
On the unimodularity testing for operator matrices:
the differential input into complexity

S. Abramov

Moscow, Comp. Centre of RAS, MSU

S. Abramov the differential complexity 1/24

Let K be a field of characteristic 0 with a derivation ∂ =′.

Matn(K [∂])

Any non-zero operator matrix L ∈ Matn(K [∂]) can be represented as

L = Ad∂
d + Ad−1∂

d−1 + · · ·+ A0, (1)

A0,A1, . . . ,Ad ∈ Matn(K),
the matrix Ad (the leading matrix of L) is non-zero.
d is the order of L (we write d = ord L).

An operator matrix L is invertible in Matn(K [∂]) and M ∈ Matn(K [∂]) is
its inverse, if LM = ML = In where In is the unit n × n-matrix.
We write L−1 for such a matrix M.

Invertible operator matrices are also called unimodular matrices.

S. Abramov the differential complexity 2/24

In M.Miyake’s paper, the following example is given (K = C, ∂ = d
dx):(

x2/2 −(x/2)∂ + 1
−x∂ − 3 ∂2

)−1
=

(
∂2 (x/2)∂

x∂ + 1 x2/2

)
. (2)

We give a complexity analysis of the unimodularity testing for an operator
matrix and of constructing the inverse matrix if it exists.

S. Abramov the differential complexity 3/24

Besides the complexity as the number of arithmetic operations (the
arithmetic complexity) one can consider the number of differentiations in
the worst case (the differential complexity).

Thus we will consider two complexities.
This is similar to the situation with sorting algorithms, when we consider
separately the complexity as the number of comparisons and, resp., the
number of swaps.

We will also consider the full complexity as the total number of all
operations in the worst case.

S. Abramov the differential complexity 4/24

Besides the complexity as the number of arithmetic operations (the
arithmetic complexity) one can consider the number of differentiations in
the worst case (the differential complexity).

Thus we will consider two complexities.
This is similar to the situation with sorting algorithms, when we consider
separately the complexity as the number of comparisons and, resp., the
number of swaps.

We will also consider the full complexity as the total number of all
operations in the worst case.

S. Abramov the differential complexity 4/24

The order of a row of L ∈ Matn(K [∂]) is the biggest order of operators
from K [∂] belonging to the row.

We use the standard notation

Mi ,∗, 1 ≤ i ≤ n,

for the 1× n-matrix which is the i-th row of an n × n-matrix M.

Set δi (L) = ord Li ,∗.

Let L be represented as Ad∂
d + Ad−1∂

d−1 + · · ·+ A0.
The matrix B ∈ Matn(K) such that Bi ,∗ = (Aδi (L))i ,∗ , i = 1, . . . , n, is the
frontal matrix of L.

S. Abramov the differential complexity 5/24

Background algorithms: RR (Row-Reduction) and

EG (EG-eliminations)

S. Abramov the differential complexity 6/24

Given L ∈ Matn(K [∂]) (of full rank), algorithm RR (Row-Reduction)
constructs L̆ ∈ Matn(K [∂]):

ord L̆ ≤ ord L,

the frontal matrix of L̆ is invertible,

L̆ has the form
L̆ = Ul . . .U1L. (3)

for some elementary unimodular U1, . . .Ul .

Let the rows of the frontal matrix of L be linearly dependent over K and
coefficients of the dependence are p1, . . . , pn ∈ K.
From the rows of L corresponding to nonzero coefficients, select one (i-th)
having the greatest order.
Replace the i-th row Li ,∗ by

m∑
j=1

pj∂
δi (L)−δj (L)Lj ,∗. (4)

Continue this process until the frontal matrix becomes nonsingular.
S. Abramov the differential complexity 7/24

Given L ∈ Matn(K [∂]) (of full rank), algorithm RR (Row-Reduction)
constructs L̆ ∈ Matn(K [∂]):

ord L̆ ≤ ord L,

the frontal matrix of L̆ is invertible,

L̆ has the form
L̆ = Ul . . .U1L. (3)

for some elementary unimodular U1, . . .Ul .

