Computing the Lie algebra of the differential Galois group of a linear differential system (1/2)

Thomas Cluzeau

University of Limoges ; CNRS; XLIM (France)

In collaboration with M. Barkatou, J.-A. Weil and L. Di Vizio (CNRS, UVSQ)

Functional Equations in LIMoges 2016

Motivation

$\diamond k=\mathbb{C}(z)$ (for actual computations \mathbb{C} is replaced by a computable subfield of $\overline{\mathbb{Q}}), A \in \mathbb{M}_{n}(k)$, y vector of unknown functions, ${ }^{\prime}=\frac{d}{d z}$

$$
\text { Linear differential system }[A]: \mathbf{y}^{\prime}=A \mathbf{y}
$$

\diamond Important object for studying $[A]$: its differential Galois group G
$\rightarrow G$ measures everything that algebra can see about the solutions
\diamond Direct problem in diff. Galois theory: given [A], compute G

- Many theoretical algorithms: Compoint-Singer'99, Hrushovski'02 and Feng'15, van der Put-Singer'03, van der Hoeven'07
- None of them are either practical or implemented

Objective

Philosophy of our work (see also Nguyen-van der Put'10)

\rightarrow For a large class of problems, computing the Lie algebra \mathfrak{g} of the linear algebraic group G is enough
\diamond For the computation of \mathfrak{g}, not much is known (Aparicio's PhD thesis'10, Aparicio-Compoint-Weil'13)

$$
\text { Goal of this talk AND the next one by } \mathrm{T} \text {. Dreyfus }
$$

Provide a full algorithm for computing the Lie algebra \mathfrak{g} of G

- This talk (1/2): irreducible and completely reducible systems
- Next talk (2/2): reducible systems

I

Differential systems/modules/Galois group and Lie algebra

Differential modules

\diamond A differential module \mathcal{M} over k is a finite dimensional vector space over k equipped with an additive $\operatorname{map} \partial: \mathcal{M} \rightarrow \mathcal{M}$ s.t.
$\forall f \in k, \forall m \in \mathcal{M}, \partial(f m)=f^{\prime} m+f \partial(m)$
A differential submodule of \mathcal{M} is then a sub-vector space of \mathcal{M} which is stable under the action of ∂
\diamond A differential module \mathcal{M} is

- irreducible if it has no non-trivial differential submodule
- absolutely irreducible if $\bar{k} \otimes_{k} \mathcal{M}$ is irreducible
- decomposable if $\mathcal{M}=\mathcal{M}_{1} \oplus \mathcal{M}_{2}$
- completely reducible if it is a direct sum of irreducible modules
\diamond Krull-Schmidt: $\mathcal{M}=\mathcal{M}_{1} \oplus \mathcal{M}_{2} \oplus \cdots \oplus \mathcal{M}_{r}$, with \mathcal{M}_{i} indecomposable. It is called a maximal decomposition of \mathcal{M} ($\mathbf{R} \mathbf{k}$: if \mathcal{M} is completely reducible, then the \mathcal{M}_{i} are irreducible)

Differential module \leftrightarrow Differential system

\diamond Via a choice of basis, a differential module \mathcal{M} is associated with a linear differential system $[A]$ and vice versa
\diamond Change of basis in $\mathcal{M} \leftrightarrow$ gauge transfo. $P \in \mathrm{GL}_{n}(k)$ in $[A]$ leading to equivalent system $[P[A]]$ with $P[A] \triangleq P^{-1}\left(A P-P^{\prime}\right)$
$\rightarrow \mathcal{M}$ reducible: $\exists P, P[A]=\left(\begin{array}{cc}A_{11} & 0 \\ A_{21} & A_{22}\end{array}\right)$ block triangular
$\rightarrow \mathcal{M}$ decomposable: $\exists P, P[A]=\left(\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right)$ block diagonal
$\diamond \mathcal{M}=\mathcal{M}_{1} \oplus \cdots \oplus \mathcal{M}_{r} \leftrightarrow \exists P, P[A]=\left(\begin{array}{llll}A_{1} & & & \\ & A_{2} & & \\ & & \ddots & \\ & & & A_{r}\end{array}\right)$
Maximal dec. $\leftrightarrow\left[A_{i}\right]$ indec. ($\mathbf{R} \mathbf{k}$: irred. if \mathcal{M} is completely red.)

