Computing the Lie algebra of the differential Galois group of a linear differential system (1/2)

Thomas Cluzeau

University of Limoges; CNRS; XLIM (France)

In collaboration with M. Barkatou, J.-A. Weil and L. Di Vizio (CNRS, UVSQ)

Functional Equations in LIMoges 2016

Motivation

 $\diamond k = \mathbb{C}(z)$ (for actual computations \mathbb{C} is replaced by a computable subfield of $\overline{\mathbb{Q}}$), $A \in \mathbb{M}_n(k)$, **y** vector of unknown functions, $i = \frac{d}{dz}$

Linear differential system [A]: $\mathbf{y}' = A\mathbf{y}$

- \diamond Important object for studying [A]: its differential Galois group G
- ightarrow G measures everything that algebra can see about the solutions
- \diamond Direct problem in diff. Galois theory: given [A], compute G
 - Many theoretical algorithms: Compoint-Singer'99, Hrushovski'02 and Feng'15, van der Put-Singer'03, van der Hoeven'07
 - · None of them are either practical or implemented

Objective

Philosophy of our work (see also Nguyen-van der Put'10)

 \rightarrow For a large class of problems, computing the Lie algebra $\mathfrak g$ of the linear algebraic group G is enough

♦ For the computation of g, not much is known (*Aparicio's PhD thesis'10*, *Aparicio-Compoint-Weil'13*)

Goal of this talk AND the next one by T. Dreyfus

Provide a full algorithm for computing the Lie algebra $\mathfrak g$ of G

- This talk (1/2): irreducible and completely reducible systems
- Next talk (2/2): reducible systems

Differential systems/modules/Galois group and Lie algebra

Differential modules

 \diamond A differential module \mathcal{M} over k is a finite dimensional vector space over k equipped with an additive map $\partial: \mathcal{M} \to \mathcal{M}$ s.t. $\forall f \in k, \forall m \in \mathcal{M}, \ \partial(f m) = f' m + f \ \partial(m)$

A differential submodule of $\mathcal M$ is then a sub-vector space of $\mathcal M$ which is stable under the action of ∂

- \diamond A differential module \mathcal{M} is
 - irreducible if it has no non-trivial differential submodule
 - absolutely irreducible if $\overline{k} \otimes_k \mathcal{M}$ is irreducible
 - decomposable if $\mathcal{M} = \mathcal{M}_1 \oplus \mathcal{M}_2$
 - completely reducible if it is a direct sum of irreducible modules
- \diamond Krull-Schmidt: $\mathcal{M} = \mathcal{M}_1 \oplus \mathcal{M}_2 \oplus \cdots \oplus \mathcal{M}_r$, with \mathcal{M}_i indecomposable. It is called a maximal decomposition of \mathcal{M} (**Rk**: if \mathcal{M} is completely reducible, then the \mathcal{M}_i are irreducible)

Differential module ↔ Differential system

- \diamond Via a choice of basis, a differential module \mathcal{M} is associated with a linear differential system [A] and vice versa
- \diamond Change of basis in $\mathcal{M} \leftrightarrow$ gauge transfo. $P \in \mathrm{GL}_n(k)$ in [A]leading to equivalent system [P[A]] with $P[A] \triangleq P^{-1}(AP - P')$
- $ightarrow \mathcal{M}$ reducible: $\exists P,\ P[A] = egin{pmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{pmatrix}$ block triangular
- $ightarrow \mathcal{M}$ decomposable: $\exists P,\ P[A] = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$ block diagonal

$$\diamond \mathcal{M} = \mathcal{M}_1 \oplus \cdots \oplus \mathcal{M}_r \leftrightarrow \exists P, \ P[A] = \begin{pmatrix} A_1 & & & \\ & A_2 & & \\ & & \ddots & \\ & & & A_r \end{pmatrix}$$

Maximal dec. \leftrightarrow [A_i] indec. (**Rk**: irred. if \mathcal{M} is completely red.)

