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The Busemann-Petty Problem in Rn
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K , L origin symmetric convex bodies in Rn. Let

voln−1
(

K ∩θ⊥
)
≤ voln−1

(
L∩θ⊥

)
,∀θ ∈ Sn−1.

Does it follow that
voln (K)≤ voln (L)?

Yes, n ≤ 4; No, n ≥ 5.

K. Ball, J. Bourgain, R. Gardner, A.Giannopoulos, A. Koldobsky, D. Larman,
E. Lutwak, M. Papadimitrakis, C. Rogers, T. Schlumprecht, G. Zhang.
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General measures

f (x) - even, positive, continuous function on Rn.

µ- measure on Rn with the density f , i.e.

µ(K) =
∫
K

f (x)dx and µ(K ∩θ⊥) =
∫

K∩θ⊥

f (x)dx .

Fix n ≥ 2. Given two convex origin-symmetric bodies K and L in Rn such that

µ(K ∩θ⊥)≤ µ(L∩θ⊥)

for every θ ∈ Sn−1, does it follow that

µ(K)≤ µ(L)?

(A.Z., 2005):
The answer to the above problem is independent from the "choice" of measure
and depends only on the dimension n (i.e. YES for n ≤ 4 and NO for n ≥ 5).
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Isomorphic version of the Busemann-Petty problem

Does there exist a constant L> 0, so that if

voln−1
(
K ∩θ⊥

)
≤ voln−1

(
L∩θ⊥

)
,∀θ ∈ Sd−1

then
voln (K)≤ L · voln (L)?

Best known result follows from direct connection to the slicing problem of Bourgain
and works of V. Milman, A. Pajor/J. Brogain/ B. Klartag / Y. Chen/ B. Klartag and
J. Lehec / A. Jambulapati, Y. T. Lee and S. Vempala / B. Klartag:

L ≤ C
√

logn

As we just noted his question is equivalent to the slicing problem of J. Bourgain:

Slicing Problem:

Does there exist a constant L1 such that for any convex symmetric body K ⊂ Rd

voln(K)
n−1
n ≤ L1 max

θ∈Sn−1
voln−1(K ∩θ⊥)?

L ≈ L1
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Isomorphic version Busemann-Petty problem for arbitrary measures.

Problem:

Does there exist a constant L2, so that if µ(K ∩θ⊥)≤ µ(L∩θ⊥) for every θ ∈ Sn−1, then µ(K)≤ L2µ(L)?

(A. Koldobsky - A.Z, 2014 / Denghui Wu, 2020)

L2 ≤
√
n - Independent of µ!

If µ satisfies a concavity assumption then L2 ≈ L (follows from works of K. Ball and S. Bobkov) and thus

L2 ≤ C
√

logn.

Problem (A. Koldobsky):

Does there exist a constant L3 > 0 such that for any convex symmetric body K ⊂ Rn

µ(K)≤ L3 max
θ∈Sn−1

µ(K ∩θ
⊥)voln(K)

1
n ?

(A. Koldobsky): L3 ≤ C
√
n and L3 ≤ C for many special classes of bodies K .

(A. Koldobsky - A.Z, 2014) If µ satisfy a concavity assumption then L3 ≈ L (follows from works of K. Ball

and S. Bobkov) and thus L2 ≤ C
√

logn.

(A. Koldobsky - B. Klartag/ B. Klartag - G. Livshyts) L3 ≈
√
n.

Many applications of those facts (including distances to Lnp spaces) were done by (S. Bobkov, A.
Giannopoulos, B. Klartag, A. Koldobsky, G. Livshyts, G. Paouris, A.Z.).
No idea how L2 is connected to L3 (or how any of them really connected to L).
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Standard definition.

Radial function: ρK (ξ) = sup{a : aξ ∈ K}, for ξ ∈ Sn−1.

0
K

ρ (ξ)

Also ρK (ξ) = ‖ξ‖−1K , where ‖ξ‖−1K is a Minkowski functional, or, in convex
symmetric case, just a norm for which K is a unit ball.