The differential module $\mathcal{M} \otimes_{k} \mathcal{M}^{\star}$

$\diamond \mathcal{M}$ differential module, $[A]$ associated differential system
\diamond Its dual $\mathcal{M}^{\star} \triangleq \operatorname{Hom}_{k}\left(\mathcal{M}, \mathbb{1}_{k}\right)$ is associated with $\left[-A^{T}\right]$
\diamond Consider $\mathcal{M} \otimes_{k} \mathcal{M}^{\star}$: elements viewed in $\mathbb{M}_{n}(k)$
$\rightarrow \mathcal{M} \otimes_{k} \mathcal{M}^{\star}$ is associated with the matrix differential system

$$
F^{\prime}=[A, F] \triangleq A F-F A
$$

Using the classical Kronecker product of matrices:

$$
F^{\prime}=[A, F] \Longleftrightarrow \operatorname{Vect}(F)^{\prime}=\left(A \otimes I_{n}-I_{n} \otimes A^{T}\right) \operatorname{Vect}(F)
$$

with $\operatorname{Vect}(F)=\left(F_{1 \bullet}^{T} \ldots F_{n \bullet}^{T}\right)^{T} \in k^{n^{2}}$ and $F_{i \bullet}$ the i-th row of F
$\diamond \mathcal{M}$ completely reducible $\Rightarrow \mathcal{M} \otimes_{k} \mathcal{M}^{\star}$ is completely reducible

The differential Galois group

$\diamond \mathcal{M}$ differential module associated with a differential system $[A]$
$\diamond K$ Picard-Vessiot extension for \mathcal{M} : diff. field ext. of k
$\rightarrow[A]$ admits a fundamental matrix of solutions $U \in \mathrm{GL}_{n}(K)$
\diamond The differential Galois group G of \mathcal{M} is the group $\operatorname{Aut}_{\partial}(K / k)$ of differential k-algebra automorphisms of K :
$\forall g \in G, \forall f \in K, \quad g\left(f^{\prime}\right)=g(f)^{\prime}, \quad f \in k \Rightarrow g(f)=f$
$\diamond G$ viewed as a subgroup of $\mathrm{GL}_{n}(\mathbb{C})$ is a linear algebraic group:
There exists a polynomial ideal $\mathcal{I} \subset \mathbb{C}\left[X_{1,1}, X_{1,2}, \ldots, X_{n, n}, \operatorname{det}^{-1}\right]$, where det^{-1} is the inverse of $\operatorname{det}\left(\left(X_{i, j}\right)_{i, j}\right)$, such that

$$
G \cong\left\{M=\left(m_{i, j}\right)_{i, j} \in \mathrm{GL}_{n}(\mathbb{C}) \mid \forall P \in \mathcal{I}, P\left(m_{i, j}\right)=0\right\}
$$

The Lie algebra \mathfrak{g} of G

\diamond The Lie algebra \mathfrak{g} of G is the tangent space of G at the point id $\in G: \mathfrak{g}$ can be represented as a Lie sub-algebra of $\mathfrak{g l}_{n}(\mathbb{C})$

$$
\mathfrak{g} \cong\left\{N \in \mathbb{M}_{n}(\mathbb{C}) \mid I_{n}+\epsilon N \in G(\mathbb{C}[\epsilon]) \text { with } \epsilon \neq 0 \text { and } \epsilon^{2}=0\right\}
$$

where $G(\mathbb{C}[\epsilon])$ set of $\mathbb{C}[\epsilon]$-points of G
\diamond Adjoint action of G on $\mathfrak{g}: G \times \mathfrak{g} \rightarrow \mathfrak{g},(g, h) \mapsto g h g^{-1}$
$\diamond V \triangleq \mathbb{C}$-vector space of solutions of $[A]$ in $K^{n}, \operatorname{End}(V)$ endowed with a Lie algebra structure $\mathfrak{g l}(V)$ identified with $\mathfrak{g l}_{n}(\mathbb{C})$ \Rightarrow We have a representation of \mathfrak{g} in $\operatorname{End}(V)$
$\diamond U \operatorname{sing} \operatorname{End}(V) \cong V \otimes V^{\star}, \mathfrak{g}$ can then be viewed as a sub-vector space of $V \otimes V^{\star}$ stable under the adjoint action of G

