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Motivation

o k = C(z) (for actual computations C is replaced by a computable

subfield of Q), A € M,(k), y vector of unknown functions, ' = d%

Linear differential system [A] : y = Ay

o Important object for studying [A]: its differential Galois group G

— G measures everything that algebra can see about the solutions

o Direct problem in diff. Galois theory: given [A], compute G

e Many theoretical algorithms: Compoint-Singer'99, Hrushovski'02
and Feng'l5, van der Put-Singer'03, van der Hoeven'07

e None of them are either practical or implemented



Objective

Philosophy of our work (see also Nguyen-van der Put'10)
— For a large class of problems, computing the Lie algebra g of

the linear algebraic group G is enough

o For the computation of g, not much is known (Aparicio’s PhD
thesis'10, Aparicio-Compoint-Weil'13)

Goal of this talk AND the next one by T. Dreyfus

Provide a full algorithm for computing the Lie algebra g of G
e This talk (1/2): irreducible and completely reducible systems
e Next talk (2/2): reducible systems



Differential systems/modules/Galois
group and Lie algebra



Differential modules

o A differential module M over k is a finite dimensional vector
space over k equipped with an additive map 9 : M — M s.t.
Vfek,Vme M, O(f m)=Ff" m+fd(m)

A differential submodule of M is then a sub-vector space of M
which is stable under the action of 0

o A differential module M is
e irreducible if it has no non-trivial differential submodule
e absolutely irreducible if k @ M is irreducible
e decomposable if M = M1 ® M>
completely reducible if it is a direct sum of irreducible modules

o Krull-Schmidt: M= M ® My @ ---d M,, with M;
indecomposable. It is called a maximal decomposition of M
(Rk: if M is completely reducible, then the M; are irreducible)



Differential module <+ Differential system

¢ Via a choice of basis, a differential module M is associated with
a linear differential system [A] and vice versa

¢ Change of basis in M < gauge transfo. P G GL (k) in [A]
leading to equivalent system [P[A]] with P[A] & P~1 (AP — P')

A1 O
Ax1 Ax

A 0 ) block diagonal

— M reducible: 3P, P[A] = ( ) block triangular

— M decomposable: 3P, P[A] = (0 A

A1
oM=Mi & --BM, <+ 3IP, P[A =
A,

Maximal dec. <+ [A;] indec. (Rk: irred. if M is completely red.)



The differential module M @, M*

o M differential module, [A] associated differential system
o Its dual M* £ Homy (M, 1) is associated with [~AT]

o Consider M ®, M*: elements viewed in M, (k)

— M ®@, M* is associated with the matrix differential system
F =[AF]2AF - FA
Using the classical Kronecker product of matrices:
F' = [A, F] <= Vect(F) = (A &by — Iy ® AT) Vect(F),
with Vect(F) = (FL ... FL)T € k™ and Fj, the i-th row of F

o M completely reducible = M ®j M™* is completely reducible



The differential Galois group

o M differential module associated with a differential system [A]

¢ K Picard-Vessiot extension for M: diff. field ext. of k

— [A] admits a fundamental matrix of solutions U € GL,(K)

o The differential Galois group G of M is the group Auty(K/k) of
differential k-algebra automorphisms of K:

Vge G, VfeK, g(fy=g(f), fek=g(f)=f

o G viewed as a subgroup of GL,(C) is a linear algebraic group:
There exists a polynomial ideal Z C C[X1,1, X1.2,. .. ,Xn,,,,det_l],
where det ™! is the inverse of det((X:),), such that

G= {M: (m;J),-d- S GL,,(C)‘VPEI, P(m;J) :0}



The Lie algebra g of G

© The Lie algebra g of G is the tangent space of G at the point
id € G: g can be represented as a Lie sub-algebra of gl,(C)

g2 {N &€ M,(C) | I, +eN € G(Cle]) with ¢ # 0 and €* = 0},
where G(Cl[e]) set of Cle]-points of G

o Adjoint actionof Gong: G xg—g, (g,h)—~ghg™?!

