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Deterministic eigenfunctions

(M, g) closed smooth Riemannian surface
A(m,g) Laplace-Beltrami operator on (M, g)

Amgf +Af =0 on M

Eigenvalues: g < A\ <A< A3
Eigenfunctions: fy, f;, o, f3... orthon. basis L2(M, dVoly)
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Berry's Random Wave Model

For "generic" chaotic surfaces, compare f; «— W;
W, = (W;(x))xer2 centered Gaussian field on the plane

Cov(Wj(x), Wj(y)) = Jo(v/Allx = ylI)
AW+ \W; =0 a.s.



GAUSSIANITY: RANDOM PHASE MODEL ON R?

R?: assume we observe the superposition of NN waves at frequency k,
that is

Tin(x Zexp (ik(0;,x) + ¢})

for x € R?, k € RT, where {0}j=1,... N are random directions on the unit
circle and {¢;}j=1,.. v are random phases.

o CLT = Ti.n(x) —4 7}() a zero mean Gaussian field
E | Te(xa) Tilxa) | = Jo(kixs = xell,).

where Jy () is the Bessel function of order 0, given by

2m

2‘6 22’" (m")?



GAUSSIANITY: RANDOM PHASE MODEL ON R?

e Double asymptotic setting:

(1) a diverging number of random phases ensures that the behaviour of
random eigenfunctions is Gaussian, due to a standard CLT;

(2) taking Gaussianity for granted the asymptotic behaviour of random
eigenfunctions is investigated, in the high-frequency/high energy
sense (i.e., for diverging eigenvalues).

Q: Gaussianity has been established for a fixed eigenvalue k, can we
justify the use of this assumption in the limit as k — oco?

Do we need some conditions that relate of divergence for the
eigenvalue k to the rate of divergence of the random phases N7



THE MODEL ON S?

Laplacian operator in S?:

1 d 1 &
Ag = — —sinl— + ———;
T Gne00 """ 00 " sinfg 092

in the spherical case, a deterministic eigenfunction centred on y € S? can
be constructed by

ery('):S* = R, ey (r) =1/ %4—; 1Pz((',y>) .

Py(+) Legendre polynomials

1 df
Pg(t) :

— ﬁw(t2_l)z'€20’l’2""; te0,1].

Py(1) = 1 for all £ and ||ez;y||l_2(§2) =1. {es, ()} satisfies the Helmholtz
equation
ASZEg;y(X) + /\g&g;y(X) =0,¢=0,1,2,...,

Ae = £(€ + 1) is the sequence of eigenvalues



RANDOM PHASE MODEL ON §2

e Spherical Poisson Random Waves (with rate v):

/25—1—1
T[f(X \/» o P[ Xé‘ dNt )

where {N;(-)} is a Poisson process on the sphere, with

E[N.(A)] = v: x u(A) for all A€ B(S?)

Jt is the Lebesgue measure on S2. Our model implies that for all

A C S?and t >0, N,(A) is a Poisson random variable with expected
value equal to vy x p(A), and for Ay N Ay = 0 N:(A;1) and N:(Az)
are independent.

Ne(S?
Toi(x z \/2”1& ((x.£0))
k=1

Note that




SPHERICAL HARMONICS

The standard basis for the (2¢ 4 1)-dimensional space of eigenfunctions
corresponding to the eigenvalue )\;; are defined as the normalized
eigenfunctions { Yom},,_ , , which satisfy the further condition (in
spherical coordinates)

62
Yim:S2 =R, ¥ Yim(0, ) = —m?Yyn(6,¢) .
2t EZZ; P} (cos 8) cos (my) forme{l,...,0}
Yim (0, ¢) = 1/%/3@ (cos 9) form=0
%EﬁfZ;ZP[m (cos@)sin (—my) for me {—¢,...,—1}

where

m m dm
Pe (t) = (1—t2) /2dt‘7m

is the Legendre associated function Pj" : [-1,1] — R of degree £ and
order m.

