Comparison problems for bodies, measures and functions.

Artem Zvavitch Kent State University

(based on a joint work with Alexander Koldobsky and Michael Roysdon)

"61 Probability Encounters, In honor of Sergey Bobkov", Paul Sabatier University, Toulouse, May 29 – June 2, 2023

The Busemann-Petty Problem in \mathbb{R}^n

K, L origin symmetric convex bodies in \mathbb{R}^n . Let

$$\operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \theta^{\perp}\right), \forall \theta \in \mathbb{S}^{n-1}$$

Does it follow that

 $\operatorname{vol}_n(K) \leq \operatorname{vol}_n(L)$?

The Busemann-Petty Problem in \mathbb{R}^n

K, L origin symmetric convex bodies in \mathbb{R}^n . Let

$$\operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \theta^{\perp}\right), \forall \theta \in \mathbb{S}^{n-1}$$

Does it follow that

 $\operatorname{vol}_n(K) \leq \operatorname{vol}_n(L)$?

Yes, $n \le 4$; No, $n \ge 5$.

K. Ball, J. Bourgain, R. Gardner, A.Giannopoulos, A. Koldobsky, D. Larman, E. Lutwak, M. Papadimitrakis, C. Rogers, T. Schlumprecht, G. Zhang. f(x) - even, **positive**, continuous function on \mathbb{R}^n .

∃⇒

f(x) - even, **positive**, continuous function on \mathbb{R}^n . μ - measure on \mathbb{R}^n with the density f, i.e.

$$\mu(K) = \int_{K} f(x) dx$$
 and $\mu(K \cap \theta^{\perp}) = \int_{K \cap \theta^{\perp}} f(x) dx$.

э

f(x) - even, **positive**, continuous function on \mathbb{R}^n . μ - measure on \mathbb{R}^n with the density f, i.e.

$$\mu(K) = \int_{K} f(x) dx$$
 and $\mu(K \cap \theta^{\perp}) = \int_{K \cap \theta^{\perp}} f(x) dx$.

Fix $n \ge 2$. Given two convex origin-symmetric bodies K and L in \mathbb{R}^n such that $\mu(K \cap \theta^{\perp}) \le \mu(L \cap \theta^{\perp})$

for every $\theta \in \mathbb{S}^{n-1}$, does it follow that

 $\mu(K) \leq \mu(L)$?

f(x) - even, **positive**, continuous function on \mathbb{R}^n . μ - measure on \mathbb{R}^n with the density f, i.e.

$$\mu(K) = \int_{K} f(x) dx$$
 and $\mu(K \cap \theta^{\perp}) = \int_{K \cap \theta^{\perp}} f(x) dx$.

Fix $n \ge 2$. Given two convex origin-symmetric bodies K and L in \mathbb{R}^n such that $\mu(K \cap \theta^{\perp}) \le \mu(L \cap \theta^{\perp})$

for every $\theta \in \mathbb{S}^{n-1}$, does it follow that

 $\mu(K) \leq \mu(L)?$

(A.Z., 2005):

The answer to the above problem is independent from the "choice" of measure and depends only on the dimension n (i.e. YES for $n \le 4$ and NO for $n \ge 5$).

Isomorphic version of the Busemann-Petty problem

Does there exist a constant $\mathcal{L}>0,$ so that if

$$\mathsf{vol}_{n-1}\left(\mathsf{K}\cap \mathbf{ heta}^{\perp}
ight)\leq\mathsf{vol}_{n-1}\left(\mathsf{L}\cap \mathbf{ heta}^{\perp}
ight),orall \mathbf{ heta}\in\mathbb{S}^{d-1}$$

then

 $\operatorname{vol}_n(K) \leq \mathcal{L} \cdot \operatorname{vol}_n(L)$?