Let the rows of the frontal matrix of L be linearly dependent over K and
coefficients of the dependence are p1, . . . , pn ∈ K.
From the rows of L corresponding to nonzero coefficients, select one (i-th)
having the greatest order.
Replace the i-th row Li ,∗ by

m∑
j=1

pj∂
δi (L)−δj (L)Lj ,∗. (4)

Continue this process until the frontal matrix becomes nonsingular.
S. Abramov the differential complexity 7/24

Given L ∈ Matn(K [∂]) (of full rank), algorithm RR (Row-Reduction)
constructs L̆ ∈ Matn(K [∂]):

ord L̆ ≤ ord L,

the frontal matrix of L̆ is invertible,

L̆ has the form
L̆ = Ul . . .U1L. (3)

for some elementary unimodular U1, . . .Ul .

Let the rows of the frontal matrix of L be linearly dependent over K and
coefficients of the dependence are p1, . . . , pn ∈ K.
From the rows of L corresponding to nonzero coefficients, select one (i-th)
having the greatest order.
Replace the i-th row Li ,∗ by

m∑
j=1

pj∂
δi (L)−δj (L)Lj ,∗. (4)

Continue this process until the frontal matrix becomes nonsingular.
S. Abramov the differential complexity 7/24

Given L ∈ Matn(K [∂]) (of full rank), algorithm RR (Row-Reduction)
constructs L̆ ∈ Matn(K [∂]):

ord L̆ ≤ ord L,

the frontal matrix of L̆ is invertible,

L̆ has the form
L̆ = Ul . . .U1L. (3)

for some elementary unimodular U1, . . .Ul .

Let the rows of the frontal matrix of L be linearly dependent over K and
coefficients of the dependence are p1, . . . , pn ∈ K.
From the rows of L corresponding to nonzero coefficients, select one (i-th)
having the greatest order.
Replace the i-th row Li ,∗ by

m∑
j=1

pj∂
δi (L)−δj (L)Lj ,∗. (4)

Continue this process until the frontal matrix becomes nonsingular.
S. Abramov the differential complexity 7/24

Given L ∈ Matn(K [∂]) (of full rank), algorithm RR (Row-Reduction)
constructs L̆ ∈ Matn(K [∂]):

ord L̆ ≤ ord L,

the frontal matrix of L̆ is invertible,

L̆ has the form
L̆ = Ul . . .U1L. (3)

for some elementary unimodular U1, . . .Ul .

Let the rows of the frontal matrix of L be linearly dependent over K and
coefficients of the dependence are p1, . . . , pn ∈ K.
From the rows of L corresponding to nonzero coefficients, select one (i-th)
having the greatest order.
Replace the i-th row Li ,∗ by

m∑
j=1

pj∂
δi (L)−δj (L)Lj ,∗. (4)

Continue this process until the frontal matrix becomes nonsingular.
S. Abramov the differential complexity 7/24

Matrices U1, . . . ,Ul from (3) are of the form

i :



1

. . .

1

p1∂δi−δ1 . . . pi−1∂
δi−δi−1 pi pi+1∂

δi−δi+1 . . . pn∂δi−δn

1

. . .

1


(5)

with 1 ≤ i ≤ n, p1, . . . , pn ∈ K , pi 6= 0.

If L is not of full rank then RR (in its original version) allows to recognize
this.

S. Abramov the differential complexity 8/24

For a given L ∈ Matn(K [∂]), algorithm EG constructs L̃ ∈ Matn(K [∂])
such that

ord L̃ ≤ ord L,

the leading matrix of L̃ is invertible,

each solution of L is a solution of L̃.

Let the rows of the leading matrix of L be linearly dependent over K and
coefficients of the dependence are p1, . . . , pn ∈ K.
From the rows of L corresponding to nonzero coefficients, select one (i-th).
Replace the i-th row Li ,∗ by

m∑
j=1

pjLj ,∗ (6)

and differentiate the i-th row.
Continue this process until the leading matrix becomes nonsingular.

If the number of row differentiations becomes on some moment bigger
than nd then L is not of full rank and is not invertible.

S. Abramov the differential complexity 9/24

For a given L ∈ Matn(K [∂]), algorithm EG constructs L̃ ∈ Matn(K [∂])
such that

ord L̃ ≤ ord L,

the leading matrix of L̃ is invertible,

each solution of L is a solution of L̃.

Let the rows of the leading matrix of L be linearly dependent over K and
coefficients of the dependence are p1, . . . , pn ∈ K.
From the rows of L corresponding to nonzero coefficients, select one (i-th).
Replace the i-th row Li ,∗ by

m∑
j=1

pjLj ,∗ (6)

and differentiate the i-th row.
Continue this process until the leading matrix becomes nonsingular.

If the number of row differentiations becomes on some moment bigger
than nd then L is not of full rank and is not invertible.