The differential module $\mathcal{M} \otimes_k \mathcal{M}^*$

- $\diamond \mathcal{M}$ differential module, [A] associated differential system
- \diamond Its dual $\mathcal{M}^{\star} \triangleq \operatorname{Hom}_{k}(\mathcal{M}, \mathbb{1}_{k})$ is associated with $[-A^{T}]$
- \diamond Consider $\mathcal{M} \otimes_k \mathcal{M}^{\star}$: elements viewed in $\mathbb{M}_n(k)$
- $ightarrow \mathcal{M} \otimes_k \mathcal{M}^{\star}$ is associated with the matrix differential system

$$F' = [A, F] \triangleq AF - FA$$

Using the classical Kronecker product of matrices:

$$F' = [A, F] \iff \operatorname{Vect}(F)' = (A \otimes I_n - I_n \otimes A^T) \operatorname{Vect}(F),$$

with $Vect(F) = (F_{1 \bullet}^T \dots F_{n \bullet}^T)^T \in k^{n^2}$ and $F_{i \bullet}$ the *i*-th row of F

 $\diamond \mathcal{M}$ completely reducible $\Rightarrow \mathcal{M} \otimes_k \mathcal{M}^*$ is completely reducible

The differential Galois group

- $\diamond \mathcal{M}$ differential module associated with a differential system [A]
- \diamond K Picard-Vessiot extension for \mathcal{M} : diff. field ext. of k
- ightarrow [A] admits a fundamental matrix of solutions $U\in \mathrm{GL}_n(K)$
- \diamond The differential Galois group G of \mathcal{M} is the group $\operatorname{Aut}_{\partial}(K/k)$ of differential k-algebra automorphisms of K:

$$\forall g \in G, \ \forall f \in K, \quad g(f') = g(f)', \quad f \in k \Rightarrow g(f) = f$$

 \diamond *G* viewed as a subgroup of $\mathrm{GL}_n(\mathbb{C})$ is a linear algebraic group:

There exists a polynomial ideal $\mathcal{I} \subset \mathbb{C}[X_{1,1}, X_{1,2}, \dots, X_{n,n}, \det^{-1}]$, where \det^{-1} is the inverse of $\det((X_{i,j})_{i,j})$, such that

$$G \cong \{M = (m_{i,i})_{i,i} \in \operatorname{GL}_n(\mathbb{C}) \mid \forall P \in \mathcal{I}, P(m_{i,i}) = 0\}$$

The Lie algebra \mathfrak{g} of G

 \diamond The Lie algebra $\mathfrak g$ of G is the tangent space of G at the point $\mathrm{id} \in G$: $\mathfrak g$ can be represented as a Lie sub-algebra of $\mathfrak{gl}_n(\mathbb C)$

$$\mathfrak{g}\cong\{N\in\mathbb{M}_n(\mathbb{C})\mid I_n+\epsilon\,N\in G(\mathbb{C}[\epsilon]) \text{ with } \epsilon\neq 0 \text{ and } \epsilon^2=0\},$$

where $G(\mathbb{C}[\epsilon])$ set of $\mathbb{C}[\epsilon]$ -points of G

- \diamond Adjoint action of G on \mathfrak{g} : $G \times \mathfrak{g} \to \mathfrak{g}, \ (g,h) \mapsto g \, h \, g^{-1}$
- $\diamond V \triangleq \mathbb{C}$ -vector space of solutions of [A] in K^n , $\operatorname{End}(V)$ endowed with a Lie algebra structure $\mathfrak{gl}(V)$ identified with $\mathfrak{gl}_n(\mathbb{C})$ \Rightarrow We have a representation of \mathfrak{g} in $\operatorname{End}(V)$
- \diamond Using $\operatorname{End}(V) \cong V \otimes V^*$, $\mathfrak g$ can then be viewed as a sub-vector space of $V \otimes V^*$ stable under the adjoint action of G