Tannakian correspondence and characterization of \mathfrak{g}

\diamond Tannakian correspondence: 1-1 correspondence (compatible with all constructions of linear algebra) between sub-vector spaces of V stable under the action of G and differential submodules of \mathcal{M}
\rightarrow The representation of \mathfrak{g} in $\operatorname{End}(V)$ corresponds to the differential submodule $\mathfrak{g}^{s} \triangleq\left(K \otimes_{\mathbb{C}} \mathfrak{g}\right)^{G}$ of $\mathcal{M} \otimes_{k} \mathcal{M}^{*}$
($\mathbf{R k}: \mathfrak{g}^{s}$ is the Lie algebra considered by Katz in his works)
$\rightarrow \mathfrak{g}^{\boldsymbol{s}}$ (and thus \mathfrak{g}) can be investigated by studying differential submodules of $\mathcal{M} \otimes_{k} \mathcal{M}^{*}$ which can all be obtained from a maximal decomposition if \mathcal{M} is completely reducible

Sketch of our algorithm

1. Compute a maximal decomposition of $\mathcal{M} \otimes_{k} \mathcal{M}^{\star}$ (tools: eigenring techniques \& use specific structure)
2. Find a candidate for \mathfrak{g}^{s}
(tools: modular approach based on Grothendieck-Katz p-curvature conjecture)
3. Validation of the candidate (tools: reduced form \& conjugation between Lie algebras)
\diamond For the ease of presentation, in the following, we assume $\mathcal{M} /[A]$ absolutely irreducible (it can be checked: Compoint-Weil'04)
\rightarrow Completely reducible case quite similar (only small modif.)
\rightarrow Reducible case: see next talk by T. Dreyfus

II

Maximal decomposition of $\mathcal{M} \otimes_{k} \mathcal{M}^{\star}$

Maximal decomposition: general method

Problem: given $[\mathrm{A}]$, find $P \in \mathrm{GL}_{n}(k)$ s.t. $P[A]$ block diagonal
\diamond Already studied in computer algebra: Singer'96, Barkatou'07
\rightarrow Compute the eigenring (rational solutions - Barkatou'99)

$$
\mathcal{E}(A) \triangleq\left\{F \in \mathbb{M}_{n}(k) \mid F^{\prime}=[A, F]=A F-F A\right\}
$$

\diamond If $F \in \mathcal{E}(A), P^{-1} F P=\operatorname{diag}\left(F_{1}, \ldots, F_{r}\right)\left(F_{i}\right.$ constant matrices with distinct eigenvalues), then $P[A]=\operatorname{diag}\left(A_{1}, \ldots, A_{r}\right)$
\diamond This corresponds to $\mathcal{M}=\mathcal{M}_{1} \oplus \cdots \oplus \mathcal{M}_{r}$, where the bases of the submodules \mathcal{M}_{i} are given by the columns of P
\diamond Maximal dec. given by a random element of $\mathcal{E}(A)$ (Barkatou'07)

Maximal decomposition of $\mathcal{M} \otimes \mathcal{M}^{\star}$: specific methods (1)

\diamond We can apply the previous method to $\mathcal{A} \triangleq A \otimes I_{n}-I_{n} \otimes A^{T}$
\rightarrow Computing $\mathcal{E}(\mathcal{A})$: rational solutions of $\mathcal{A} \otimes I_{n^{2}}-I_{n^{2}} \otimes \mathcal{A}^{T}$ of size n^{4} ! BarkatouCluzeauEIBachaWeil' $12 \rightarrow O\left(n^{20}\right)$ arithm. op.
\rightarrow We should take into account the specific form of \mathcal{A}
\diamond Problem: compute rational solutions of $\overline{\mathcal{A}} \triangleq \mathcal{A} \otimes I_{n^{2}}-I_{n^{2}} \otimes \mathcal{A}^{T}$
\diamond First approach: algorithm in Barkatou'99 proceeds in two steps:

1. Local data at each singularity \rightarrow universal denominator
2. Polynomial solutions of an auxiliary system

Adapt ideas of BarkatouPfluegel' $98 \Rightarrow$ local datas needed for rational solutions of $\overline{\mathcal{A}}\left(\right.$ size $\left.n^{4}\right)$ can be computed from $[A]$ (size n)
($\mathbf{R k}$: the second step can also be accelerated)

