LOCALIZING INVARIANTS AND K-THEORY - REFERENCES

GEORG TAMME

- Localizing invariants in general: ... and non-commutative motives BGT, \# 9, App. A]
- K-theory is localizing: Waldhausen's localization theorem for connective K-theory [W], non-connective K-theory of schemes [TT, non-connective K-theory of exact categories [S , for stable ∞-categories [BGT], direct proof using only ∞-categorical methods HLS
- Thomason-Neeman localization theorem: Original sources: [TT, N1], modern account: [NS, §I.3].
- Compact generation of $D_{q c}(X)$: for X qc separated scheme [N2], for X qcqs scheme [BvdB], for X qcqs spectral algebraic space [CMNN]
- \odot-ring: oriented fiber products [T1, \odot-ring, truncating invariants and applications LT]
- cdh- and pro-cdh-descent: pro-cdh descent for K-theory: first paper, with more assumptions [M], general, Noetherian case [KST]; stronger pro-cdh descent for localizing invariants for Noetherian stacks [BKRS]. cdh-descent for truncating invariants [LT, App. A].

References

[BGT] Blumberg, Andrew J.; Gepner, David; Tabuada, Gonçalo, A universal characterization of higher algebraic K-theory, Geom. Topol. 17 (2013), no. 2, 733-838.
[BKRS] Bachmann, T.; Khan, A.; Ravi, S.; Sosnilo, V. Categorical Milnor squares and K-theory of algebraic stacks. Selecta Math. (N.S.)28(2022), no.5, Paper No. 85, 72 pp.
[BvdB] Bondal, A.; van den Bergh, M. Generators and representability of functors in commutative and noncommutative geometry. Mosc. Math. J., 3(1):1-36, 258, 2003.
[\# 9] Calmes, B.; Dotto, E.;, Harpaz, Y., Hebestreit, F.; Land, M.; Moi, K.; Nardin, D.; Nikolaus, T.; Steimle, W. Hermitian K-theory for stable ∞-categories II: Cobordism categories and additivity arXiv:2009.07224
[CMNN] Clausen,D.; Mathew, A.; Naumann, N.; Noel, J. Descent in algebraic K-theory and a conjecture of Ausoni-Rognes, J. Eur. Math. Soc. (JEMS)22(2020), no.4, 1149-1200
[HLS] Hebestreit, F.; Lachmann, A.; Steimle, W., The localisation theorem for the K-theory of stable ∞-categories, arXiv:2205.06104
[KST] Kerz, M.; Strunk, F.; Tamme, G. Algebraic K-theory and descent for blow-ups Invent. Math.211(2018), no.2, 523-577
[LT] Land, M.; Tamme, G. On the K-theory of pullbacks. Ann. of Math. (2)190(2019), no.3, 877-930
[M] Morrow, M. Pro cdh-descent for cyclic homology and K-theory. J. Inst. Math. Jussieu 15(3), 539567 (2016)
[N1] Neeman, A., The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 547-566.
[N2] Neeman, A., The Grothendieck duality theorem via Bousfield's techniques and Brown representability. J. Amer. Math. Soc., 9(1):205-236, 1996.
[NS] Nikolaus, Thomas; Scholze, Peter, On topological cyclic homology, Acta Math. 221 (2018), no. 2, 203-409.
[S] Schlichting, M. Delooping the K-theory of exact categories, Topology 43(2004), no.5, 1089-1103.
[T1] Tamme, G. Excision in algebraic K-theory revisited. Compos. Math.154(2018), no.9, 1801-1814
[TT] Thomason, R. W.; Trobaugh, Thomas, Higher algebraic K-theory of schemes and of derived categories, Progr. Math., 88 Birkhäuser Boston, Inc., Boston, MA, 1990, 247-435.
[W] Waldhausen, F., Algebraic K-theory of spaces. Algebraic and geometric topology (New Brunswick, N.J., 1983), 318-419. Lecture Notes in Math., 1126 Springer-Verlag, Berlin, 1985

