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Motivation

� k = C(z) (for actual computations C is replaced by a computable
subfield of Q), A ∈Mn(k), y vector of unknown functions, ′ = d

dz

Linear differential system [A] : y′ = A y

� Important object for studying [A]: its differential Galois group G

→ G measures everything that algebra can see about the solutions

� Direct problem in diff. Galois theory: given [A], compute G

• Many theoretical algorithms: Compoint-Singer’99, Hrushovski’02

and Feng’15, van der Put-Singer’03, van der Hoeven’07

• None of them are either practical or implemented



Objective

Philosophy of our work (see also Nguyen-van der Put’10)

→ For a large class of problems, computing the Lie algebra g of
the linear algebraic group G is enough

� For the computation of g, not much is known (Aparicio’s PhD

thesis’10, Aparicio-Compoint-Weil’13)

Goal of this talk AND the next one by T. Dreyfus

Provide a full algorithm for computing the Lie algebra g of G

• This talk (1/2): irreducible and completely reducible systems

• Next talk (2/2): reducible systems



I

Differential systems/modules/Galois
group and Lie algebra



Differential modules

� A differential module M over k is a finite dimensional vector
space over k equipped with an additive map ∂ :M→M s.t.
∀ f ∈ k, ∀m ∈M, ∂(f m) = f ′m + f ∂(m)

A differential submodule of M is then a sub-vector space of M
which is stable under the action of ∂

� A differential module M is

• irreducible if it has no non-trivial differential submodule

• absolutely irreducible if k ⊗kM is irreducible

• decomposable if M =M1 ⊕M2

• completely reducible if it is a direct sum of irreducible modules

� Krull-Schmidt: M =M1 ⊕M2 ⊕ · · · ⊕Mr , with Mi

indecomposable. It is called a maximal decomposition of M
(Rk: if M is completely reducible, then the Mi are irreducible)



Differential module ↔ Differential system

� Via a choice of basis, a differential module M is associated with
a linear differential system [A] and vice versa

� Change of basis in M ↔ gauge transfo. P ∈ GLn(k) in [A]
leading to equivalent system [P[A]] with P[A] , P−1 (AP − P ′)

→ M reducible: ∃P, P[A] =

(
A11 0
A21 A22

)
block triangular

→ M decomposable: ∃P, P[A] =

(
A1 0
0 A2

)
block diagonal

� M =M1 ⊕ · · · ⊕Mr ↔ ∃P, P[A] =


A1

A2

. . .

Ar


Maximal dec. ↔ [Ai ] indec. (Rk: irred. if M is completely red.)



The differential module M⊗kM?

� M differential module, [A] associated differential system

� Its dual M? , Homk(M,1k) is associated with [−AT ]

� Consider M⊗kM?: elements viewed in Mn(k)

→ M⊗kM? is associated with the matrix differential system

F ′ = [A,F ] , AF − F A

Using the classical Kronecker product of matrices:

F ′ = [A,F ]⇐⇒ Vect(F )′ =
(
A⊗ In − In ⊗ AT

)
Vect(F ),

with Vect(F ) = (FT
1• . . . F

T
n•)

T ∈ kn
2

and Fi• the i-th row of F

� M completely reducible ⇒ M⊗kM? is completely reducible



The differential Galois group

� M differential module associated with a differential system [A]

� K Picard-Vessiot extension for M: diff. field ext. of k

→ [A] admits a fundamental matrix of solutions U ∈ GLn(K )

� The differential Galois group G of M is the group Aut∂(K/k) of
differential k-algebra automorphisms of K :
∀g ∈ G , ∀f ∈ K , g(f ′) = g(f )′, f ∈ k ⇒ g(f ) = f

� G viewed as a subgroup of GLn(C) is a linear algebraic group:

There exists a polynomial ideal I ⊂ C[X1,1,X1,2, . . . ,Xn,n, det−1],
where det−1 is the inverse of det((Xi ,j)i ,j), such that

G ∼= {M = (mi ,j)i ,j ∈ GLn(C) | ∀P ∈ I, P(mi ,j) = 0}



The Lie algebra g of G

� The Lie algebra g of G is the tangent space of G at the point
id ∈ G : g can be represented as a Lie sub-algebra of gln(C)

g ∼= {N ∈Mn(C) | In + εN ∈ G (C[ε]) with ε 6= 0 and ε2 = 0},

where G (C[ε]) set of C[ε]-points of G

� Adjoint action of G on g: G × g→ g, (g , h) 7→ g h g−1

� V , C-vector space of solutions of [A] in Kn, End(V ) endowed
with a Lie algebra structure gl(V ) identified with gln(C)
⇒ We have a representation of g in End(V )