Maximal decomposition of $\mathcal{M} \otimes \mathcal{M}^{\star}$: specific methods (2)
\diamond Second approach: use structural decompositions
$[\overline{\mathcal{A}}]$ associated with $\operatorname{End}(\operatorname{End}(\mathcal{M})) \triangleq\left(\mathcal{M} \otimes \mathcal{M}^{\star}\right) \otimes\left(\mathcal{M} \otimes \mathcal{M}^{\star}\right)^{\star}$
\rightarrow Decompose $\operatorname{End}(\operatorname{End}(\mathcal{M}))$ and rational sol. of smaller systems
Theorem 1 (BCdVW'16): we have $\mathcal{M} \otimes \mathcal{M}^{\star}=\mathbb{1}_{k} \oplus \mathcal{W}$ and the explicit iso.

$$
\operatorname{End}(\operatorname{End}(\mathcal{M})) \cong \underbrace{\mathbb{1}_{k} \oplus \mathcal{W} \oplus \operatorname{Sym}^{2}(\mathcal{W})}_{\operatorname{Sym}^{2}\left(\mathbb{1}_{k} \oplus \mathcal{W}\right)} \oplus \underbrace{\mathcal{W} \oplus \Lambda^{2}(\mathcal{W})}_{\Lambda^{2}\left(\mathbb{1}_{k} \oplus \mathcal{W}\right)}
$$

Theorem 2 (BCdVW'16): we have the explicit iso.
$\operatorname{End}(\operatorname{End}(\mathcal{M})) \cong \underbrace{\mathbb{1}_{k} \oplus \mathcal{N}_{\mathrm{S}^{2}}}_{\operatorname{End}\left(\mathrm{S}^{2}\right)} \oplus \underbrace{\mathbb{1}_{k} \oplus \mathcal{N}_{\Lambda^{2}}}_{\operatorname{End}\left(\Lambda^{2}\right)} \oplus \operatorname{Hom}\left(\mathrm{S}^{2}, \Lambda^{2}\right) \oplus \operatorname{Hom}\left(\Lambda^{2}, S^{2}\right)$
\rightarrow Rational solutions of systems of smaller size still having specific structures ($\mathrm{Sym}^{2}, \Lambda^{2}$, Hom) that can be used for rational solutions (AparicioBarkatouSimonWeil'11, BarkatouPfluegel'98)

III

Candidate for \mathfrak{g}^{5}

Candidate for \mathfrak{g}^{s} : reduction modulo p

Problem: In the max. dec. $\mathcal{M} \otimes_{k} \mathcal{M}^{\star}=\bigoplus_{i=1}^{r} \mathcal{W}_{i}$, find \mathfrak{g}^{s}
\rightarrow Idea: use a modular approach to find a candidate for \mathfrak{g}^{s}
\diamond Crucial object for studying diff. systems $\left[A_{p}\right] / \operatorname{modules}\left(\mathcal{M}_{p}, \partial\right)$ in characteristic $p>0$: the p-curvature $\chi_{p} \triangleq \partial^{p}$ acting on \mathcal{M}_{p} \diamond In terms of matrices: χ_{p} is given by the p th iterate of the sequence $\chi_{1}=A_{p}$ and, for $i>1, \chi_{i+1}=\chi_{i}^{\prime}-A_{p} \chi_{i}$
\rightarrow Algorithms: Katz'82, van der Put'95-96, Cluzeau'03 and recently BostanCarusoSchost'15 for a fast algorithm

Grothendieck-Katz p-curvature conjecture: The Lie algebra \mathfrak{g}^{s} is the smallest (algebraic) Lie sub-algebra of $\mathfrak{g l}_{n}(k)$ whose reduction modulo p contains the p-curvature χ_{p} for almost all p.