Tannakian correspondence and characterization of \mathfrak{g}

 \diamond Tannakian correspondence: 1-1 correspondence (compatible with all constructions of linear algebra) between sub-vector spaces of V stable under the action of G and differential submodules of \mathcal{M}

 \to The representation of \mathfrak{g} in $\operatorname{End}(V)$ corresponds to the differential submodule $\mathfrak{g}^s \triangleq (K \otimes_{\mathbb{C}} \mathfrak{g})^G$ of $\mathcal{M} \otimes_k \mathcal{M}^*$ (**Rk**: \mathfrak{g}^s is the Lie algebra considered by *Katz* in his works)

 $ightarrow \mathfrak{g}^s$ (and thus \mathfrak{g}) can be investigated by studying differential submodules of $\mathcal{M} \otimes_k \mathcal{M}^*$ which can all be obtained from a maximal decomposition if \mathcal{M} is completely reducible

Sketch of our algorithm

- 1. Compute a maximal decomposition of $\mathcal{M} \otimes_k \mathcal{M}^*$ (tools: eigenring techniques & use specific structure)
- 2. Find a candidate for g^s (tools: modular approach based on Grothendieck-Katz p-curvature conjecture)
- 3. Validation of the candidate (tools: reduced form & conjugation between Lie algebras)
- \diamond For the ease of presentation, in the following, we assume $\mathcal{M}/$ [A] absolutely irreducible (it can be checked: *Compoint-Weil'04*)
- → Completely reducible case quite similar (only small modif.)
- → Reducible case: see next talk by T. Dreyfus

П

Maximal decomposition of $\mathcal{M} \otimes_k \mathcal{M}^*$

Maximal decomposition: general method

Problem: given [A], find $P \in GL_n(k)$ s.t. P[A] block diagonal

- ♦ Already studied in computer algebra: Singer'96, Barkatou'07
- → Compute the eigenring (rational solutions *Barkatou'99*)

$$\mathcal{E}(A) \triangleq \{ F \in \mathbb{M}_n(k) \mid F' = [A, F] = AF - FA \}$$

- ♦ If $F \in \mathcal{E}(A)$, $P^{-1}FP = \operatorname{diag}(F_1, ..., F_r)$ (F_i constant matrices with distinct eigenvalues), then $P[A] = \operatorname{diag}(A_1, ..., A_r)$
- \diamond This corresponds to $\mathcal{M} = \mathcal{M}_1 \oplus \cdots \oplus \mathcal{M}_r$, where the bases of the submodules \mathcal{M}_i are given by the columns of P
- \diamond Maximal dec. given by a random element of $\mathcal{E}(A)$ (Barkatou'07)

Maximal decomposition of $\mathcal{M} \otimes \mathcal{M}^{\star}$: specific methods (1)

- \diamond We can apply the previous method to $\mathcal{A} \triangleq A \otimes I_n I_n \otimes A^T$
- \rightarrow Computing $\mathcal{E}(\mathcal{A})$: rational solutions of $\mathcal{A} \otimes I_{n^2} I_{n^2} \otimes \mathcal{A}^T$ of size n^4 ! BarkatouCluzeauElBachaWeil'12 $\rightarrow O(n^{20})$ arithm. op.
- ightarrow We should take into account the specific form of ${\cal A}$
- ♦ **Problem**: compute rational solutions of $\overline{\mathcal{A}} \triangleq \mathcal{A} \otimes I_{n^2} I_{n^2} \otimes \mathcal{A}^T$
- ♦ First approach: algorithm in *Barkatou'99* proceeds in two steps:
 - 1. Local data at each singularity \rightarrow universal denominator
 - 2. Polynomial solutions of an auxiliary system

Adapt ideas of *BarkatouPfluegel'98* \Rightarrow local datas needed for rational solutions of \overline{A} (size n^4) can be computed from [A] (size n) (**Rk**: the second step can also be accelerated)

Maximal decomposition of $\mathcal{M} \otimes \mathcal{M}^*$: specific methods (2)