K is a star body if ρK (ξ) is positive and continuous function on Sn−1.

Spherical coordinates and Volume:

voln(K) =
∫

Sn−1

∫ ρK (θ)

0
rn−1drdθ = 1

n

∫
Sn−1

ρnK (θ)dθ.
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Can we further generalize this question and WHY?
Using spherical coordinates in ξ⊥ we get

voln−1(K ∩ ξ⊥) =
1

n−1

∫
Sn−1∩ξ⊥

ρn−1K (θ)dθ =
1

n−1
Rρn−1K (ξ).

Spherical Radon Transform:

Rf (ξ) =
∫

Sn−1∩ξ⊥

f (θ)dθ

So we can rewrite the classical Busemann-Petty problem

K , L origin symmetric convex bodies in Rn. Let

voln−1
(
K ∩ ξ⊥

)
≤ voln−1

(
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Now let f (ξ) = ρn−1K (ξ) and g(ξ) = ρn−1L (ξ) the above becomes
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Can we further generalize this question and WHY?

Spherical Radon Transform:

Rf (ξ) =
∫

Sn−1∩ξ⊥

f (θ)dθ

Spherical Comparison Problem

Fix p > 0. Consider two positive, even functions f ,g : Sn−1→ R. Let

Rf (ξ)≤ Rg(ξ),∀ξ ∈ Sn−1.

Does it follow that ‖f ‖Lp(Sn−1) ≤ ‖g‖Lp(Sn−1)?

Case p = 1 is "easy" (it is a Fubini theorem on Sn−1). Case p = n/(n−1) is a
Busemann-Petty problem.
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Clearly, case p = 1 is "a joke"! But it looks like, in general, we should have enough
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Let n ≥ 2, take M > 1, c = M−n+1, and set p > n
n−1 . Consider the functions

ϕ(x) = χBn
2
(x) and ψ(x) = cχMBn

2
(x). Then

Rϕ(t, ξ)≤Rψ(t, ξ), for all (t, ξ) ∈ R×Sn−1,

but ‖ϕ‖Lp(Rn) > ‖ψ‖Lp(Rn).

Artem Zvavitch Comparison problems for bodies, measures and functions.



Can we further generalize this question and WHY?

Radon Transform:

Rϕ(t, ξ) =
∫
ξ⊥+tξ

ϕ(x)dx , ξ ∈ Sn−1, t ∈ R

Comparison Problem for Radon Transform
Fix p > 0. Consider two positive, even functions ϕ,ψ: Rn→ R+, n ≥ 2,. Let

Rϕ(t,θ)≤Rψ(t,θ), for all (t,θ) ∈ R×Sn−1.

Does it follow that ‖ϕ‖Lp(Rn) ≤ ‖ψ‖Lp(Rn)?

Clearly, case p = 1 is "a joke"!

But it looks like, in general, we should have enough
information for a positive answer...

Let n ≥ 2, take M > 1, c = M−n+1, and set p > n
n−1 . Consider the functions

ϕ(x) = χBn
2
(x) and ψ(x) = cχMBn

2
(x). Then

Rϕ(t, ξ)≤Rψ(t, ξ), for all (t, ξ) ∈ R×Sn−1,

but ‖ϕ‖Lp(Rn) > ‖ψ‖Lp(Rn).

Artem Zvavitch Comparison problems for bodies, measures and functions.



Can we further generalize this question and WHY?

Radon Transform:

Rϕ(t, ξ) =
∫
ξ⊥+tξ

ϕ(x)dx , ξ ∈ Sn−1, t ∈ R

Comparison Problem for Radon Transform
Fix p > 0. Consider two positive, even functions ϕ,ψ: Rn→ R+, n ≥ 2,. Let

Rϕ(t,θ)≤Rψ(t,θ), for all (t,θ) ∈ R×Sn−1.

Does it follow that ‖ϕ‖Lp(Rn) ≤ ‖ψ‖Lp(Rn)?