Candidate for \mathfrak{g}^{s} : algorithm ModularSelection

$\diamond \mathcal{M} \otimes_{k} \mathcal{M}^{\star}=\bigoplus_{i=1}^{r} \mathcal{W}_{i}$ given by gauge transfo. $T \in \mathrm{GL}_{n^{2}}(k)$ (the columns $T_{\bullet j}$ of T provide bases of the submodules \mathcal{W}_{i})

1. Choose a prime $p \rightarrow \bigoplus_{i=1}^{r} \mathcal{W}_{i, p}$ given by $T_{p}=T \bmod p$;
2. Compute the p-curvature χ_{p} of $\left[A_{p}\right]$;
3. Compute $V=T_{p}^{-1} \operatorname{Vect}\left(\chi_{p}\right)$;
4. From the non-zero entries of V, deduce a basis of the submodule of $\bigoplus_{i=1}^{r} \mathcal{W}_{i}$ whose reduction mod p contains χ_{p}.
\diamond From G-K conjecture, the submodule found can be used as a reasonable guess for \mathfrak{g}^{5}
\diamond Remark: this may select a bigger or smaller submodule
\rightarrow we need to check whether our guess is correct or not

Validation of the candidate

Reduced form of a linear differential system

\diamond Definition: $[A]$ in reduced form if $A \in \bar{k} \otimes \mathfrak{g}$.
$\rightarrow \mathfrak{g}$ viewed as a \mathbb{C}-vector space generated by $N_{1}, \ldots, N_{d} \in \mathbb{M}_{n}(\mathbb{C})$
\rightarrow reduced form iff $\exists f_{1}, \ldots, f_{d} \in \bar{k}$ s.t. $A=f_{1} N_{1}+\cdots+f_{d} N_{d}$
Theorem (Kolchin-Kovacic): There exists a reduction matrix $P \in \mathrm{GL}_{n}(\bar{k})$ such that $[P[A]]$ is in reduced form.
\diamond Reduced forms \Rightarrow invariants (\approx rational sol. of "constructions") have constant coefficients in \mathbb{C} : Aparicio-Compoint-Weil'13

Theorem (Aparicio-Compoint-Weil'13): For all ordinary point $z_{0} \in \mathbb{C}$ of $[A]$, there exists a reduction matrix $P \in \mathrm{GL}_{n}(\bar{k})$ for $[A]$ that sends every invariant \mathbf{f} of $[A]$ to its evaluation at z_{0}.

A Lie algebra conjugation problem

\diamond Definition: Two Lie sub-algebras $\mathfrak{g}_{1}, \mathfrak{g}_{2} \subset \mathfrak{g l}_{n}(k)$ are conjugated if \exists a conjugation matrix $P \in \mathrm{GL}_{n}(\bar{k})$ s.t. $\mathfrak{g}_{2}=P^{-1} \mathfrak{g}_{1} P$.

Theorem (BCdVW'16):

- $M_{i}(i=1, \ldots, d)$ basis of candidate Lie algebra \mathfrak{g}^{s},
- z_{0} ordinary point of $[A]$,
- \mathfrak{g}^{t} Lie sub-algebra of $\mathfrak{g l} l_{n}(\mathbb{C})$ with basis $M_{i}\left(z_{0}\right)(i=1, \ldots, d)$.

Then, there exists a reduction matrix $P \in \mathrm{GL}_{n}(\bar{k})$ for $[A]$ that is a conjugation matrix between the Lie algebra \mathfrak{g}^{s} and \mathfrak{g}^{t}.
\rightarrow A reduction matrix can be found among the conjugation matrices between \mathfrak{g}^{t} and \mathfrak{g}^{s}

Semi-simple Lie algebras

$\diamond \mathcal{M}$ absolutely irreducible $\Rightarrow \mathfrak{g}^{t}$ and \mathfrak{g}^{s} semi-simple Lie algebras
\diamond Central objects in the study of a semi-simple Lie algebra \mathfrak{g} : set of canonical generators (and Chevalley bases)
\rightarrow Matrices $H_{1}, \ldots, H_{r}, X_{1}, \ldots, X_{r}, Y_{1}, \ldots, Y_{r}$ which satisfies:
$\left[H_{i}, H_{j}\right]=0,\left[X_{i}, Y_{j}\right]=\delta_{i, j} H_{i},\left[H_{i}, X_{j}\right]=c_{j, i} X_{j},\left[H_{i}, Y_{j}\right]=-c_{j, i} Y_{j}$

- This is associated with a root space decomposition of \mathfrak{g}
- H_{1}, \ldots, H_{r} are generators of a Cartan sub-algebra of \mathfrak{g}
- $C=\left(c_{i, j}\right)_{1 \leq i, j \leq r}$ is a Cartan matrix of $\mathfrak{g}\left(c_{i, i}=2\right)$
\rightarrow Algorithms for computing set of canonical generators and
Chevalley bases: deGraaf'00