э

Isomorphic version of the Busemann-Petty problem

Does there exist a constant $\mathcal{L}>0,$ so that if

$$\mathsf{vol}_{n-1}\left(\mathsf{K}\cap \mathbf{ heta}^{\perp}
ight)\leq\mathsf{vol}_{n-1}\left(\mathsf{L}\cap \mathbf{ heta}^{\perp}
ight),orall \mathbf{ heta}\in\mathbb{S}^{d-1}$$

then

 $\operatorname{vol}_n(K) \leq \mathcal{L} \cdot \operatorname{vol}_n(L)$?

Best known result follows from direct connection to the slicing problem of Bourgain and works of V. Milman, A. Pajor/J. Brogain/ B. Klartag / Y. Chen/ B. Klartag and J. Lehec / A. Jambulapati, Y. T. Lee and S. Vempala / B. Klartag:

 $\mathcal{L} \leq C\sqrt{\log n}$

Isomorphic version of the Busemann-Petty problem

Does there exist a constant $\mathcal{L}>0,$ so that if

$$\mathsf{vol}_{n-1}\left(K \cap \boldsymbol{ heta}^{\perp}
ight) \leq \mathsf{vol}_{n-1}\left(L \cap \boldsymbol{ heta}^{\perp}
ight), orall \boldsymbol{ heta} \in \mathbb{S}^{d-1}$$

then

 $\operatorname{vol}_n(K) \leq \mathcal{L} \cdot \operatorname{vol}_n(L)$?

Best known result follows from direct connection to the slicing problem of Bourgain and works of V. Milman, A. Pajor/J. Brogain/ B. Klartag / Y. Chen/ B. Klartag and J. Lehec / A. Jambulapati, Y. T. Lee and S. Vempala / B. Klartag:

 $\mathcal{L} \leq C \sqrt{\log n}$

As we just noted his question is equivalent to the slicing problem of J. Bourgain:

Slicing Problem:

Does there exist a constant \mathcal{L}_1 such that for any convex symmetric body $\mathcal{K} \subset \mathbb{R}^d$

$$\operatorname{vol}_n(K)^{\frac{n-1}{n}} \leq \mathcal{L}_1 \max_{\theta \in \mathbb{S}^{n-1}} \operatorname{vol}_{n-1}(K \cap \theta^{\perp})?$$

 $\mathcal{L}\approx\mathcal{L}_1$

Problem:

Does there exist a constant \mathcal{L}_2 , so that if $\mu(K \cap \theta^{\perp}) \leq \mu(L \cap \theta^{\perp})$ for every $\theta \in \mathbb{S}^{n-1}$, then $\mu(K) \leq \mathcal{L}_2 \mu(L)$?

3.1

Problem:

Does there exist a constant \mathcal{L}_2 , so that if $\mu(K \cap \theta^{\perp}) \leq \mu(L \cap \theta^{\perp})$ for every $\theta \in \mathbb{S}^{n-1}$, then $\mu(K) \leq \mathcal{L}_2 \mu(L)$?

(A. Koldobsky - A.Z, 2014 / Denghui Wu, 2020)

• $\mathcal{L}_2 \leq \sqrt{n}$ - Independent of $\mu!$

 ${\bf \in \Xi \rightarrow }$

э

Problem:

Does there exist a constant \mathcal{L}_2 , so that if $\mu(K \cap \theta^{\perp}) \leq \mu(L \cap \theta^{\perp})$ for every $\theta \in \mathbb{S}^{n-1}$, then $\mu(K) \leq \mathcal{L}_2 \mu(L)$?

(A. Koldobsky - A.Z, 2014 / Denghui Wu, 2020)

- $\mathcal{L}_2 \leq \sqrt{n}$ Independent of μ !
- If μ satisfies a concavity assumption then $\mathcal{L}_2 \approx \mathcal{L}$ (follows from works of K. Ball and S. Bobkov) and thus $\mathcal{L}_2 \leq C \sqrt{\log n}$.

Problem:

Does there exist a constant \mathcal{L}_2 , so that if $\mu(K \cap \theta^{\perp}) \leq \mu(L \cap \theta^{\perp})$ for every $\theta \in \mathbb{S}^{n-1}$, then $\mu(K) \leq \mathcal{L}_2 \mu(L)$?