♦ Second approach: use structural decompositions

$$[\overline{\mathcal{A}}]$$
 associated with $\operatorname{End}(\operatorname{End}(\mathcal{M})) \triangleq (\mathcal{M} \otimes \mathcal{M}^{\star}) \otimes (\mathcal{M} \otimes \mathcal{M}^{\star})^{\star}$

ightarrow Decompose $\operatorname{End}(\operatorname{End}(\mathcal{M}))$ and rational sol. of smaller systems

Theorem 1 (BCdVW'16): we have $\mathcal{M} \otimes \mathcal{M}^* = \mathbb{1}_k \oplus \mathcal{W}$ and the explicit iso.

$$\operatorname{End}(\operatorname{End}(\mathcal{M})) \cong \underbrace{\mathbb{1}_k \oplus \mathcal{W} \oplus \operatorname{Sym}^2(\mathcal{W})}_{\operatorname{Sym}^2(\mathbb{1}_k \oplus \mathcal{W})} \oplus \underbrace{\mathcal{W} \oplus \Lambda^2(\mathcal{W})}_{\Lambda^2(\mathbb{1}_k \oplus \mathcal{W})}$$

Theorem 2 (BCdVW'16): we have the explicit iso.

$$\operatorname{End}(\operatorname{End}(\mathcal{M})) \cong \underbrace{\mathbb{1}_k \oplus \mathcal{N}_{\operatorname{S}^2}}_{\operatorname{End}(\operatorname{S}^2)} \oplus \underbrace{\mathbb{1}_k \oplus \mathcal{N}_{\Lambda^2}}_{\operatorname{End}(\Lambda^2)} \oplus \operatorname{Hom}(\operatorname{S}^2, \Lambda^2) \oplus \operatorname{Hom}(\Lambda^2, \operatorname{S}^2)$$

 \rightarrow Rational solutions of systems of smaller size still having specific structures (Sym², Λ^2 , Hom) that can be used for rational solutions (*AparicioBarkatouSimonWeil'11*, *BarkatouPfluegel'98*)

Candidate for \mathfrak{g}^s

Candidate for \mathfrak{g}^s : reduction modulo p

Problem: In the max. dec. $\mathcal{M} \otimes_k \mathcal{M}^* = \bigoplus_{i=1}^r \mathcal{W}_i$, find \mathfrak{g}^s

- ightarrow Idea: use a modular approach to find a candidate for \mathfrak{g}^s
- \diamond Crucial object for studying diff. systems $[A_p]$ / modules $(\mathcal{M}_p, \partial)$ in characteristic p > 0: the *p*-curvature $\chi_p \triangleq \partial^p$ acting on \mathcal{M}_p
- \diamond In terms of matrices: χ_p is given by the pth iterate of the sequence $\chi_1 = A_p$ and, for i > 1, $\chi_{i+1} = \chi'_i A_p \chi_i$
- → Algorithms: *Katz'82*, *van der Put'95-96*, *Cluzeau'03* and recently *BostanCarusoSchost'15* for a fast algorithm

Grothendieck-Katz p-curvature conjecture: The Lie algebra \mathfrak{g}^s is the smallest (algebraic) Lie sub-algebra of $\mathfrak{gl}_n(k)$ whose reduction modulo p contains the p-curvature χ_p for almost all p.

Candidate for \mathfrak{g}^s : algorithm ModularSelection

- $\diamond \mathcal{M} \otimes_k \mathcal{M}^* = \bigoplus_{i=1}^r \mathcal{W}_i$ given by gauge transfo. $T \in \mathrm{GL}_{n^2}(k)$ (the columns $T_{\bullet j}$ of T provide bases of the submodules \mathcal{W}_i)
 - 1. Choose a prime $p \to \bigoplus_{i=1}^r \mathcal{W}_{i,p}$ given by $T_p = T \mod p$;
 - 2. Compute the *p*-curvature χ_p of $[A_p]$;
 - 3. Compute $V = T_p^{-1} \operatorname{Vect}(\chi_p)$;
 - 4. From the non-zero entries of V, deduce a basis of the submodule of $\bigoplus_{i=1}^{r} W_i$ whose reduction mod p contains χ_p .
- \diamond From G-K conjecture, the submodule found can be used as a reasonable guess for \mathfrak{g}^s
- ♦ Remark: this may select a bigger or smaller submodule
- → we need to check whether our guess is correct or not