� Using End(V ) ∼= V ⊗ V ?, g can then be viewed as a sub-vector
space of V ⊗ V ? stable under the adjoint action of G



Tannakian correspondence and characterization of g

� Tannakian correspondence: 1-1 correspondence (compatible with
all constructions of linear algebra) between sub-vector spaces of V
stable under the action of G and differential submodules of M

→ The representation of g in End(V ) corresponds to the
differential submodule gs , (K ⊗C g)G of M⊗kM?

(Rk: gs is the Lie algebra considered by Katz in his works)

→ gs (and thus g) can be investigated by studying differential
submodules of M⊗kM? which can all be obtained from a
maximal decomposition if M is completely reducible



Sketch of our algorithm

1. Compute a maximal decomposition of M⊗kM?

(tools: eigenring techniques & use specific structure)

2. Find a candidate for gs

(tools: modular approach based on Grothendieck-Katz
p-curvature conjecture)

3. Validation of the candidate
(tools: reduced form & conjugation between Lie algebras)

� For the ease of presentation, in the following, we assume M/ [A]
absolutely irreducible (it can be checked: Compoint-Weil’04)

→ Completely reducible case quite similar (only small modif.)

→ Reducible case: see next talk by T. Dreyfus



II

Maximal decomposition ofM⊗kM?



Maximal decomposition: general method

Problem: given [A], find P ∈ GLn(k) s.t. P[A] block diagonal

� Already studied in computer algebra: Singer’96, Barkatou’07

→ Compute the eigenring (rational solutions - Barkatou’99)

E(A) , {F ∈Mn(k) | F ′ = [A,F ] = AF − F A}

� If F ∈ E(A), P−1 F P = diag(F1, . . . ,Fr ) (Fi constant matrices
with distinct eigenvalues), then P[A] = diag(A1, . . . ,Ar )

� This corresponds to M =M1 ⊕ · · · ⊕Mr , where the bases of
the submodules Mi are given by the columns of P

� Maximal dec. given by a random element of E(A) (Barkatou’07)



Maximal decomposition of M⊗M?: specific methods (1)

� We can apply the previous method to A , A⊗ In − In ⊗ AT

→ Computing E(A): rational solutions of A⊗ In2 − In2 ⊗AT of
size n4! BarkatouCluzeauElBachaWeil’12 → O(n20) arithm. op.

→ We should take into account the specific form of A

� Problem: compute rational solutions of A , A⊗ In2 − In2 ⊗AT

� First approach: algorithm in Barkatou’99 proceeds in two steps:

1. Local data at each singularity → universal denominator

2. Polynomial solutions of an auxiliary system

Adapt ideas of BarkatouPfluegel’98 ⇒ local datas needed for
rational solutions of A (size n4) can be computed from [A] (size n)

(Rk: the second step can also be accelerated)



Maximal decomposition of M⊗M?: specific methods (2)
� Second approach: use structural decompositions

[A] associated with End(End(M)) , (M⊗M?)⊗ (M⊗M?)?

→ Decompose End(End(M)) and rational sol. of smaller systems

Theorem 1 (BCdVW’16): we have M⊗M? = 1k ⊕W and the
explicit iso.

End(End(M)) ∼= 1k ⊕W ⊕ Sym2(W)︸ ︷︷ ︸
Sym2(1k⊕W)

⊕W ⊕ Λ2(W)︸ ︷︷ ︸
Λ2(1k⊕W)

Theorem 2 (BCdVW’16): we have the explicit iso.

End(End(M)) ∼= 1k ⊕NS2︸ ︷︷ ︸
End(S2)

⊕1k ⊕NΛ2︸ ︷︷ ︸
End(Λ2)

⊕Hom(S2,Λ2)⊕Hom(Λ2,S2)

→ Rational solutions of systems of smaller size still having specific
structures (Sym2, Λ2, Hom) that can be used for rational solutions
(AparicioBarkatouSimonWeil’11, BarkatouPfluegel’98)



III

Candidate for gs



Candidate for gs : reduction modulo p

Problem: In the max. dec. M⊗kM? =
⊕r

i=1Wi , find gs

→ Idea: use a modular approach to find a candidate for gs

� Crucial object for studying diff. systems [Ap] / modules (Mp, ∂)
in characteristic p > 0: the p-curvature χp , ∂p acting on Mp