(A. Koldobsky - A.Z, 2014 / Denghui Wu, 2020)

- $\mathcal{L}_2 \leq \sqrt{n}$ Independent of μ !
- If μ satisfies a concavity assumption then $\mathcal{L}_2 \approx \mathcal{L}$ (follows from works of K. Ball and S. Bobkov) and thus $\mathcal{L}_2 \leq C \sqrt{\log n}$.

Problem (A. Koldobsky):

Does there exist a constant $\mathcal{L}_3 > 0$ such that for any convex symmetric body $\mathcal{K} \subset \mathbb{R}^n$

$$\mu(K) \leq \mathcal{L}_3 \max_{\boldsymbol{\theta} \in \mathbb{S}^{n-1}} \mu(K \cap \boldsymbol{\theta}^{\perp}) \operatorname{vol}_n(K)^{\frac{1}{n}}?$$

< ∃⇒

Problem:

Does there exist a constant \mathcal{L}_2 , so that if $\mu(K \cap \theta^{\perp}) \leq \mu(L \cap \theta^{\perp})$ for every $\theta \in \mathbb{S}^{n-1}$, then $\mu(K) \leq \mathcal{L}_2 \mu(L)$?

(A. Koldobsky - A.Z, 2014 / Denghui Wu, 2020)

- $\mathcal{L}_2 \leq \sqrt{n}$ Independent of μ !
- If μ satisfies a concavity assumption then $\mathcal{L}_2 \approx \mathcal{L}$ (follows from works of K. Ball and S. Bobkov) and thus $\mathcal{L}_2 \leq C \sqrt{\log n}$.

Problem (A. Koldobsky):

Does there exist a constant $\mathcal{L}_3 > 0$ such that for any convex symmetric body $\mathcal{K} \subset \mathbb{R}^n$

$$\mu(K) \leq \mathcal{L}_3 \max_{\boldsymbol{\theta} \in \mathbb{S}^{n-1}} \mu(K \cap \boldsymbol{\theta}^{\perp}) \operatorname{vol}_n(K)^{\frac{1}{n}}?$$

(A. Koldobsky): L₃ ≤ C√n and L₃ ≤ C for many special classes of bodies K.

Problem:

Does there exist a constant \mathcal{L}_2 , so that if $\mu(K \cap \theta^{\perp}) \leq \mu(L \cap \theta^{\perp})$ for every $\theta \in \mathbb{S}^{n-1}$, then $\mu(K) \leq \mathcal{L}_2 \mu(L)$?

(A. Koldobsky - A.Z, 2014 / Denghui Wu, 2020)

- $\mathcal{L}_2 \leq \sqrt{n}$ Independent of μ !
- If μ satisfies a concavity assumption then $\mathcal{L}_2 \approx \mathcal{L}$ (follows from works of K. Ball and S. Bobkov) and thus $\mathcal{L}_2 \leq C \sqrt{\log n}$.

Problem (A. Koldobsky):

Does there exist a constant $\mathcal{L}_3 > 0$ such that for any convex symmetric body $\mathcal{K} \subset \mathbb{R}^n$

$$\mu(K) \leq \mathcal{L}_3 \max_{\boldsymbol{\theta} \in \mathbb{S}^{n-1}} \mu(K \cap \boldsymbol{\theta}^{\perp}) \operatorname{vol}_n(K)^{\frac{1}{n}}?$$

- (A. Koldobsky): $\mathcal{L}_3 \leq C\sqrt{n}$ and $\mathcal{L}_3 \leq C$ for many special classes of bodies K.
- (A. Koldobsky A.Z, 2014) If μ satisfy a concavity assumption then L₃ ≈ L (follows from works of K. Ball and S. Bobkov) and thus L₂ ≤ C √ log n.

Problem:

Does there exist a constant \mathcal{L}_2 , so that if $\mu(K \cap \theta^{\perp}) \leq \mu(L \cap \theta^{\perp})$ for every $\theta \in \mathbb{S}^{n-1}$, then $\mu(K) \leq \mathcal{L}_2 \mu(L)$?