Pe(t) , t €]0,1]



e Duplication formula:

2041 20+1 2041
L = 2Py

2 Pelix.2) Pal(z,y))dz = =

for all x,y € S2.
= E[Te,e(x) Tee(v)] = Pe({x,y)) -

° Addition formula:

2041
Z Yim(x) Yem(y) = 4+ Po((x,y)) , for all x,y € S2.

m=—{

14

N(S?) ¢
Z 3 Vem(¥)Yen(€) = 3 80m(t) Yem(x),
k=1

m=—¢ m=—{

= Tz;t(X)

E\H
j

Random Plane Wave is the scaling limit of random spherical harmonics. Hilb’s asymptotic formula:
Ve > 0, uniformly for @ € [0, 7 — €] as £ — oo,

Py(cosf) ~ 4/ %Jo <<£+ %) H)



where the random spherical harmonic coefficients {3 n},_ , , are
defined by

N
A7 !

[E kE::l Yem(&x)

where {£,} are the points charged by the Poisson process.

éz’,-,,(t) =

) R m ot AT
Elaem(6)20m (8)] = 050 7 s

e Parseval’s identity holds, i.e.

4

| Teel 222y = /S2 TZo(x)dx = Z ETGIE

m=—/{



1. CONVERGENCE OF THE FINITE-DIMENSIONAL
DISTRIBUTIONS

e Theorem 1 (Durastanti, Marinucci, T. 2022): For every fixed x,
assuming that v; x (log#)~! — oo,

dw(Tee(x), N) < ([ +f> '°ft

F=(Tut(x1), Tet(x2), - .-, Tee(xq)), X1, %2, ..., Xq d points on S?,
Z a Gaussian vector.

ds(F,2) < Cd?, | 28"
Vi
dw(X,Y):= sup [Eh(X)—Eh(Y)|
Bl | p <1

d3(A, B) := sup, [E[h(A)] — E[n(B)]|



COMPARISON WITH NEEDLETS COEFFICIENTS

2J+1

U((x.9) = Z b(f) ”4“/%« )

(=2i—1

where {b (%) }5:21—1
variance.

2+1 weights normalized so that 3;(€) has unit

77777

d5(5,(6). 2) = O ( 2)

(Durastanti-Marinucci-Peccati 2014)



IDEA OF THE PROOF

Toe (x) = = Joo \/ 265 Pe ((x,€)) dNe(x)
— FMT for integral functionals of Poisson processes!

DEFINITION
For every deterministic function h € L2(p) the Wiener-Ito integral of h
with respect to N is given by

h(h) = /@ h(z)N(dz).

The Hilbert space composed of the random variables of the form Iy(h)
where h € L2(p), is called the first Wiener chaos associated with the
Poisson measure N.

Here © = R, x S? A the class of Borel subsets of ©, labeled by B(0).



FOURTH MOMENT THEOREM

Theorem [Débler-Vidotto-Zheng 2018]: For £ € N, let F € W,
while Z ~ N(0,1). Var(F) =1 and E[F*] < co. Then it holds that

1 2

dw(F.2)< (= +3 ) VEFT—3

Theorem [Débler-Vidotto-Zheng 2018]: F = (Fy,...,F4)" centred
random vector with covariance matrix [y and s.t. F; € W;.
Zy ~ N(0,T4) . Then for every g € C3(R?), we have that

[E[g(F)] — E[g(Z)]| < Bs(g, d Z E[F}] — 3E[F7]?

with
vd n 2,/dTr(T4)



E[TE] = Y Eldrm(t) dm()am(t) dm(t)]

mimams3mgy

X Yfml (X) Yfmz (X) Yfms (X) Y4m4 (X) dx ;

substituting the value of &, ,, we have that

ot (ay) X MY

ml,...m4:—l kl,...,k4:1

S\/4"71 (gkl ) S\/lmz (gkz ) S\/lms £k3) S\/me (£k4 )]
X Yoy (X) Yem, (X) Yems (X) Yem, () -



Applying the addition formula:

20+1\% 1
E[Tg‘t] - ( 4 ) 2
t

_ <2€+1)2 % (Ve [Pel(€h x)*] + 32 [Pel(gh, 0))°)

47 ;



1

log ¢

/ P}(t) dt ~ 237 L; . (Marinucci-Wigman (2011))
0 i

3 log/

=E [Pf(<§klvx>)4] - /SZ P€(<Z7X>)4d2 ~ 47@7 , as { — oo .

Moreover, since

1 1
/O Py(t)? dt =57
= E[Py({€k, x))?] = /S Py((z, x))2dz = 2541 -.

