such that $\partial U=A U$.
- $K \mid \mathbf{k}$ is generated by the entries of U.
- $\{\alpha \in K \mid \partial \alpha=0\}=\{\alpha \in \mathbf{k} \mid \partial \alpha=0\}=\boldsymbol{C}$.

Proposition

There exists an unique Picard-Vessiot extension for (1).

Differential Galois group

Definition

The differential Galois group G of (1) is the group of field automorphisms of K, commuting with the derivation and leaving all elements of \mathbf{k} invariant.

$$
\begin{aligned}
& \rho_{U}: G \longrightarrow \\
& \varphi \longmapsto \\
& \longmapsto U^{-1}(C) \\
& \varphi(U)
\end{aligned}
$$

Theorem
The image $\rho_{U}(G)$ is a linear algebraic group.

Gauge transformation

Let $A \in \operatorname{Mat}(\mathbf{k}), P \in \operatorname{GL}(\mathbf{k})$. We have

$$
\partial Y=A Y \Longleftrightarrow \partial[P Y]=P[A] P Y
$$

with

$$
P[A]:=P A P^{-1}+\partial(P) P^{-1}
$$

Lie algebra of a matrix

- A Wei-Norman decomposition of A is a finite sum of the form

$$
A=\sum a_{i} M_{i}
$$

where M_{i} has coefficients in C and the $a_{i} \in \mathbf{k}$ form a basis of the C-vector space spanned by the entries of A.

- Let $\operatorname{Lie}(A)$ be the Lie algebra generated by the M_{i}.
\rightarrow Independent of the choice of the a_{i}.

Kolchin-Kovacic reduction theorem

> Theorem (Kolchin-Kovacic reduction theorem)
> Assume that \mathbf{k} is a \mathcal{C}^{1}-field ${ }^{1}$ and G is connected. Let \mathfrak{g} be the Lie algebra of G. Let $H \supset G$ be a connected linear algebraic group with Lie algebra \mathfrak{h} such that $\operatorname{Lie}(A) \subset \mathfrak{h}$. Then, there exists a gauge transformation $P \in H(\mathbf{k})$ such that $\operatorname{Lie}(P[A]) \in \mathfrak{g}$.

> Definition
> If $\operatorname{Lie}(A) \in \mathfrak{g}$ we will say that (1) is in reduced form.

${ }^{1}$ Remind that $C(x)$ is a \mathcal{C}^{1}-field and any algebraic extension of a \mathcal{C}^{1}-field is a \mathcal{C}^{1}-field.

Algorithm for reducing $\partial Y=A Y$

1. Factorize (1). We may then write

$$
A=\left(\begin{array}{cccc}
A_{k} & & & 0 \\
& \ddots & & \\
& & A_{2} & \\
S_{k} & & S_{2} & A_{1}
\end{array}\right)
$$

2. Compute the reduced form of $\partial Y=\operatorname{Diag}\left(A_{k}, \ldots, A_{1}\right) Y$.
3. For ℓ from 2 to k compute the reduced form of

$$
\partial Y=\widetilde{A_{\ell}} Y
$$

where $\widetilde{A_{\ell}}$ is the triangular bloc matrices with blocs $A_{1}, \ldots, A_{k}, S_{2}, \ldots, S_{\ell}$ as in A and with zeros elsewhere.
\rightarrow See what follows.
At the end, we have computed the reduced form of $\partial Y=A Y!$

Our goal

Let us consider

$$
\partial Y=\left(\begin{array}{c|c}
A_{1} & 0 \tag{2}\\
\hline S & A_{2}
\end{array}\right) Y=A Y, A \in \operatorname{Mat}(\mathbf{k})
$$

Assume that $\partial Y=\left(\begin{array}{c|c}A_{1} & 0 \\ \hline 0 & A_{2}\end{array}\right) Y=A_{\text {diag }} Y$ is in reduced form with an abelian Lie algebra. We want to put (2) in reduced form.
\rightarrow In a work in progress with Weil, we treat the case of non abelian Lie algebra.

Shape of the gauge transformation

Let $A_{\text {sub }}:=\left(\begin{array}{l|l}0 & 0 \\ \hline S & 0\end{array}\right)$.
Proposition (A-M,D,W)
There exists a gauge transformation

$$
P \in\left\{\operatorname{Id}+B, B \in \operatorname{Lie}\left(A_{\text {sub }}\right) \otimes \mathbf{k}\right\},
$$

such that $\partial Y=P[A] Y$ is in reduced form.
Corollary
Let $P \in\left\{\operatorname{Id}+B, B \in \operatorname{Lie}\left(A_{\text {sub }}\right) \otimes \mathbf{k}\right\}$, and assume that for all
$Q \in\left\{\operatorname{Id}+B, B \in \operatorname{Lie}\left(A_{\text {sub }}\right) \otimes \mathbf{k}\right\}, \operatorname{Lie}(Q[P[A]])=\operatorname{Lie}(P[A])$.
Then, $\partial Y=P[A] Y$ is in reduced form.

