Séminaire Géométrie et groupes discrets

Eigenvalue Asymmetry for Convex Real Projective Surfaces

by Prof. Jeffrey Danciger (University of Texas at Austin)

Amphithéâtre Léon Motchane (IHES)

Amphithéâtre Léon Motchane


Le Bois Marie 35, route de Chartres 91440 Bures-sur-Yvette

A convex real projective surface is one obtained as the quotient of a properly convex open set in the projective plane by a discrete subgroup of SL(3,R), called the holonomy group, that preserves this convex set. The most basic examples are hyperbolic surfaces, for which the convex set is an ellipse, and the holonomy group is conjugate into SO(2,1). In this case, the eigenvalues of elements of the holonomy group are symmetric. More generally, the asymmetry of the eigenvalues of the holonomy group is a natural measure of how far a convex real projective surface is from being hyperbolic. We study the problem of determining which elements (and more generally geodesic currents) may have maximal eigenvalue asymmetry. We will present some limited initial results that we hope may be suggestive of a bigger picture. Joint work with Florian Stecker.

Organized by

Fanny Kassel