S. Abramov the differential complexity 9/24

For a given L ∈ Matn(K [∂]), algorithm EG constructs L̃ ∈ Matn(K [∂])
such that

ord L̃ ≤ ord L,

the leading matrix of L̃ is invertible,

each solution of L is a solution of L̃.

Let the rows of the leading matrix of L be linearly dependent over K and
coefficients of the dependence are p1, . . . , pn ∈ K.
From the rows of L corresponding to nonzero coefficients, select one (i-th).
Replace the i-th row Li ,∗ by

m∑
j=1

pjLj ,∗ (6)

and differentiate the i-th row.
Continue this process until the leading matrix becomes nonsingular.

If the number of row differentiations becomes on some moment bigger
than nd then L is not of full rank and is not invertible.

S. Abramov the differential complexity 9/24

For a given L ∈ Matn(K [∂]), algorithm EG constructs L̃ ∈ Matn(K [∂])
such that

ord L̃ ≤ ord L,

the leading matrix of L̃ is invertible,

each solution of L is a solution of L̃.

Let the rows of the leading matrix of L be linearly dependent over K and
coefficients of the dependence are p1, . . . , pn ∈ K.
From the rows of L corresponding to nonzero coefficients, select one (i-th).
Replace the i-th row Li ,∗ by

m∑
j=1

pjLj ,∗ (6)

and differentiate the i-th row.
Continue this process until the leading matrix becomes nonsingular.

If the number of row differentiations becomes on some moment bigger
than nd then L is not of full rank and is not invertible.

S. Abramov the differential complexity 9/24

For a given L ∈ Matn(K [∂]), algorithm EG constructs L̃ ∈ Matn(K [∂])
such that

ord L̃ ≤ ord L,

the leading matrix of L̃ is invertible,

each solution of L is a solution of L̃.

Let the rows of the leading matrix of L be linearly dependent over K and
coefficients of the dependence are p1, . . . , pn ∈ K.
From the rows of L corresponding to nonzero coefficients, select one (i-th).
Replace the i-th row Li ,∗ by

m∑
j=1

pjLj ,∗ (6)

and differentiate the i-th row.
Continue this process until the leading matrix becomes nonsingular.

If the number of row differentiations becomes on some moment bigger
than nd then L is not of full rank and is not invertible.

S. Abramov the differential complexity 9/24

RR — no extra solutions (+), many differentiations (-)

EG — not so many differentiations (+), extra (“parasitic”) solutions can
appear (-)

each of this algorithms allows “triangular” version: ∆RR, ∆EG.
Using ∆RR, ∆EG we get the frontal (resp., leading) matrix in the
triangular form.

S. Abramov the differential complexity 10/24

Let the i-th row r of L ∈ Matn(K) be such that the corresponding row of
the frontal (the case RR) or the leading (the case EG) matrix has the form

(a1, . . . , ak , 0, . . . , 0), (7)

ak 6= 0. Then k is the pivot index of the i-th row of L.

If all rows of L have distinct pivot indices then the frontal (leading) matrix
of L is nonsingular.

Suppose that two rows r1, r2 of L have the same pivot index k .
Set d1 = ord r1, d2 = ord r2. Let d1 ≤ d2.
There exists a v in K such that the difference

r2 − v∂ d2−d1r1 (8)

either has the pivot index which is less than k or has the order which is
less than d2.

This can be used instead of a search for a linear dependency of the rows of
the frontal (leading) matrix of L.

S. Abramov the differential complexity 11/24

Let the i-th row r of L ∈ Matn(K) be such that the corresponding row of
the frontal (the case RR) or the leading (the case EG) matrix has the form

(a1, . . . , ak , 0, . . . , 0), (7)

ak 6= 0. Then k is the pivot index of the i-th row of L.

If all rows of L have distinct pivot indices then the frontal (leading) matrix
of L is nonsingular.

Suppose that two rows r1, r2 of L have the same pivot index k.
Set d1 = ord r1, d2 = ord r2. Let d1 ≤ d2.
There exists a v in K such that the difference

r2 − v∂ d2−d1r1 (8)

either has the pivot index which is less than k or has the order which is
less than d2.

This can be used instead of a search for a linear dependency of the rows of
the frontal (leading) matrix of L.

S. Abramov the differential complexity 11/24

For the difference case this was used in first versions of EG-eliminations,
and can still be found in Maple:
LinearFunctionalSystems[MatrixTriangularization].