The adjoin action

Proposition (A-M,D,W)

$$
\text { If } P:=\operatorname{Id}+\sum f_{i} B_{i} \text {, with } f_{i} \in \mathbf{k}, B_{i} \in \operatorname{Lie}\left(A_{\text {sub }}\right) \text {. Then }
$$

$$
P[A]=A+\sum f_{i}\left[B_{i}, A_{\text {diag }}\right]-\sum \partial\left(f_{i}\right) B_{i} .
$$

Remark

The fact that $\partial Y=A_{\text {diag }} Y$ has an abelian Lie algebra implies that we may easily compute a Jordan normal form of $\Psi: X \mapsto\left[X, A_{\text {diag }}\right]$. Furthermore the eigenvalues of Ψ belongs to \mathbf{k}.

Let λ_{j} be the eigenvalues of Ψ. We have the decomposition:

$$
\operatorname{Lie}\left(A_{\text {sub }}\right) \otimes \mathbf{k}=\bigoplus_{i, j} E_{\lambda_{j}}^{(i)} \bigcap \operatorname{Lie}\left(A_{\text {sub }}\right) \otimes \mathbf{k}
$$

where

$$
E_{\lambda_{j}}^{(i)}:=\operatorname{ker}\left(\left(\Psi-\lambda_{j} \mathrm{Id}\right)^{i}\right) / \operatorname{ker}\left(\left(\Psi-\lambda_{j} \mathrm{Id}\right)^{i-1}\right)
$$

We are going to perform the reduction on the $E_{\lambda_{j}}^{(i)}$ separately.

Reduction in a very particular case

Assume that $A_{\text {sub }}=b B, b \in \mathbf{k}, B$ constant, and $\Psi=\lambda \mathrm{Id}, \lambda \in \mathbf{k}$. Then

$$
\begin{aligned}
& \mathfrak{g}=\{0\} \\
& \text { I } \\
& \exists f \in \mathbf{k}, \text { s.t. Lie }((\operatorname{Id}+f B)[A])=\{0\} \\
& \text { § } \\
& \partial f=\lambda f+b .
\end{aligned}
$$

Reduction on one level of a characteristic space

- Fix $m \in \mathbb{N}$. Write $A_{\text {sub }}=\bar{A}+\sum_{i} b_{i} B_{i}$, where $b_{i} \in \mathbf{k}, B_{i}$ form a constant basis of $E_{\lambda}^{(m)} \cap \operatorname{Lie}\left(A_{\text {sub }}\right) \otimes \mathbf{k}$.
- Compute a basis $\left(\left(g_{j}, \underline{c}_{(\bullet, j)}\right)\right)$ of elements in $\mathbf{k} \times C$ such that $\partial g_{j}=\lambda g_{j}+\sum_{i} c_{i, j} b_{i}$.
- Construct a constant invertible matrix $\bar{Q} \in \mathrm{GL}(C)$ whose first columns are the $\underline{c}_{(\bullet, j)}$. Let $\left(\gamma_{i, j}\right)=\bar{Q}^{-1}$.
- Let $f_{i}:=\sum_{j} \gamma_{i, j} g_{j}$. Perform $P_{\lambda}^{(m)}:=\mathrm{Id}+\sum_{i} f_{i} B_{i}$.

Reduction in general

Theorem (A-M,D,W)
Let $P:=\prod_{i, j} P_{\lambda_{j}}^{(i)}$. Then, $\partial Y=P[A] Y$ is in reduced form.

General principle of the Morales-Ramis-Simó theorem

Hamiltonian complex system
$\stackrel{\downarrow}{\downarrow}$ Variational equations
\downarrow
Differential Galois groups

General principle of the Morales-Ramis-Simó theorem

Integrable Hamiltonian complex system

Theorem (Morales-Ramis-Simó)
Let us consider an Hamiltonian system and let G_{p} be the differential Galois group of the variational equation of order p. If the Hamiltonian system is integrable, then for all p, the Lie algebra of G_{p} is abelian.

Shape of the variational equations

Let $\partial Y=A_{p} Y$ be the variational equation of order p. We have

$$
A_{p}:=\left(\begin{array}{c|c}
\operatorname{sym}^{p}\left(A_{1}\right) & 0 \\
\hline S_{p} & A_{p-1}
\end{array}\right) \in \operatorname{Mat}(\mathbb{C}(x))
$$

Reduction of $\partial Y=A_{p+1} Y$

- Let $p \in \mathbb{N}$. Assume that $\partial Y=A_{p} Y$ is in reduced form and G_{p} has an abelian Lie algebra.
- We use our previous work to put $\partial Y=A_{p+1} Y$ in reduced form.
- If G_{p+1} has an abelian Lie algebra, we may put $\partial Y=A_{p+2} Y$ in reduced form.