Algorithm ConjugationMatrices

Input: $\left\{M_{i}\right\}_{i}$ basis of $\mathfrak{g}^{s},\left\{M_{i}\left(z_{0}\right)\right\}$ basis of \mathfrak{g}^{t}
Ouput: Conjugation matrices P between \mathfrak{g}^{t} and \mathfrak{g}^{s}

1. Compute a set of canonical generators $\left\{H_{i}^{t}, X_{i}^{t}, Y_{i}^{t}\right\}$ of \mathfrak{g}^{t};
2. Compute generators \tilde{H}_{i}^{s} of a "split" Cartan sub-algebra \mathfrak{h}^{5} of \mathfrak{g}^{s} s.t. $\chi\left(\tilde{H}_{i}^{s}\right)=\chi\left(H_{i}^{t}\right)$ (ansatz \rightarrow solving algebraic equations)
3. Compute a set of canonical generators $\left\{H_{i}^{s}, X_{i}^{s}, Y_{i}^{s}\right\}$ of \mathfrak{g}^{s} having the same Cartan matrix as $\left\{H_{i}^{t}, X_{i}^{t}, Y_{i}^{t}\right\}$;
4. Compute the matrices $P \in \mathrm{GL}_{n}(\bar{k})$ such that $\forall i, P X_{i}^{t}=X_{i}^{s} P$ and $P Y_{i}^{t}=Y_{i}^{s} P$ (overdetermined linear system).

Theorem (BCdVW'16): If our choice for \mathfrak{g}^{s} is correct, then output of the form $P=c \tilde{P}$, with $\tilde{P} \in \mathrm{GL}_{n}(\bar{k}), c$ arbitrary element of \bar{k}

Algorithm ReductionMatrix

\diamond Let $P=c \tilde{P}$ and $\left(N_{i}^{t}\right)_{i=1, \ldots, d}$ be a Chevalley basis of \mathfrak{g}^{t}
$\diamond \exists f_{i} \in \bar{k}$ such that $P[A]=\sum_{i=1}^{d} f_{i} N_{i}^{t}$ implies:

$$
\begin{gather*}
\tilde{P}^{-1} A \tilde{P}-\frac{c^{\prime}}{c} I_{n}-\tilde{P}^{-1} \tilde{P}^{\prime}=\sum_{i=1}^{d} f_{i} N_{i}^{t} \tag{1}\\
\frac{c^{\prime}}{c}=\frac{1}{n}\left(\operatorname{Tr}(A)-\frac{\operatorname{det}(\tilde{P})^{\prime}}{\operatorname{det}(\tilde{P})}-\sum_{i=1}^{d} f_{i} \operatorname{Tr}\left(N_{i}^{t}\right)\right) \tag{2}
\end{gather*}
$$

1. Plug (2) into (1) and solve the linear system for the $f_{i} \in \bar{k}$. If the system has no solution, then Return "Fail".
2. Plug the solution found into (2) and solve the scalar order one linear differential equation for c. If algebraic solution, then Return $P=c \tilde{P}$, Else Return "Fail".

IV
Full algorithm and example

Full algorithm and remarks

1. Compute a maximal decomposition of $\mathcal{M} \otimes \mathcal{M}^{\star}$;
2. Apply ModularSelection to get a candidate for \mathfrak{g}^{s};
3. Apply ConjugationMatrices; If it fails, go back to Step 2 and choose another prime p
4. Compute a Chevalley basis $\left(N_{i}^{t}\right)_{i}$ of \mathfrak{g}^{t};
5. Apply ReductionMatrix.