A.Storjohann drew my attention to the fact that the complexity of this
approach is less than of one which uses solving linear algebraic systems.

S. Abramov the differential complexity 12/24

Fxx(n, d), Bxx(n, d),

Fxx(n, d) — “visible” (or “apparent”) arithmetic complexity of xx
(F = “at First sight”),
Bxx(n, d) — the sharp upper bound for the number of row differentiations

We have

FRR(n, d) = Θ(nω+1d + n3d2), BRR(n, d) = Θ(n2d2)

FEG(n, d) = Θ(nω+1d + n3d2), BRR(n, d) = Θ(nd2)

F∆RR(n, d) = Θ(n3d2), B∆RR(n, d) = Θ(n2d2)

F∆EG(n, d) = Θ(n3d2), B∆RR(n, d) = Θ(nd2).

S. Abramov the differential complexity 13/24

Fxx(n, d), Bxx(n, d),

Fxx(n, d) — “visible” (or “apparent”) arithmetic complexity of xx
(F = “at First sight”),
Bxx(n, d) — the sharp upper bound for the number of row differentiations

We have

FRR(n, d) = Θ(nω+1d + n3d2), BRR(n, d) = Θ(n2d2)

FEG(n, d) = Θ(nω+1d + n3d2), BRR(n, d) = Θ(nd2)

F∆RR(n, d) = Θ(n3d2), B∆RR(n, d) = Θ(n2d2)

F∆EG(n, d) = Θ(n3d2), B∆RR(n, d) = Θ(nd2).

S. Abramov the differential complexity 13/24

Let xx ∈ {RR, EG, ∆RR, ∆EG}.

It is possible to show that

T̃xx(n, d) = Θ(Bxx(n, d)nd) (9)

for the the differential complexity T̃ , and

Txx(n, d) = Θ(Fxx(n, d) + Bxx(n, d)nd) (10)

for the arithmetic complexity T .

Concerning (10) note that each differentiation of a row of L uses besides
nd of differentiations of elements of K also the same number of arithmetic
operations (additions) in K . By this reason, (10) holds for both total and
arithmetic complexities.

The space complexity:

SRR(n, d) = Θ(n2 + nd), SEG(n, d) = Θ(n2 + nd)

S∆RR(n, d) = Θ(nd), S∆EG(n, d) = Θ(nd)
S. Abramov the differential complexity 14/24

Let xx ∈ {RR, EG, ∆RR, ∆EG}.

It is possible to show that

T̃xx(n, d) = Θ(Bxx(n, d)nd) (9)

for the the differential complexity T̃ , and

Txx(n, d) = Θ(Fxx(n, d) + Bxx(n, d)nd) (10)

for the arithmetic complexity T .

Concerning (10) note that each differentiation of a row of L uses besides
nd of differentiations of elements of K also the same number of arithmetic
operations (additions) in K . By this reason, (10) holds for both total and
arithmetic complexities.

The space complexity:

SRR(n, d) = Θ(n2 + nd), SEG(n, d) = Θ(n2 + nd)

S∆RR(n, d) = Θ(nd), S∆EG(n, d) = Θ(nd)
S. Abramov the differential complexity 14/24

Let xx ∈ {RR, EG, ∆RR, ∆EG}.

It is possible to show that

T̃xx(n, d) = Θ(Bxx(n, d)nd) (9)

for the the differential complexity T̃ , and

Txx(n, d) = Θ(Fxx(n, d) + Bxx(n, d)nd) (10)

for the arithmetic complexity T .

Concerning (10) note that each differentiation of a row of L uses besides
nd of differentiations of elements of K also the same number of arithmetic
operations (additions) in K . By this reason, (10) holds for both total and
arithmetic complexities.

The space complexity:

SRR(n, d) = Θ(n2 + nd), SEG(n, d) = Θ(n2 + nd)

S∆RR(n, d) = Θ(nd), S∆EG(n, d) = Θ(nd)
S. Abramov the differential complexity 14/24

Unimodularity testing

S. Abramov the differential complexity 15/24

Alg 1 — RR — (“yes” + a sequence of elementary matrices) or “no”

Alg 2 — ∆RR — (“yes” + a sequence of elementary matrices) or “no”

Alg 3 — ∆EG — “yes” or “no” only

F1(n, d) = Θ(nω+1d + n3d2), T̃1(n, d) = Θ(n3d3)
T1(n, d) = Θ(nω+1d + n3d3),

F2(n, d) = Θ(n3d2), T̃2(n, d) = Θ(n3d3),
T2(n, d) = Θ(n3d3),

F3(n, d) = Θ(n3d2), T̃3(n, d) = Θ(n2d3),
T3(n, d) = Θ(n3d2 + n2d3),

Note that for all the three algorithms the full complexity T grows faster
than the “visual” complexity F .