� In terms of matrices: χp is given by the pth iterate of the
sequence χ1 = Ap and, for i > 1, χi+1 = χ′i − Ap χi

→ Algorithms: Katz’82, van der Put’95-96, Cluzeau’03 and recently
BostanCarusoSchost’15 for a fast algorithm

Grothendieck-Katz p-curvature conjecture: The Lie algebra gs

is the smallest (algebraic) Lie sub-algebra of gln(k) whose
reduction modulo p contains the p-curvature χp for almost all p.



Candidate for gs : algorithm ModularSelection

� M⊗kM? =
⊕r

i=1Wi given by gauge transfo. T ∈ GLn2(k)
(the columns T•j of T provide bases of the submodules Wi )

1. Choose a prime p →
⊕r

i=1Wi ,p given by Tp = T mod p;

2. Compute the p-curvature χp of [Ap];

3. Compute V = T−1
p Vect(χp);

4. From the non-zero entries of V , deduce a basis of the
submodule of

⊕r
i=1Wi whose reduction mod p contains χp.

� From G-K conjecture, the submodule found can be used as a
reasonable guess for gs

� Remark: this may select a bigger or smaller submodule

→ we need to check whether our guess is correct or not



IV

Validation of the candidate



Reduced form of a linear differential system

� Definition: [A] in reduced form if A ∈ k ⊗ g.

→ g viewed as a C-vector space generated by N1, . . . ,Nd ∈Mn(C)

→ reduced form iff ∃f1, . . . , fd ∈ k s.t. A = f1 N1 + · · ·+ fd Nd

Theorem (Kolchin-Kovacic): There exists a reduction matrix
P ∈ GLn(k) such that [P[A]] is in reduced form.

� Reduced forms ⇒ invariants (≈ rational sol. of “constructions”)
have constant coefficients in C: Aparicio-Compoint-Weil’13

Theorem (Aparicio-Compoint-Weil’13): For all ordinary point
z0 ∈ C of [A], there exists a reduction matrix P ∈ GLn(k) for [A]
that sends every invariant f of [A] to its evaluation at z0.



A Lie algebra conjugation problem

� Definition: Two Lie sub-algebras g1, g2 ⊂ gln(k) are conjugated
if ∃ a conjugation matrix P ∈ GLn(k) s.t. g2 = P−1 g1 P.

Theorem (BCdVW’16):

• Mi (i = 1, . . . , d) basis of candidate Lie algebra gs ,

• z0 ordinary point of [A],

• gt Lie sub-algebra of gln(C) with basis Mi (z0) (i = 1, . . . , d).

Then, there exists a reduction matrix P ∈ GLn(k) for [A] that is a
conjugation matrix between the Lie algebra gs and gt .

→ A reduction matrix can be found among the conjugation
matrices between gt and gs



Semi-simple Lie algebras

� M absolutely irreducible ⇒ gt and gs semi-simple Lie algebras

� Central objects in the study of a semi-simple Lie algebra g: set of
canonical generators (and Chevalley bases)

→ Matrices H1, . . . ,Hr , X1, . . . ,Xr , Y1, . . . ,Yr which satisfies:

[Hi ,Hj ] = 0, [Xi ,Yj ] = δi ,j Hi , [Hi ,Xj ] = cj ,i Xj , [Hi ,Yj ] = −cj ,i Yj

• This is associated with a root space decomposition of g

• H1, . . . ,Hr are generators of a Cartan sub-algebra of g

• C = (ci ,j)1≤i ,j≤r is a Cartan matrix of g (ci ,i = 2)

→ Algorithms for computing set of canonical generators and
Chevalley bases: deGraaf’00



Algorithm ConjugationMatrices

Input: {Mi}i basis of gs , {Mi (z0)} basis of gt

Ouput: Conjugation matrices P between gt and gs

1. Compute a set of canonical generators {Ht
i ,X

t
i ,Y

t
i } of gt ;

2. Compute generators H̃s
i of a “split” Cartan sub-algebra hs of

gs s.t. χ(H̃s
i ) = χ(Ht

i ) (ansatz → solving algebraic equations)

3. Compute a set of canonical generators {Hs
i ,X

s
i ,Y

s
i } of gs

having the same Cartan matrix as {Ht
i ,X

t
i ,Y

t
i };

4. Compute the matrices P ∈ GLn(k) such that ∀i , P X t
i = X s

i P
and P Y t

i = Y s
i P (overdetermined linear system).