Then

on3 Ve

BT =3+ 5op 4o (L)
t



2. CONVERGENCE IN LAW FOR THE VECTOR OF
SPHERICAL HARMONIC COEFFICIENTS

Let us consider the vector

Vi = (a0,—¢(t), ..., 800(t)) = {8e,m(t) tm=—s,...c

where
iy

N
am(t) = (%Jrl)\/ly»t ; Yem(&k) -

Efaem(t)] =0;

A A m' b’ 47I'
E[a¢,m(t)ae m ()] = 0 3¢ m



e Theorem 2 (Durastanti, Marinucci, T. 2022): Let Zy4; a
Gaussian vector of dimension 2¢ + 1 with zero mean and covariance

m 4™ Then we have that

function equal to 5.

log ¢
d3 (Vé taZQZ+1) < sup B3(g g)\/SWC €§ (‘el/t) ,

gecs

where

Bilei0) = V2 () 1 2t T Tyamms(a)

- It should be noted that the resulting bound is of order ,/'°V"i£.

for fixed k > 1 and g € Ck~1(R)

Dkfl _ Dkfl o
Mi(g) = sup ID™"g(x) g()llop
XAy [[x — Y||L2(Rd)



IDEA OF THE PROOF

e Step 1:

47

Ela m(t)"] = <(24+ 1)>2 LE[Yin(€)] +3 ((%41 1)>2

e Step 2:

(2 + 1)
Nz

E[Yim(&1)*] = 2L+ 1

(Cigwo)? (cgwmgmf]
e Step 3:

3 comfan(e) < VAR Bl o (1)

m=—1~



CLEBSCH-GORDAN COEFFICIENTS

They are involved in the evaluation of multiple integrals of spherical
harmonics, the so-called Gaunt integrals, given by

N
~
S|
+ 13
—

Ly, My Lo, My Lny—mp
£1,m1;€o,my Ly, Myil3,ms” " =Ly _3,My_3;€n_1,mp—1
Ly...Lp,_3M;...M,_3

H,-”;1(2€,- +1), 1 15,0 Cin0
* (2177)”*1 {G 1052 Ci o0+ CLy s 000 100 | -



3. QCLT v L3(S?)

{Te.t} as random elements T, : Q — L2(S?), i.e. as measurable
applications with the topology induced on L?(S?) by the standard metric

(r.) = |IF = gl = [ 1700 - g0 b

e Theorem 3 (Durastanti, Marinucci, T. 2022): Let Z be a
centred Gaussian process with the same covariance operator as Ty.;.

We have that
1 4
d5(Tee, Z) < ( +4\/7r) ypa
4 UVt

- Asymptotic gaussianity holds under the simple condition that
v — oo no matter how fast the sequence of eigenvalues diverge to
infinity.



QCLT 1N L?(S?): PROOF

e Theorem [Bourguin-Campese-Dang 2021]: X is a K—valued random
variable who belongs to the first Wiener chaos with finite fourth
moment, i.e. E[||X||%] < oo, and with covariance operator S. We
denote by Z a Gaussian process taking values in the same separable
Hilbert space of X and having the same covariance operator S. Then

h(x.2) < (3 + \4EIIXIRT) BT~ BUXIRE - 215 e,

| - ||ns denotes the Hilbert-Schmidt norm

= We need to compute the quantity
2 2
E[ Teel22ey] — (B Tael o)) — 211Suells

where Sy.; is the covariance operator of Ty,;.



|| Teel ] = B { /S TP dx}

4 4
:»/SQ Z Z E[ég,ml(t) éZ,mz(t)]Yeml(X)ngz(x) dx

mlzfl mzsz

L
47
_ / g 2 Yim(x)Yin(x) dx
§2 m=—/{

¢
47
Wil m;[ /S2 Yem(X) Yem(x)dx = 47 .

It follows that (E[|| T¢.¢||?])? = (47)2.



Now we compute E[|| Ty.;||*], which gives

El|| Teiel[*] = B 1| Tosel Il Tee 7]

-E z/: |30, m, ()2 ZI: |é€,mz(t)|2]
e Vo
_ ((2€+1)> ELZZ Vi, (66,) Ve, (61.)
X XZ: Zyémz(gkg)yém2(§k4):|'
my=—F k3ky
l
|‘T1€;t”%2(82):/82 Tf;t(x)dX: Z |5Z7m(t)‘2

m=—/



Applying the addition formula we get

1 2 [ N: N Ne N
BTl = () B |22 3 P60 32 30 Pl
Lki=1 ko= =1 ky=

E ZPM&I,&Q»Z
ki=1

ki=koF#ks=ks

E Z PZ(<§k17£k2>)Pf(<§k37£k4>)

ki=ksF#ka=ka

)*| |
>2IE S Pl ) Pe(Ehr )
)
)