S. Abramov the differential complexity 16/24

Alg 1 — RR — (“yes” + a sequence of elementary matrices) or “no”

Alg 2 — ∆RR — (“yes” + a sequence of elementary matrices) or “no”

Alg 3 — ∆EG — “yes” or “no” only

F1(n, d) = Θ(nω+1d + n3d2), T̃1(n, d) = Θ(n3d3)
T1(n, d) = Θ(nω+1d + n3d3),

F2(n, d) = Θ(n3d2), T̃2(n, d) = Θ(n3d3),
T2(n, d) = Θ(n3d3),

F3(n, d) = Θ(n3d2), T̃3(n, d) = Θ(n2d3),
T3(n, d) = Θ(n3d2 + n2d3),

Note that for all the three algorithms the full complexity T grows faster
than the “visual” complexity F .

S. Abramov the differential complexity 16/24

Explicit inverse matrix

S. Abramov the differential complexity 17/24

Proposition 1

(Barkatou, El Bacha, Labahn, Pfluegel) Let algorithm RR compute
step-by-step the unimodular matrices of the form (5) for L ∈ Matn(K [∂]),
ord L = d. Then ord(Uk . . .U1) = O(nd) for all k = 1, . . . , l .

Proposition 2

Let L be unimodular. Then

ord L−1 ≤ (n − 1)d (11)

and (11) is the sharp bound.

The bound (11) follows from some estimates related to computing the
Hermite form given by Giesbrecht and Kim. We prove that this bound is
sharp.

S. Abramov the differential complexity 18/24

Proposition 1

(Barkatou, El Bacha, Labahn, Pfluegel) Let algorithm RR compute
step-by-step the unimodular matrices of the form (5) for L ∈ Matn(K [∂]),
ord L = d. Then ord(Uk . . .U1) = O(nd) for all k = 1, . . . , l .

Proposition 2

Let L be unimodular. Then

ord L−1 ≤ (n − 1)d (11)

and (11) is the sharp bound.

The bound (11) follows from some estimates related to computing the
Hermite form given by Giesbrecht and Kim. We prove that this bound is
sharp.

S. Abramov the differential complexity 18/24



1 ∂d 0 0 0 0
0 1 ∂d 0 0 0

. . .

. . .

. . .

. . .

0 0 0 0 1 ∂d

0 0 0 0 0 1




1 −∂d ∂2d −∂3d . . . (−1)n−2∂(n−2)d (−1)n−1∂(n−1)d

0 1 −∂d ∂2d . . . (−1)n−3∂(n−3)d (−1)n−2∂(n−2)d

. . .

. . .

0 0 0 0 . . . 1 −∂d
0 0 0 0 . . . 0 1


S. Abramov the differential complexity 19/24

Btw, as a consequence of Proposition 2 we get:

If L ∈ Mat2(K [∂]) is unimodular then ord L−1 = ord L.

(Miyake’s example confirms this.)

S. Abramov the differential complexity 20/24

4:

Output: The result of the unimodularity testing of L, and L−1 if L is
unimodular; in the last case L−1 is represented as a matrix from
Matn(K [∂]):

The operations which algorithm 1 performs on the operator matrix which
is originally equal to L are doubled on the matrix which is originally equal
to the unit matrix In. This results the product U = Ul . . .U1 in the explicit
form. If L was transformed by algorithm 1 into L̆ of order 0 then the
operator matrix L is unimodular and L−1 = L̆−1U.

The algorithm was presented by Barkatou, El Bacha, Labahn, Pfluegel.

F4(n, d) = Θ(n4d2), T̃4(n, d) = Θ(n4d3), T4(n, d) = Θ(n4d3)

S4(n, d) = Θ(n2d)

S. Abramov the differential complexity 21/24

4:

Output: The result of the unimodularity testing of L, and L−1 if L is
unimodular; in the last case L−1 is represented as a matrix from
Matn(K [∂]):

The operations which algorithm 1 performs on the operator matrix which
is originally equal to L are doubled on the matrix which is originally equal
to the unit matrix In. This results the product U = Ul . . .U1 in the explicit
form. If L was transformed by algorithm 1 into L̆ of order 0 then the
operator matrix L is unimodular and L−1 = L̆−1U.