o V £ C-vector space of solutions of [A] in K", End(V) endowed
with a Lie algebra structure gl(V') identified with gl,(C)

= We have a representation of g in End(V)

o Using End(V) =2 V ® V*, g can then be viewed as a sub-vector
space of V ® V* stable under the adjoint action of G



Tannakian correspondence and characterization of g

o Tannakian correspondence: 1-1 correspondence (compatible with
all constructions of linear algebra) between sub-vector spaces of V
stable under the action of G and differential submodules of M

— The representation of g in End(V') corresponds to the
differential submodule g° £ (K ®¢ g)¢ of M ®, M*

(Rk: g° is the Lie algebra considered by Katz in his works)

— ¢° (and thus g) can be investigated by studying differential
submodules of M ®, M* which can all be obtained from a
maximal decomposition if M is completely reducible



Sketch of our algorithm

1. Compute a maximal decomposition of M ®j M*
(tools: eigenring techniques & use specific structure)

2. Find a candidate for g°
(tools: modular approach based on Grothendieck-Katz
p-curvature conjecture)

3. Validation of the candidate
(tools: reduced form & conjugation between Lie algebras)

o For the ease of presentation, in the following, we assume M/ [A]
absolutely irreducible (it can be checked: Compoint-Weil'04)

— Completely reducible case quite similar (only small modif.)

— Reducible case: see next talk by T. Dreyfus



I
Maximal decomposition of M ®;, M*



Maximal decomposition: general method
Problem: given [A], find P € GL,(k) s.t. P[A] block diagonal

¢ Already studied in computer algebra: Singer'96, Barkatou'07

— Compute the eigenring (rational solutions - Barkatou'99)
E(A)E{F eM,(k)| F'=[A Fl=AF — FA}

olf F e &(A), P~ FP =diag(Fy,...,F,) (F; constant matrices
with distinct eigenvalues), then P[A] = diag(A;,..., A))

¢ This corresponds to M = M1 & --- @& M,, where the bases of
the submodules M; are given by the columns of P

© Maximal dec. given by a random element of £(A) (Barkatou'07)



Maximal decomposition of M & M™*: specific methods (1)

o We can apply the previous methodto A2 AQ [, — I, ® AT

— Computing £(A): rational solutions of A @ I, — o @ AT of
size n*! BarkatouCluzeauEIBachaWeil'12 — O(n?®) arithm. op.

— We should take into account the specific form of A
o Problem: compute rational solutions of A2 A® 1, — 1.2 AT

o First approach: algorithm in Barkatou’99 proceeds in two steps:
1. Local data at each singularity — universal denominator

2. Polynomial solutions of an auxiliary system

Adapt ideas of BarkatouPfluegel’98 = local datas needed for
rational solutions of A (size n*) can be computed from [A] (size n)

(Rk: the second step can also be accelerated)



Maximal decomposition of M & M™*: specific methods (2)

© Second approach: use structural decompositions

[A] associated with End(End(M)) £ (M @ M*) @ (M @ M*)*
— Decompose End(End(,M)) and rational sol. of smaller systems

Theorem 1 (BCdVW’16): we have M ® M* =1, & W and the
explicit iso.

End(End(M)) 2 1, @ W @ Sym*(W) & W @ A2(W)

/

-~

Sym2(1,EW) P(1EW)
Theorem 2 (BCdVW’16): we have the explicit iso.
End(End(M)) = 14 @ Ng @ 1y & N> @®Hom(S?, A?)&Hom(A?, S?)
—_—
End(S?) End(A2)

— Rational solutions of systems of smaller size still having specific
structures (Sym?, A2, Hom) that can be used for rational solutions
(AparicioBarkatouSimonWeil'11, BarkatouPfluegel 98)