E Z P€(<£k17£k2>)Pf(<§k37§k4>)

ki=ksFk3=ko



and since P;(0) = 1 for all ¢ we obtain

E[]] Te:el ]

G =[S
Ve k=1 Ut Tk

2
+2(u1> E[ > Pe(<£k1,5k2>)2]
‘ ki=ks#ko=ka

2
+ (Vlt> 27 /(SZ)Z Po({€ks €k,))? dEsy dEp,

47
2041

4
= + (477)2 + 2(47)
UVt

:



The covariance operator S+ is such that

4

L
1Seellis = - D Elaem(t)acm (1)

m=—Lm'=—/{
2
m' _ (47)2
m;gmz ( ™2+ 1) C20+1

and then we finally obtain

E[]| Te.ell*] = (Il Teel*)) — 21| Secell s

4 (47)? ) (47)? 47
= — 2~ -2 = — .
L. T )+ 1 2=




COMMENTS:

e |t may come at first sight as a suprise that the rate of convergence
in this functional setting (i.e., 1/,/v) does not depend on the index
¢ and it is indeed faster than in the finite-dimensional case. The
apparent paradox is solved noting that the topology that we consider
here is too coarse to imply convergence of the finite-dimensional
distributions.



4. QCLT v W, »(S?)

Now we consider the random eigenfunctions belonging to the Sobolev
space on the sphere, i.e., the space of functions f € L2(S2),

=300 anz% a,m Yeo,m, with finite norm

14
1oy =2 32 (14 VITH D) Jarml

£>0 m=—¢

Theorem 4 (Bourguin, Durastanti, Marinucci, T. 2023): Let Z be a
centred Gaussian process with the same covariance operator as Ty,;. We
have that

B3, (Tee, Z) < (i +4ﬁ> \/47‘((1 + \/ft(gfl))m




QCLT v W, (S?): PROOF

First note that

{HTZ el 2] = <1+ \/ﬁ) [|Té t||L2(S2)}

and
21Tl ] = (L VD) B 1 Tellee] . )

Indeed, we have that

E [ el o 1 Tecly,

8 ﬁe ie (1+ VT D) el @,mﬂ
<1+\/€(£T1)) Z[ Z:_ﬁlaeml Iaemll
(14 VAT D) E [ Tuel )

E [ Teelly, .|




2
ISeiell wsqw ) = IE[Tee ® Teeel iy,

L l 2
4 1
ST 2 2 EYem(&e)Yom ()] Yom ® Yo
P m=—tm=—t We 2(5)
2
_ U
(20 +1)2
Wa,z(S2)

(1+Vf714j

Then, it follows that

2€+1

(1+vaerD)”

4 2 2
E [HTf?tHWa,z} ~E? [HTE;tHWa,z} —2 HSE;tHHS(Wa,Q) = 4m Vs



COMMENTS

For a > % a quantitative Central Limit Theorem in Sobolev space does
imply the quantitative Central Limit Theorem for the marginal
distribution at every given location on the sphere.

Note first that

1l (s - _SUP|ZZQM ) Yem(x))|
ZZlaem F)lsup | Yim(x)]

ZZ|agm 2£+1

IN

IN

whence

2
1
e < %{szmm 2z+1}
£ m



Multiplying and dividing by (1 + /¢(¢ +1))*v/2¢ + 1 and then applying
twice Cauchy-Schwarz inequality we get

1 (20 +1)?
fliesy < ==IIFI}
11 o0 (52 27T|| IIWQ_QXK:(IJr W)
< *II v, ,¢(2a = 2),

where as usual
¢(2a - Z gza 2 '

because a > %

2
= Fllfe(sy < ZCa=2) x [Iflly, , -



= the topology generated by the norm ||.||,;, , is finer than the topology
generated by ||| (g2

N sup IEA(X) — EA(Y)]
h continuous w.r.t.H.HLoo(52)
< sup [EA(X) —Eh(Y)] .
h continuous w.r.t. H<HW&2

COROLLARY
For o > % we have that

d3(Xe(x), Zi(x)) = S [Eg(Xe(x)) — Eg(Ze(x))| < C(a)ds,w., ,(Xe; Ze)

where the term C(«) does not depend on ¢.
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