(A. Koldobsky - A.Z, 2014 / Denghui Wu, 2020)

- $\mathcal{L}_2 \leq \sqrt{n}$ Independent of $\mu!$
- If μ satisfies a concavity assumption then $\mathcal{L}_2 \approx \mathcal{L}$ (follows from works of K. Ball and S. Bobkov) and thus $\mathcal{L}_2 \leq C \sqrt{\log n}$.

Problem (A. Koldobsky):

Does there exist a constant $\mathcal{L}_3 > 0$ such that for any convex symmetric body $K \subset \mathbb{R}^n$

$$\mu(K) \leq \mathcal{L}_3 \max_{\boldsymbol{\theta} \in \mathbb{S}^{n-1}} \mu(K \cap \boldsymbol{\theta}^{\perp}) \operatorname{vol}_n(K)^{\frac{1}{n}}?$$

- (A. Koldobsky): $\mathcal{L}_3 \leq C\sqrt{n}$ and $\mathcal{L}_3 \leq C$ for many special classes of bodies K.
- (A. Koldobsky A.Z, 2014) If μ satisfy a concavity assumption then L₃ ≈ L (follows from works of K. Ball and S. Bobkov) and thus L₂ ≤ C √ log n.
- (A. Koldobsky B. Klartag/ B. Klartag G. Livshyts) $\mathcal{L}_3 \approx \sqrt{n}$.

Problem:

Does there exist a constant \mathcal{L}_2 , so that if $\mu(K \cap \theta^{\perp}) \leq \mu(L \cap \theta^{\perp})$ for every $\theta \in \mathbb{S}^{n-1}$, then $\mu(K) \leq \mathcal{L}_2 \mu(L)$?

(A. Koldobsky - A.Z, 2014 / Denghui Wu, 2020)

- $\mathcal{L}_2 \leq \sqrt{n}$ Independent of $\mu!$
- If μ satisfies a concavity assumption then $\mathcal{L}_2 \approx \mathcal{L}$ (follows from works of K. Ball and S. Bobkov) and thus $\mathcal{L}_2 \leq C \sqrt{\log n}$.

Problem (A. Koldobsky):

Does there exist a constant $\mathcal{L}_3 > 0$ such that for any convex symmetric body $K \subset \mathbb{R}^n$

$$\mu(K) \leq \mathcal{L}_3 \max_{\boldsymbol{\theta} \in \mathbb{S}^{n-1}} \mu(K \cap \boldsymbol{\theta}^{\perp}) \operatorname{vol}_n(K)^{\frac{1}{n}}?$$

- (A. Koldobsky): L₃ ≤ C√n and L₃ ≤ C for many special classes of bodies K.
- (A. Koldobsky A.Z, 2014) If µ satisfy a concavity assumption then L₃ ≈ L (follows from works of K. Ball and S. Bobkov) and thus L₂ ≤ C √ log n.
- (A. Koldobsky B. Klartag/ B. Klartag G. Livshyts) $\mathcal{L}_3 \approx \sqrt{n}$.
- Many applications of those facts (including distances to Lⁿ_p spaces) were done by (S. Bobkov, A. Giannopoulos, B. Klartag, A. Koldobsky, G. Livshyts, G. Paouris, A.Z.).

Problem:

Does there exist a constant \mathcal{L}_2 , so that if $\mu(K \cap \theta^{\perp}) \leq \mu(L \cap \theta^{\perp})$ for every $\theta \in \mathbb{S}^{n-1}$, then $\mu(K) \leq \mathcal{L}_2 \mu(L)$?

(A. Koldobsky - A.Z, 2014 / Denghui Wu, 2020)

- $\mathcal{L}_2 \leq \sqrt{n}$ Independent of $\mu!$
- If μ satisfies a concavity assumption then $\mathcal{L}_2 \approx \mathcal{L}$ (follows from works of K. Ball and S. Bobkov) and thus $\mathcal{L}_2 \leq C \sqrt{\log n}$.