1l
Candidate for g°



Candidate for g°: reduction modulo p

Problem: In the max. dec. M ®, M* = Q;_; W;, find g°
— ldea: use a modular approach to find a candidate for g°

o Crucial object for studying diff. systems [A,] / modules (M, 9)
in characteristic p > 0: the p-curvature x, £ OP acting on M,

¢ In terms of matrices: x, is given by the pth iterate of the
sequence x1 = Ap and, for i > 1, xijt1 = X} — Ap Xi

— Algorithms: Katz'82, van der Put'95-96, Cluzeau'03 and recently
BostanCarusoSchost'15 for a fast algorithm

Grothendieck-Katz p-curvature conjecture: The Lie algebra g°
is the smallest (algebraic) Lie sub-algebra of gl,(k) whose
reduction modulo p contains the p-curvature x, for almost all p.



Candidate for g°: algorithm MODULARSELECTION

o M@ M* = @;_; W; given by gauge transfo. T € GL,2(k)
(the columns T, of T provide bases of the submodules W)

1. Choose a prime p — @;_; Wi p given by T, = T mod p;
2. Compute the p-curvature x, of [Ap];

3. Compute V = T, ! Vect(x,);
4

. From the non-zero entries of V/, deduce a basis of the
submodule of @;_; Wi whose reduction mod p contains x,.

¢ From G-K conjecture, the submodule found can be used as a
reasonable guess for g°®

¢ Remark: this may select a bigger or smaller submodule

— we need to check whether our guess is correct or not



Y

Validation of the candidate



Reduced form of a linear differential system

o Definition: [A] in reduced form if A€ k®g.
— g viewed as a C-vector space generated by Ny,..., Ny € M,(C)
— reduced form iff Afy, ..., fy ckst. A= fiNy + -+ fg Ny

Theorem (Kolchin-Kovacic): There exists a reduction matrix
P € GL,(k) such that [P[A]] is in reduced form.

¢ Reduced forms = invariants (= rational sol. of “constructions”)
have constant coefficients in C: Aparicio-Compoint-Weil'13

Theorem (Aparicio-Compoint-Weil’13): For all ordinary point

zp € C of [A], there exists a reduction matrix P € GL,(k) for [A]
that sends every invariant f of [A] to its evaluation at z.



A Lie algebra conjugation problem

o Definition: Two Lie sub-algebras g1, go C gl,(k) are conjugated
if 3 a conjugation matrix P € GL,(k) s.t. go = P~1 gy P.

Theorem (BCdVW’16):

e M; (i=1,...,d) basis of candidate Lie algebra g°,

e z ordinary point of [A],

e g’ Lie sub-algebra of gl,(C) with basis M;(z) (i =1,...,d).
Then, there exists a reduction matrix P € GL,(k) for [A] that is a
conjugation matrix between the Lie algebra g° and g*.

— A reduction matrix can be found among the conjugation
matrices between g' and g°



Semi-simple Lie algebras

© M absolutely irreducible = g* and g° semi-simple Lie algebras

¢ Central objects in the study of a semi-simple Lie algebra g: set of
canonical generators (and Chevalley bases)

— Matrices Hy,...,H,, X1,...,X,, Y1,..., Y, which satisfies:

[Hi, Hj] = 0, [Xi, Yj] = dij Hi, [Hi, Xj] = ¢.i X, [Hi, Yjl = —¢ji Y

e This is associated with a root space decomposition of g
e Hi,...,H, are generators of a Cartan sub-algebra of g

e C =(cij)i<ij<r is a Cartan matrix of g (¢;; = 2)

— Algorithms for computing set of canonical generators and
Chevalley bases: deGraaf'00



Algorithm CONJUGATIONMATRICES

Input: {M;}; basis of g°, {M;(z)} basis of g*
Ouput: Conjugation matrices P between g* and g°

1. Compute a set of canonical generators {H, X}, Y} of gf;

2. Compute generators :’:I,s of a “split” Cartan sub-algebra h*® of
g° s.t. x(H?) = x(H!) (ansatz — solving algebraic equations)