Clearly, case p = 1 is "a joke"! But it looks like, in general, we should have enough
information for a positive answer...

Let n ≥ 2, take M > 1, c = M−n+1, and set p > n
n−1 . Consider the functions

ϕ(x) = χBn
2
(x) and ψ(x) = cχMBn

2
(x). Then

Rϕ(t, ξ)≤Rψ(t, ξ), for all (t, ξ) ∈ R×Sn−1,

but ‖ϕ‖Lp(Rn) > ‖ψ‖Lp(Rn).

Artem Zvavitch Comparison problems for bodies, measures and functions.



Can we further generalize this question and WHY?

Radon Transform:

Rϕ(t, ξ) =
∫
ξ⊥+tξ

ϕ(x)dx , ξ ∈ Sn−1, t ∈ R

Comparison Problem for Radon Transform
Fix p > 0. Consider two positive, even functions ϕ,ψ: Rn→ R+, n ≥ 2,. Let

Rϕ(t,θ)≤Rψ(t,θ), for all (t,θ) ∈ R×Sn−1.

Does it follow that ‖ϕ‖Lp(Rn) ≤ ‖ψ‖Lp(Rn)?

Clearly, case p = 1 is "a joke"! But it looks like, in general, we should have enough
information for a positive answer...

Let n ≥ 2, take M > 1, c = M−n+1, and set p > n
n−1 .

Consider the functions
ϕ(x) = χBn

2
(x) and ψ(x) = cχMBn

2
(x). Then

Rϕ(t, ξ)≤Rψ(t, ξ), for all (t, ξ) ∈ R×Sn−1,

but ‖ϕ‖Lp(Rn) > ‖ψ‖Lp(Rn).

Artem Zvavitch Comparison problems for bodies, measures and functions.



Can we further generalize this question and WHY?

Radon Transform:

Rϕ(t, ξ) =
∫
ξ⊥+tξ

ϕ(x)dx , ξ ∈ Sn−1, t ∈ R

Comparison Problem for Radon Transform
Fix p > 0. Consider two positive, even functions ϕ,ψ: Rn→ R+, n ≥ 2,. Let

Rϕ(t,θ)≤Rψ(t,θ), for all (t,θ) ∈ R×Sn−1.

Does it follow that ‖ϕ‖Lp(Rn) ≤ ‖ψ‖Lp(Rn)?

Clearly, case p = 1 is "a joke"! But it looks like, in general, we should have enough
information for a positive answer...

Let n ≥ 2, take M > 1, c = M−n+1, and set p > n
n−1 . Consider the functions

ϕ(x) = χBn
2
(x) and ψ(x) = cχMBn

2
(x).

Then

Rϕ(t, ξ)≤Rψ(t, ξ), for all (t, ξ) ∈ R×Sn−1,

but ‖ϕ‖Lp(Rn) > ‖ψ‖Lp(Rn).

Artem Zvavitch Comparison problems for bodies, measures and functions.



Can we further generalize this question and WHY?

Radon Transform:

Rϕ(t, ξ) =
∫
ξ⊥+tξ

ϕ(x)dx , ξ ∈ Sn−1, t ∈ R

Comparison Problem for Radon Transform
Fix p > 0. Consider two positive, even functions ϕ,ψ: Rn→ R+, n ≥ 2,. Let

Rϕ(t,θ)≤Rψ(t,θ), for all (t,θ) ∈ R×Sn−1.

Does it follow that ‖ϕ‖Lp(Rn) ≤ ‖ψ‖Lp(Rn)?

Clearly, case p = 1 is "a joke"! But it looks like, in general, we should have enough
information for a positive answer...

Let n ≥ 2, take M > 1, c = M−n+1, and set p > n
n−1 . Consider the functions

ϕ(x) = χBn
2
(x) and ψ(x) = cχMBn

2
(x). Then

Rϕ(t, ξ)≤Rψ(t, ξ), for all (t, ξ) ∈ R×Sn−1,

but ‖ϕ‖Lp(Rn) > ‖ψ‖Lp(Rn).