Problem (A. Koldobsky):

Does there exist a constant $\mathcal{L}_3 > 0$ such that for any convex symmetric body $\mathcal{K} \subset \mathbb{R}^n$

$$\mu(K) \leq \mathcal{L}_3 \max_{\boldsymbol{\theta} \in \mathbb{S}^{n-1}} \mu(K \cap \boldsymbol{\theta}^{\perp}) \operatorname{vol}_n(K)^{\frac{1}{n}}?$$

- (A. Koldobsky): L₃ ≤ C√n and L₃ ≤ C for many special classes of bodies K.
- (A. Koldobsky A.Z, 2014) If µ satisfy a concavity assumption then L₃ ≈ L (follows from works of K. Ball and S. Bobkov) and thus L₂ ≤ C √ log n.
- (A. Koldobsky B. Klartag/ B. Klartag G. Livshyts) $\mathcal{L}_3 \approx \sqrt{n}$.
- Many applications of those facts (including distances to Lⁿ_p spaces) were done by (S. Bobkov, A. Giannopoulos, B. Klartag, A. Koldobsky, G. Livshyts, G. Paouris, A.Z.).
- No idea how L₂ is connected to L₃

Problem:

Does there exist a constant \mathcal{L}_2 , so that if $\mu(K \cap \theta^{\perp}) \leq \mu(L \cap \theta^{\perp})$ for every $\theta \in \mathbb{S}^{n-1}$, then $\mu(K) \leq \mathcal{L}_2 \mu(L)$?

(A. Koldobsky - A.Z, 2014 / Denghui Wu, 2020)

- $\mathcal{L}_2 \leq \sqrt{n}$ Independent of $\mu!$
- If μ satisfies a concavity assumption then $\mathcal{L}_2 \approx \mathcal{L}$ (follows from works of K. Ball and S. Bobkov) and thus $\mathcal{L}_2 \leq C \sqrt{\log n}$.

Problem (A. Koldobsky):

Does there exist a constant $\mathcal{L}_3 > 0$ such that for any convex symmetric body $\mathcal{K} \subset \mathbb{R}^n$

$$\mu(K) \leq \mathcal{L}_3 \max_{\boldsymbol{\theta} \in \mathbb{S}^{n-1}} \mu(K \cap \boldsymbol{\theta}^{\perp}) \operatorname{vol}_n(K)^{\frac{1}{n}}?$$

- (A. Koldobsky): L₃ ≤ C√n and L₃ ≤ C for many special classes of bodies K.
- (A. Koldobsky A.Z, 2014) If µ satisfy a concavity assumption then L₃ ≈ L (follows from works of K. Ball and S. Bobkov) and thus L₂ ≤ C √ log n.
- (A. Koldobsky B. Klartag/ B. Klartag G. Livshyts) $\mathcal{L}_3 \approx \sqrt{n}$.
- Many applications of those facts (including distances to Lⁿ_p spaces) were done by (S. Bobkov, A. Giannopoulos, B. Klartag, A. Koldobsky, G. Livshyts, G. Paouris, A.Z.).
- No idea how L₂ is connected to L₃ (or how any of them really connected to L).

Standard definition.

₹ 9Q@

≣ ► < ≣ ►

Standard definition.

Also $\rho_K(\xi) = \|\xi\|_{K^-}$, where $\|\xi\|_{K^-}$ is a Minkowski functional, or, in conversions symmetric case, just a norm for which K is a unit ball.

Standard definition.

Also $\rho_K(\xi) = \|\xi\|_K^{-1}$, where $\|\xi\|_K^{-1}$ is a Minkowski functional, or, in convex symmetric case, just a norm for which K is a unit ball.

• K is a star body if $\rho_K(\xi)$ is positive and continuous function on S^{n-1} .

Also $\rho_K(\xi) = \|\xi\|_K^{-1}$, where $\|\xi\|_K^{-1}$ is a Minkowski functional, or, in convex symmetric case, just a norm for which K is a unit ball.

• K is a star body if $\rho_K(\xi)$ is positive and continuous function on S^{n-1} .