Theorem (BCdVW’16): If our choice for gs is correct, then output
of the form P = c P̃, with P̃ ∈ GLn(k), c arbitrary element of k



Algorithm ReductionMatrix

� Let P = c P̃ and (Nt
i )i=1,...,d be a Chevalley basis of gt

� ∃fi ∈ k such that P[A] =
∑d

i=1 fi N
t
i implies:

P̃−1 A P̃ − c ′

c
In − P̃−1 P̃ ′ =

d∑
i=1

fi N
t
i (1)

c ′

c
=

1

n

(
Tr(A)− det(P̃)′

det(P̃)
−

d∑
i=1

fi Tr(N
t
i )

)
(2)

1. Plug (2) into (1) and solve the linear system for the fi ∈ k .
If the system has no solution, then Return “Fail”.

2. Plug the solution found into (2) and solve the scalar order one
linear differential equation for c .
If algebraic solution, then Return P = c P̃, Else Return “Fail”.



IV

Full algorithm and example



Full algorithm and remarks

1. Compute a maximal decomposition of M⊗M?;

2. Apply ModularSelection to get a candidate for gs ;

3. Apply ConjugationMatrices;

If it fails, go back to Step 2 and choose another prime p

4. Compute a Chevalley basis (Nt
i )i of gt ;

5. Apply ReductionMatrix.

If it fails, go back to Step 2 and choose another prime p,

Else Return (Nt
i )i .

� Remarks on the successive choices of p:

• There may exist an infinite number of “bad” primes: good
strategy for choosing prime numbers  deterministic algo.

• if W1, W2 are proved not correct: try W1 +W2 before new p

• If candidate decomposable: check each submodule



Remark on complexity / Implementation

� Arithmetic complexity polynomial in n except algebraic systems
solved in ConjugationMatrices
→ Significant diff. compared to the exponential (several levels)
complexity obtained in Feng’15 for computing the Galois group

� We have a prototype Maple implementation

� We manage to apply it to many examples up to order n = 7

� In practice, the most costly step is the dec. of M⊗M?



Example (1)

� Consider the system given by

A :=


x−1
x x −1

−x3 + 1 0 −1

x−1
x + x2 x + 1 −1


� M⊗M? = 1k ⊕W1 ⊕W2, with W1, W2 of resp. dim. 3 and 5

� p-curvature → candidate for gs is W1 irred with basis

M1 =


−1 0 1

0 0 0

−x2 − 1 0 1

 ,M2 =


0 1 0

−x2 0 0

0 1 0

 ,M3 =


0 1 0

−x2 − 1 0 1

0 0 0

 .



Example (2)

� x0 = 1 ordinary point for [A]: set of canonical gen. of gt :

Ht =


2 i 0 −2 i

0 0 0

4 i 0 −2 i

 , X t =


0 −i 0

1 + i 0 −1

0 1− i 0

 , Y t =


0 −i 0

−1 + i 0 1

0 −1− i 0

 .

� Computing an “aligned” set of canonical gen. of gs , we get:

Hs =


−2 i
x

0 2 i
x

0 0 0

−2 i
(
x2+1

)
x

0 2 i
x

 , X s =


0 i

x
0

−ix + 1 0 −1

0 i+x
x

0

 , Y s =


0 i

x
0

−ix − 1 0 1

0 i−x
x

0

 .

� Conjugation matrices P s.t. X t P = P X s and Y t P = P Y s :

P = c P̃, c ∈ k, P̃ =


1 0 0

0 −x 0

x + 1 0 −x

 .



Example (3)

� Solving linear system obtained from P[A] = f1 H
t + f2 X

t + f3 Y
t{

f1 =
i

2 x
, f2 = − i

2
(x2 + i), f3 =

i

2
(−x2 + i)

}
� Solving the scalar diff. equation for c , we get c = a/x , a ∈ C∗

→ Reduction matrix P and reduced form R given by:

P =


a
x 0 0

0 −a 0

(x+1) a
x 0 −a

 , R =


−x −x2 x

x2 + 1 0 −1

−2 x −x2 + 1 x

 .
→ The Lie algebra g viewed as a Lie sub-algebra of gl3(C) admits
the basis Ht ,X t ,Y t
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