Artem Zvavitch Comparison problems for bodies, measures and functions.



Can we further generalize this question and WHY?

Radon Transform:

Rϕ(t, ξ) =
∫
ξ⊥+tξ

ϕ(x)dx , ξ ∈ Sn−1, t ∈ R

Comparison Problem for Radon Transform
Fix p > 0. Consider two positive, even functions ϕ,ψ: Rn→ R+, n ≥ 2,. Let

Rϕ(t,θ)≤Rψ(t,θ), for all (t,θ) ∈ R×Sn−1.

Does it follow that ‖ϕ‖Lp(Rn) ≤ ‖ψ‖Lp(Rn)?

Clearly, case p = 1 is "a joke"! But it looks like, in general, we should have enough
information for a positive answer...

Let n ≥ 2, take M > 1, c = M−n+1, and set p > n
n−1 . Consider the functions

ϕ(x) = χBn
2
(x) and ψ(x) = cχMBn

2
(x). Then

Rϕ(t, ξ)≤Rψ(t, ξ), for all (t, ξ) ∈ R×Sn−1,

but ‖ϕ‖Lp(Rn) > ‖ψ‖Lp(Rn).

Artem Zvavitch Comparison problems for bodies, measures and functions.



Can we further generalize this question and WHY?

Radon Transform: Rϕ(t, ξ) =
∫
ξ⊥+tξϕ(x)dx , ξ ∈ Sn−1, t ∈ R

Lp-Lq-estimates for the Radon transform, have been studied for decades.

D.M. Oberlin and E.M. Stein proved that given any function f : Rn→ R, f ∈ Lp(Rn):(∫
Sn−1

(∫
R
|Rf (t, ξ)|rdt

) q
r

dξ

) 1
q

≤ Cn,p,q‖f ‖Lp(Rn),

where 1≤ p < n
n−1 , q ≤ p′ ( 1p + 1

p′ = 1), and 1
r = n

p −n+1. Also(∫
Sn−1

(
sup
t∈R
|Rf (t, ξ)|

)s) 1
s

≤ Cp1,p2,s‖f ‖αLp1 (Rn)‖f ‖
1−α
Lp2 (Rn)

whenever s ≤ n, 1≤ p1 < n
n−1 < p2 ≤∞, and α

p1
+ 1−α

p2
= n−1

n . E. Lutwak noticed
that the limiting case of above takes as back to Convex Geometry. Take f to be the
characteristic function of a measurable set in A⊂ Rn, s = n, p1,p2→ n

n−1 ,(∫
Sn−1

(
sup
t∈R
|A∩ (ξ⊥+ tξ)|

)n) 1
n

≤ Cn|A|
n−1
n .

Take A - convex and symmetric apply Brunn concavity principle you get Busemann
intersection inequality.
Our "dream" to prove "reverse" inequalities, may be for some classes of functions.
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Idea of the solution of the Busemann-Petty Problem in Rn

voln−1
(
K ∩ ξ⊥

)
≤ voln−1

(
L∩ ξ⊥

)
,∀ξ ∈ Sn−1 =⇒ voln (K)≤ voln (L)?

We have Rρn−1
K (ξ)≤ Rρn−1

L (ξ),∀ξ ∈ Sn−1. We need
∫
Sn−1 ρ

n
K (ξ)dξ ≤

∫
Sn−1 ρ

n
L(ξ)dξ? Still the best idea

(E. Lutwak) is to use "Fubini theorem". If ρK (ξ) = (RµK )(ξ), where µK is a positive measure on Sn−1, then we
are done. Indeed integrate the condition with µK :∫

Sn−1
Rρn−1

K (ξ)dµK ≤

∫
Sn−1

Rρn−1
L (ξ)dµK .∫

Sn−1
ρ
n−1
K (ξ)RµK (ξ)dξ ≤

∫
Sn−1

ρ
n−1
L (ξ)RµK dξ∫

Sn−1
ρ
n
K (ξ)dξ ≤

∫
Sn−1

ρ
n−1
L (ξ)ρK (ξ)dξ

Apply Hölder’s inequality and finish.