IV

Validation of the candidate

Reduced form of a linear differential system

- ♦ **Definition**: [A] in reduced form if $A \in \overline{k} \otimes \mathfrak{g}$.
- o ${\mathfrak g}$ viewed as a ${\mathbb C}$ -vector space generated by $N_1,\ldots,N_d\in{\mathbb M}_n({\mathbb C})$
- ightarrow reduced form iff $\exists f_1, \dots, f_d \in \overline{k}$ s.t. $A = f_1 N_1 + \dots + f_d N_d$

Theorem (Kolchin-Kovacic): There exists a reduction matrix $P \in GL_n(\overline{k})$ such that [P[A]] is in reduced form.

 \diamond Reduced forms \Rightarrow invariants (\approx rational sol. of "constructions") have constant coefficients in \mathbb{C} : *Aparicio-Compoint-Weil'13*

Theorem (Aparicio-Compoint-Weil'13): For all ordinary point $z_0 \in \mathbb{C}$ of [A], there exists a reduction matrix $P \in \mathrm{GL}_n(\overline{k})$ for [A] that sends every invariant \mathbf{f} of [A] to its evaluation at z_0 .

A Lie algebra conjugation problem

♦ **Definition**: Two Lie sub-algebras \mathfrak{g}_1 , $\mathfrak{g}_2 \subset \mathfrak{gl}_n(k)$ are conjugated if \exists a conjugation matrix $P \in \operatorname{GL}_n(\overline{k})$ s.t. $\mathfrak{g}_2 = P^{-1}\mathfrak{g}_1 P$.

Theorem (BCdVW'16):

- M_i (i = 1, ..., d) basis of candidate Lie algebra \mathfrak{g}^s ,
- z₀ ordinary point of [A],
- \mathfrak{g}^t Lie sub-algebra of $\mathfrak{gl}_n(\mathbb{C})$ with basis $M_i(z_0)$ $(i=1,\ldots,d)$.

Then, there exists a reduction matrix $P \in \mathrm{GL}_n(\overline{k})$ for [A] that is a conjugation matrix between the Lie algebra \mathfrak{g}^s and \mathfrak{g}^t .

 \rightarrow A reduction matrix can be found among the conjugation matrices between \mathfrak{g}^t and \mathfrak{g}^s

Semi-simple Lie algebras

- $\diamond \mathcal{M}$ absolutely irreducible $\Rightarrow \mathfrak{g}^t$ and \mathfrak{g}^s semi-simple Lie algebras
- ♦ Central objects in the study of a semi-simple Lie algebra g: set of canonical generators (and Chevalley bases)
- \rightarrow Matrices $H_1, \ldots, H_r, X_1, \ldots, X_r, Y_1, \ldots, Y_r$ which satisfies:

$$[H_i, H_j] = 0, [X_i, Y_j] = \delta_{i,j} H_i, [H_i, X_j] = c_{j,i} X_j, [H_i, Y_j] = -c_{j,i} Y_j$$

- ullet This is associated with a root space decomposition of ${\mathfrak g}$
- H_1, \ldots, H_r are generators of a Cartan sub-algebra of $\mathfrak g$
- $C = (c_{i,j})_{1 \le i,j \le r}$ is a Cartan matrix of \mathfrak{g} $(c_{i,i} = 2)$
- \rightarrow Algorithms for computing set of canonical generators and Chevalley bases: deGraaf'00