If it fails, go back to Step 2 and choose another prime p, Else Return $\left(N_{i}^{t}\right)_{i}$.
\diamond Remarks on the successive choices of p :

- There may exist an infinite number of "bad" primes: good strategy for choosing prime numbers \rightsquigarrow deterministic algo.
- if $\mathcal{W}_{1}, \mathcal{W}_{2}$ are proved not correct: try $\mathcal{W}_{1}+\mathcal{W}_{2}$ before new p
- If candidate decomposable: check each submodule

Remark on complexity / Implementation

\diamond Arithmetic complexity polynomial in n except algebraic systems solved in ConjugationMatrices
\rightarrow Significant diff. compared to the exponential (several levels) complexity obtained in Feng'15 for computing the Galois group
\diamond We have a prototype Maple implementation
\diamond We manage to apply it to many examples up to order $n=7$
\diamond In practice, the most costly step is the dec. of $\mathcal{M} \otimes \mathcal{M}^{\star}$

Example (1)

\diamond Consider the system given by

$$
A:=\left[\begin{array}{ccc}
\frac{x-1}{x} & x & -1 \\
-x^{3}+1 & 0 & -1 \\
\frac{x-1}{x}+x^{2} & x+1 & -1
\end{array}\right]
$$

$\diamond \mathcal{M} \otimes \mathcal{M}^{\star}=\mathbb{1}_{k} \oplus \mathcal{W}_{1} \oplus \mathcal{W}_{2}$, with $\mathcal{W}_{1}, \mathcal{W}_{2}$ of resp. dim. 3 and 5
$\diamond p$-curvature \rightarrow candidate for \mathfrak{g}^{s} is \mathcal{W}_{1} irred with basis

$$
M_{1}=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 0 & 0 \\
-x^{2}-1 & 0 & 1
\end{array}\right], M_{2}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-x^{2} & 0 & 0 \\
0 & 1 & 0
\end{array}\right], M_{3}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-x^{2}-1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Example (2)

$\diamond x_{0}=1$ ordinary point for $[A]$: set of canonical gen. of \mathfrak{g}^{t} :

$$
H^{t}=\left[\begin{array}{ccc}
2 i & 0 & -2 i \\
0 & 0 & 0 \\
4 i & 0 & -2 i
\end{array}\right], X^{t}=\left[\begin{array}{ccc}
0 & -i & 0 \\
1+i & 0 & -1 \\
0 & 1-i & 0
\end{array}\right], Y^{t}=\left[\begin{array}{ccc}
0 & -i & 0 \\
-1+i & 0 & 1 \\
0 & -1-i & 0
\end{array}\right]
$$

\diamond Computing an "aligned" set of canonical gen. of \mathfrak{g}^{s}, we get:
$H^{s}=\left[\begin{array}{ccc}\frac{-2 i}{x} & 0 & \frac{2 i}{x} \\ 0 & 0 & 0 \\ \frac{-2 i\left(x^{2}+1\right)}{x} & 0 & \frac{2 i}{x}\end{array}\right], X^{s}=\left[\begin{array}{ccc}0 & \frac{i}{x} & 0 \\ -i x+1 & 0 & -1 \\ 0 & \frac{i+x}{x} & 0\end{array}\right], Y^{s}=\left[\begin{array}{ccc}0 & \frac{i}{x} & 0 \\ -i x-1 & 0 & 1 \\ 0 & \frac{i-x}{x} & 0\end{array}\right]$.
\diamond Conjugation matrices P s.t. $X^{t} P=P X^{s}$ and $Y^{t} P=P Y^{s}$:

$$
P=c \tilde{P}, \quad c \in \bar{k}, \quad \tilde{P}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -x & 0 \\
x+1 & 0 & -x
\end{array}\right] .
$$

Example (3)

\diamond Solving linear system obtained from $P[A]=f_{1} H^{t}+f_{2} X^{t}+f_{3} Y^{t}$

$$
\left\{f_{1}=\frac{i}{2 x}, f_{2}=-\frac{i}{2}\left(x^{2}+i\right), f_{3}=\frac{i}{2}\left(-x^{2}+i\right)\right\}
$$

\diamond Solving the scalar diff. equation for c, we get $c=a / x, a \in \mathbb{C}^{*}$
\rightarrow Reduction matrix P and reduced form R given by:

$$
P=\left[\begin{array}{ccc}
\frac{a}{x} & 0 & 0 \\
0 & -a & 0 \\
\frac{(x+1) a}{x} & 0 & -a
\end{array}\right], \quad R=\left[\begin{array}{ccc}
-x & -x^{2} & x \\
x^{2}+1 & 0 & -1 \\
-2 x & -x^{2}+1 & x
\end{array}\right] .
$$

\rightarrow The Lie algebra \mathfrak{g} viewed as a Lie sub-algebra of $\mathfrak{g l}_{3}(\mathbb{C})$ admits the basis H^{t}, X^{t}, Y^{t}