(E.Lutvak; R. Gardner; G. Zhang) K is an intersection body if there exists a non-negative, finite Borel measure µK∫
Sn−1

ρK (ξ)f (x)dx = 〈ρK (ξ), f 〉 = 〈RµK , f 〉 =

∫
Sn−1

[Rf ](ξ)dµK (ξ)

holds for all f ∈ C(Sn−1).
(A. Koldobsky) An origin-symmetric star body K in Rn is an intersection body if, and only if, ρK is a positive
definite distribution on Rn , i.e. "ρ̂K > 0".
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Spherical Radon Transform Case
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2 f p−1

(
x
|x|2

)
represents a positive definite distribution on

Rn . Then ‖f ‖Lp (Sn−1) ≤ ‖g‖Lp (Sn−1).

(b) Suppose that for some 0< p < 1 the function |x|−1
2 gp−1

(
x
|x|2

)
represents a positive definite
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Spherical Radon Transform: Reverse bounds
"Slicing Theorem" FOR A VERY SPECIAL CLASS OF FUNCTIONS !

Corrolary (A. Koldobsky, M. Roysdon and A.Z., 2023):

Let f be a positive even, continuous function on the sphere Sn−1 Assume p > 1 and if
|x |−12 f p−1

(
x
|x|2

)
represents a positive definite distribution on Rn, then

‖f ‖Lp(Sn−1) ≤
|Sn−1|

1
p

|Sn−2|
max
ξ∈Sn−1

Rf (ξ).

Let g be a positive even, continuous function on the sphere Sn−1 Assume 0< p < 1
and if |x |−12 gp−1

(
x
|x|2

)
represents a positive definite distribution on Rn, then

‖g‖Lp(Sn−1) ≥
|Sn−1|

1
p

|Sn−2|
min

ξ∈Sn−1
Rg(ξ).
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Radon Transform in Rn: Intersection Functions

Definition (A. Koldobsky, M. Roysdon and A.Z., 2023):

A non-negative, even, continuous, integrable function f on Rn is called an intersection function if,
for every direction θ ∈ Sn−1, the function

r ∈ R 7→ |r |n−1 f̂ (rθ)

is a positive definite function on R for each θ ∈ Sn−1 (note where f̂ denotes the Fourier transforms
of f on Rn).

We will stay more "practical/geometric" definition as a theorem:

Theorem

An even, continuous, non-negative, and integrable function f defined on Rn is an intersection
function if, and only if, for every direction θ ∈ Sn−1, there exists a non-negative, even, finite Borel
measure µθ on R such that

the function

θ ∈ Sn−1 7→

∫
R

Rϕ(t,θ)dµθ(t)

belongs to L1(Sn−1) whenever ϕ ∈ S(Rn) (Schwartz space of rapidly decreasing infinitely
differentiable test functions on Rn), and∫

Rn
fϕ =

∫
Sn−1

∫
R

Rϕ(t,θ)dµθ(t)dθ.

holds for all ϕ ∈ S(Rn).
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Comparison Problem in Rn

Theorem (A. Koldobsky, M. Roysdon and A.Z., 2023):

Let p > 0 and consider a pair of continuous, non-negative even functions ϕ,ψ ∈ L1(Rn)∩Lp(Rn)
satisfying the condition

Rϕ(t,θ)≤Rψ(t,θ) for all (t,θ) ∈ R×Sn−1
.

Then:
(a) if p > 1 and ϕp−1 is an intersection function, then ‖ϕ‖Lp (Rn) ≤ ‖ψ‖Lp (Rn), and

(b) if 0< p < 1 and ψp−1 is an intersection function, then ‖ϕ‖Lp (Rn) ≤ ‖ψ‖Lp (Rn).