Algorithm ConjugationMatrices

Input: $\{M_i\}_i$ basis of \mathfrak{g}^s , $\{M_i(z_0)\}$ basis of \mathfrak{g}^t Ouput: Conjugation matrices P between \mathfrak{g}^t and \mathfrak{g}^s

- 1. Compute a set of canonical generators $\{H_i^t, X_i^t, Y_i^t\}$ of \mathfrak{g}^t ;
- 2. Compute generators \tilde{H}_{i}^{s} of a "split" Cartan sub-algebra \mathfrak{h}^{s} of \mathfrak{g}^{s} s.t. $\chi(\tilde{H}_{i}^{s}) = \chi(H_{i}^{t})$ (ansatz \rightarrow solving algebraic equations)
- 3. Compute a set of canonical generators $\{H_i^s, X_i^s, Y_i^s\}$ of \mathfrak{g}^s having the same Cartan matrix as $\{H_i^t, X_i^t, Y_i^t\}$;
- 4. Compute the matrices $P \in \operatorname{GL}_n(\overline{k})$ such that $\forall i, P X_i^t = X_i^s P$ and $P Y_i^t = Y_i^s P$ (overdetermined linear system).

Theorem (BCdVW'16): If our choice for \mathfrak{g}^s is correct, then output of the form $P=c\ \tilde{P}$, with $\tilde{P}\in \mathrm{GL}_n(\overline{k})$, c arbitrary element of \overline{k}

Algorithm REDUCTIONMATRIX

- \diamond Let $P=c\,\tilde{P}$ and $(N_i^t)_{i=1,...,d}$ be a Chevalley basis of \mathfrak{g}^t
- $\diamond \exists f_i \in \overline{k} \text{ such that } P[A] = \sum_{i=1}^d f_i N_i^t \text{ implies:}$

$$\tilde{P}^{-1} A \tilde{P} - \frac{c'}{c} I_n - \tilde{P}^{-1} \tilde{P}' = \sum_{i=1}^d f_i N_i^t$$
 (1)

$$\frac{c'}{c} = \frac{1}{n} \left(\operatorname{Tr}(A) - \frac{\det(\tilde{P})'}{\det(\tilde{P})} - \sum_{i=1}^{d} f_i \operatorname{Tr}(N_i^t) \right)$$
(2)

- 1. Plug (2) into (1) and solve the linear system for the $f_i \in \overline{k}$. If the system has no solution, then Return "Fail".
- 2. Plug the solution found into (2) and solve the scalar order one linear differential equation for c.

 If algebraic solution, then Return $P = c \tilde{P}$, Else Return "Fail".

IV

Full algorithm and example

Full algorithm and remarks

- 1. Compute a maximal decomposition of $\mathcal{M} \otimes \mathcal{M}^*$;
- 2. Apply MODULARSELECTION to get a candidate for g^s ;
- 3. Apply ConjugationMatrices; If it fails, go back to Step 2 and choose another prime *p*
- 4. Compute a Chevalley basis $(N_i^t)_i$ of \mathfrak{g}^t ;
- 5. Apply REDUCTIONMATRIX.

 If it fails, go back to Step 2 and choose another prime p,

 Else Return $(N_i^t)_i$.
- ♦ Remarks on the successive choices of p:
 - There may exist an infinite number of "bad" primes: good strategy for choosing prime numbers

 → deterministic algo.
 - if $\mathcal{W}_1,\,\mathcal{W}_2$ are proved not correct: try $\mathcal{W}_1+\mathcal{W}_2$ before new p
 - If candidate decomposable: check each submodule

Remark on complexity / Implementation

- ♦ Arithmetic complexity polynomial in *n* except algebraic systems solved in CONJUGATIONMATRICES
- → Significant diff. compared to the exponential (several levels) complexity obtained in *Feng'15* for computing the Galois group
- ♦ We have a prototype Maple implementation
- ♦ We manage to apply it to many examples up to order n = 7
- \diamond In practice, the most costly step is the dec. of $\mathcal{M} \otimes \mathcal{M}^{\star}$

Example (1)