The algorithm was presented by Barkatou, El Bacha, Labahn, Pfluegel.

F4(n, d) = Θ(n4d2), T̃4(n, d) = Θ(n4d3), T4(n, d) = Θ(n4d3)

S4(n, d) = Θ(n2d)

S. Abramov the differential complexity 21/24

4:

Output: The result of the unimodularity testing of L, and L−1 if L is
unimodular; in the last case L−1 is represented as a matrix from
Matn(K [∂]):

The operations which algorithm 1 performs on the operator matrix which
is originally equal to L are doubled on the matrix which is originally equal
to the unit matrix In. This results the product U = Ul . . .U1 in the explicit
form. If L was transformed by algorithm 1 into L̆ of order 0 then the
operator matrix L is unimodular and L−1 = L̆−1U.

The algorithm was presented by Barkatou, El Bacha, Labahn, Pfluegel.

F4(n, d) = Θ(n4d2), T̃4(n, d) = Θ(n4d3), T4(n, d) = Θ(n4d3)

S4(n, d) = Θ(n2d)

S. Abramov the differential complexity 21/24

When all differentiated rows are stored

S. Abramov the differential complexity 22/24

Proposition 3

The number of row differentiations without repetitions (when the result of
each differentiation is stored, i.e., when we collect all such results)
executed by the algorithm RR is O(nd2); as a consequence, the number of
differentiations of elements of K is O(n2d3).

Conjecture 1

The estimates O(nd2) and, resp., O(n2d3) given by Proposition 3 can be
replaced by Θ(nd) and, resp., Θ(n2d2).

S. Abramov the differential complexity 23/24

Proposition 3

The number of row differentiations without repetitions (when the result of
each differentiation is stored, i.e., when we collect all such results)
executed by the algorithm RR is O(nd2); as a consequence, the number of
differentiations of elements of K is O(n2d3).

Conjecture 1

The estimates O(nd2) and, resp., O(n2d3) given by Proposition 3 can be
replaced by Θ(nd) and, resp., Θ(n2d2).

S. Abramov the differential complexity 23/24

Algorithms 1′, 2′, 4′

F1′(n, d) = Θ(nω+1d + n3d2), T̃1′(n, d) = O(n2d3)
T1′(n, d) = O(nω+1d + n3d2 + n2d3),
S1′(n, d) = O(n2d3)

F2′(n, d) = Θ(n3d2), T̃2′(n, d) = O(n2d3),
T2′(n, d) = O(n3d2 + n2d3),
S2′(n, d) = O(n2d3)

F4′(n, d) = Θ(n4d2), T̃4′(n, d) = O(n3d3),
T4′(n, d) = O(n4d3).
S4′(n, d) = O(n3d3)

If Conjecture 1 is correct then

F2′(n, d) = Θ(n3d2), T̃2′(n, d) = Θ(n2d2),
T2′(n, d) = Θ(n3d2),
S2′(n, d) = Θ(n2d2)

F4′(n, d) = Θ(n4d2), T̃4′(n, d) = Θ(n3d2),
T4′(n, d) = Θ(n4d2).
S4′(n, d) = Θ(n3d2)

S. Abramov the differential complexity 24/24

Algorithms 1′, 2′, 4′

F1′(n, d) = Θ(nω+1d + n3d2), T̃1′(n, d) = O(n2d3)
T1′(n, d) = O(nω+1d + n3d2 + n2d3),
S1′(n, d) = O(n2d3)

F2′(n, d) = Θ(n3d2), T̃2′(n, d) = O(n2d3),
T2′(n, d) = O(n3d2 + n2d3),
S2′(n, d) = O(n2d3)

F4′(n, d) = Θ(n4d2), T̃4′(n, d) = O(n3d3),
T4′(n, d) = O(n4d3).
S4′(n, d) = O(n3d3)

If Conjecture 1 is correct then

F2′(n, d) = Θ(n3d2), T̃2′(n, d) = Θ(n2d2),
T2′(n, d) = Θ(n3d2),
S2′(n, d) = Θ(n2d2)

F4′(n, d) = Θ(n4d2), T̃4′(n, d) = Θ(n3d2),
T4′(n, d) = Θ(n4d2).
S4′(n, d) = Θ(n3d2)

S. Abramov the differential complexity 24/24