3. Compute a set of canonical generators {H?, X?, Y7} of g°
having the same Cartan matrix as {H}, X}, Y/},

4. Compute the matrices P € GL,(k) such that Vi, P X! = X5 P
and P Y! = Y7 P (overdetermined linear system).

Theorem (BCdVW’16): If our choice for g° is correct, then output
of the form P = ¢ P, with P € GL,(k), c arbitrary element of k



Algorithm REDUCTIONMATRIX
o Let P=cP and (Nf)i=1,..4 be a Chevalley basis of g*

o 3f; € k such that P[A] = 327 £ N implies:

1

/ d
P‘lAP—%I,,—P_lP’:Zf;Nf (1)
i=1

¢ 1 . _det(l5)/_d o\t
c—n<T - ;mw,)) @)

1. Plug (2) into (1) and solve the linear system for the f; € k.
If the system has no solution, then Return “Fail”.
2. Plug the solution found into (2) and solve the scalar order one

linear differential equation for c.
If algebraic solution, then Return P = ¢ P, Else Return “Fail".



IV

Full algorithm and example



Full algorithm and remarks

1. Compute a maximal decomposition of M @ M*;
2. Apply MODULARSELECTION to get a candidate for g°;
3. Apply CONJUGATIONMATRICES;
If it fails, go back to Step 2 and choose another prime p
4. Compute a Chevalley basis (Nf); of gf;
5. Apply REDUCTIONMATRIX.
If it fails, go back to Step 2 and choose another prime p,
Else Return (NY);.

& Remarks on the successive choices of p:

e There may exist an infinite number of “bad” primes: good
strategy for choosing prime numbers ~~ deterministic algo.

o if Wi, W are proved not correct: try Wi + W before new p
e If candidate decomposable: check each submodule



Remark on complexity / Implementation

¢ Arithmetic complexity polynomial in n except algebraic systems
solved in CONJUGATIONMATRICES

— Significant diff. compared to the exponential (several levels)
complexity obtained in Feng’15 for computing the Galois group

© We have a prototype Maple implementation

© We manage to apply it to many examples up to order n =7

¢ In practice, the most costly step is the dec. of M ® M*



Example (1)

o Consider the system given by
x=1 % -1
X
A=| —x*+1 0 -1
1 x? x+1 -1
o MR M* =1, S W; & Ws, with Wi, Wh of resp. dim. 3 and 5
© p-curvature — candidate for g° is W, irred with basis
-1 0 1 0 1 0 0 1 0
Ml—{ 0 0 o},/wz— —x2 0 0],1\/13— -x2—-1 0 1].

-x2—-1 0 1 0 1 0 0 0 0




Example (2)

o xo = 1 ordinary point for [A]: set of canonical gen. of g*:

2i 0 —2i 0 —i 0 0 —i 0
H'=| 0 o0 0 XP= | 140 0 -1 |, vt=| —1+i 0 1
4i 0 —2i 0 1—i 0 0 —1—i 0

o Computing an “aligned” set of canonical gen. of g°, we get:

—2i 0

2i i i
~ < 0 i x
HS — 0 0 0 X =] —ix+1 0 -1 Y =] —ix—1 0
. 2 . .
-2 +1 ; + =x
I(X ) 0 % 0 'XX 0 0 X

x

o Conjugation matrices P s.t. X!*P=PX*and Y!P =P Y":



Example (3)

o Solving linear system obtained from P[A] = A H' + L X'+ Y
Azl b=l A=l (i)
1= 2X’ 2 = 2 y I3 — 2

o Solving the scalar diff. equation for ¢, we get ¢ = a/x, a € C*

— Reduction matrix P and reduced form R given by:

2 0 0 —x X% x
P= 0 -a 0 |, R=|x%+1 0 -1
7(’“;1)3 0 -—a —2x —x®2+1 x

— The Lie algebra g viewed as a Lie sub-algebra of gl3(C) admits
the basis Ht, Xt Y*
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