Consider the system given by

$$A := \begin{bmatrix} \frac{x-1}{x} & x & -1 \\ -x^3 + 1 & 0 & -1 \\ \frac{x-1}{x} + x^2 & x + 1 & -1 \end{bmatrix}$$

- $\diamond \mathcal{M} \otimes \mathcal{M}^* = \mathbb{1}_k \oplus \mathcal{W}_1 \oplus \mathcal{W}_2$, with \mathcal{W}_1 , \mathcal{W}_2 of resp. dim. 3 and 5
- \diamond *p*-curvature \to candidate for \mathfrak{g}^s is \mathcal{W}_1 irred with basis

$$M_1 = \left[\begin{array}{ccc} -1 & 0 & 1 \\ 0 & 0 & 0 \\ -x^2 - 1 & 0 & 1 \end{array} \right], M_2 = \left[\begin{array}{ccc} 0 & 1 & 0 \\ -x^2 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right], M_3 = \left[\begin{array}{ccc} 0 & 1 & 0 \\ -x^2 - 1 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right].$$

Example (2)

 $\diamond x_0 = 1$ ordinary point for [A]: set of canonical gen. of \mathfrak{g}^t :

$$H^{t} = \begin{bmatrix} 2i & 0 & -2i \\ 0 & 0 & 0 \\ 4i & 0 & -2i \end{bmatrix}, X^{t} = \begin{bmatrix} 0 & -i & 0 \\ 1+i & 0 & -1 \\ 0 & 1-i & 0 \end{bmatrix}, Y^{t} = \begin{bmatrix} 0 & -i & 0 \\ -1+i & 0 & 1 \\ 0 & -1-i & 0 \end{bmatrix}.$$

 \diamond Computing an "aligned" set of canonical gen. of \mathfrak{g}^s , we get:

$$H^{\mathfrak{s}} = \left[\begin{array}{cccc} \frac{-2\,i}{x} & 0 & \frac{2\,i}{x} \\ 0 & 0 & 0 \\ \frac{-2\,i\left(x^2+1\right)}{x} & 0 & \frac{2\,i}{x} \end{array} \right], X^{\mathfrak{s}} = \left[\begin{array}{cccc} 0 & \frac{i}{x} & 0 \\ -ix+1 & 0 & -1 \\ 0 & \frac{i+x}{x} & 0 \end{array} \right], Y^{\mathfrak{s}} = \left[\begin{array}{cccc} 0 & \frac{i}{x} & 0 \\ -ix-1 & 0 & 1 \\ 0 & \frac{i-x}{x} & 0 \end{array} \right].$$

 \diamond Conjugation matrices P s.t. $X^t P = P X^s$ and $Y^t P = P Y^s$:

$$P = c\tilde{P}, \qquad c \in \overline{k}, \qquad \tilde{P} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -x & 0 \\ x+1 & 0 & -x \end{bmatrix}.$$

Example (3)

 \diamond Solving linear system obtained from $P[A] = f_1 H^t + f_2 X^t + f_3 Y^t$

$$\left\{ f_1 = \frac{i}{2x}, \ f_2 = -\frac{i}{2}(x^2 + i), \ f_3 = \frac{i}{2}(-x^2 + i) \right\}$$

- \diamond Solving the scalar diff. equation for c, we get c = a/x, $a \in \mathbb{C}^*$
- \rightarrow Reduction matrix P and reduced form R given by:

$$P = \begin{bmatrix} \frac{a}{x} & 0 & 0 \\ 0 & -a & 0 \\ \frac{(x+1)a}{x} & 0 & -a \end{bmatrix}, \quad R = \begin{bmatrix} -x & -x^2 & x \\ x^2 + 1 & 0 & -1 \\ -2x & -x^2 + 1 & x \end{bmatrix}.$$

 \to The Lie algebra $\mathfrak g$ viewed as a Lie sub-algebra of $\mathfrak{gl}_3(\mathbb C)$ admits the basis H^t, X^t, Y^t