The following hold:
(c) Fix p > 1 and let ψ ∈ S(Rn) be non-negative and even. If ψp−1 is not an intersection

function, then there exists an even, non-negative ϕ ∈ S(Rn) such that

Rϕ(t,θ)≤Rψ(t,θ) for all (t,θ) ∈ R×Sn−1
,

but with ‖ψ‖Lp (Rn) < ‖ϕ‖Lp (Rn).

(d) Fix 0< p < 1 and let ϕ ∈ S(Rn) be non-negative and even. If ϕp−1 is not an intersection
function, then there exists a non-negative, even ψ ∈ S(Rn) such that Rϕ≤Rψ, but with
‖ψ‖Lp (Rn) < ‖ϕ‖Lp (Rn).
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Is the a humane way to understand "intersection functions"?

E. Lutwak: Intersection body, of a body K

ξ

ξ)(    ΙΚ = ξ   )
ρ
ΙΚ

(    ξ )
Voln−1 ρ

K IK

(K    

So ρIK (ξ) = [Rg ](ξ), where g : Sn−1→ R+ (o.k. in this case g(ξ) = 1
n−1ρ

n−1
K (ξ)).

From now we will talk about very nice functions (even, continuous, integrable) only

A function f on Rn is an intersection function of the function g if, for any ϕ ∈ S(Rn):

〈f ,ϕ〉 =

∫
Rn
ϕ(x)f (x) dx =

∫
Sn−1

∫
R

Rϕ(t,θ)g(t,θ) dt dθ = 〈g,Rϕ〉.

Any way to connect it to intersection bodies?

Theorem

For any nice g : R×Sn−1→ R the function f : Rn→ R+ defined by

f (x) =

∫
Sn−1

g(〈x ,θ〉,θ)dθ

is an intersection function of g.
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Is the a humane way to understand "intersection functions"?
From now we will talk about very nice functions (even, continuous, integrable)
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May be there is a formula that Artem can actually use to check?

Theorem

A function f on Rn is an intersection function of g if, and only if,

f =
1
π

(
|x |−n+1

2

(
g(t,

x
|x |2

)
)∧

t
(|x |2)

)∧
x
,

where the interior Fourier transform is taken with respect to t ∈ R, and the exterior Fourier
transform is with respect to x ∈ Rn.
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Examples

Example (Exponentials)

Fix q ∈ (0,2], and let ` ∈ C(Sn−1) be even and strictly positive. For each
θ ∈ Sn−1, set

hθ(r) = `(θ)e−|r |
q
.

Note that
(hθ)∧r (t) = `(θ)

(
e−|r |

q
)∧
r

(t) := `(θ)γq(t)

is a positive function on R. Consequently, the function

fq(ξ) = 1
π

[
|x |−n+1

2 `

(
x
|x |2

)
e−|x |

q
2

]∧
x

(ξ)

is the intersection function of

gq(t,θ) = `(θ)γq(t).
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Note that
(hθ)∧r (t) = `(θ)

(
e−|r |

q
)∧
r

(t) := `(θ)γq(t)

is a positive function on R. Consequently, the function

fq(ξ) = 1
π

[
|x |−n+1

2 `

(
x
|x |2

)
e−|x |

q
2

]∧
x

(ξ)

is the intersection function of

gq(t,θ) = `(θ)γq(t).
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A non-example

Example

Again, take ` ∈ C(Sn−1) even and strictly positive. To provide a non-example
of an intersection function, for any θ ∈ Sn−1 and q > 2, consider functions of
the form hθ(r) = `(θ)exp(−|r |q), where ` ∈ C(Sn−1) is strictly positive.

Taking the Fourier transform by r ∈ R, we see that

(hθ)∧r (t) = `(θ)(e−|r |
q
)∧r (t) := `(θ)γq(t).

But γq(t) is not always non-negative, so the function f given by

f (x) = 1
π

[
|x |−n+1

2 `

(
x
|x |2

)
e−|x |

q
2

]∧
ξ

(x)

fails to be an intersection function.
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