Spherical coordinates and Volume:

$$\operatorname{vol}_{n}(K) = \int_{S^{n-1}} \int_{0}^{\rho_{K}(\theta)} r^{n-1} dr d\theta = \frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n}(\theta) d\theta.$$

Using spherical coordinates in ξ^{\perp} we get

$$\operatorname{vol}_{n-1}(K \cap \xi^{\perp}) = \frac{1}{n-1} \int_{S^{n-1} \cap \xi^{\perp}} \rho_K^{n-1}(\theta) d\theta = \frac{1}{n-1} R \rho_K^{n-1}(\xi).$$

э

Using spherical coordinates in ξ^\perp we get

$$\operatorname{vol}_{n-1}(K \cap \xi^{\perp}) = \frac{1}{n-1} \int_{S^{n-1} \cap \xi^{\perp}} \rho_K^{n-1}(\theta) d\theta = \frac{1}{n-1} R \rho_K^{n-1}(\xi).$$

Spherical Radon Transform:

$$Rf(\xi) = \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d\theta$$

Using spherical coordinates in ξ^{\perp} we get

$$\operatorname{vol}_{n-1}(K \cap \xi^{\perp}) = \frac{1}{n-1} \int_{S^{n-1} \cap \xi^{\perp}} \rho_K^{n-1}(\theta) d\theta = \frac{1}{n-1} R \rho_K^{n-1}(\xi).$$

Spherical Radon Transform:

$$Rf(\xi) = \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d\theta$$

So we can rewrite the classical Busemann-Petty problem

K, L origin symmetric convex bodies in \mathbb{R}^n . Let $\operatorname{vol}_{n-1}(K \cap \xi^{\perp}) \leq \operatorname{vol}_{n-1}(L \cap \xi^{\perp}), \forall \xi \in \mathbb{S}^{n-1}.$ Does it follow that $\operatorname{vol}_n(K) \leq \operatorname{vol}_n(L)$?

In the following way

Using spherical coordinates in ξ^{\perp} we get

$$\operatorname{vol}_{n-1}(K \cap \xi^{\perp}) = \frac{1}{n-1} \int_{S^{n-1} \cap \xi^{\perp}} \rho_K^{n-1}(\theta) d\theta = \frac{1}{n-1} R \rho_K^{n-1}(\xi).$$

Spherical Radon Transform:

$$Rf(\xi) = \int_{S^{n-1}\cap\xi^{\perp}} f(\theta)d\theta$$

So we can rewrite the classical Busemann-Petty problem

K, L origin symmetric convex bodies in \mathbb{R}^n . Let

$$\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1}.$$

Does it follow that $\operatorname{vol}_n(K) \leq \operatorname{vol}_n(L)$?

In the following way

K, L origin symmetric convex bodies in \mathbb{R}^n . Let $R\rho_K^{n-1}(\xi) \le R\rho_L^{n-1}(\xi), \forall \xi \in \mathbb{S}^{n-1}.$ Does it follow that $\int_{S^{n-1}} \rho_K^n(\xi) d\xi \le \int_{S^{n-1}} \rho_L^n(\xi) d\xi$?

$$Rf(\xi) = \int\limits_{S^{n-1}\cap\xi^{\perp}} f(\theta)d\theta$$

So we can rewrite the classical Busemann-Petty problem In the following way

K, L origin symmetric convex bodies in \mathbb{R}^n . Let $R\rho_K^{n-1}(\xi) \le R\rho_L^{n-1}(\xi), \forall \xi \in \mathbb{S}^{n-1}.$ Does it follow that $\int_{S^{n-1}} \rho_K^n(\xi) d\xi \le \int_{S^{n-1}} \rho_L^n(\xi) d\xi$?

$$Rf(\xi) = \int\limits_{S^{n-1}\cap\xi^{\perp}} f(\theta)d\theta$$

So we can rewrite the classical Busemann-Petty problem In the following way

K, L origin symmetric convex bodies in \mathbb{R}^n . Let $R\rho_K^{n-1}(\xi) \leq R\rho_L^{n-1}(\xi), \forall \xi \in \mathbb{S}^{n-1}.$ Does it follow that $\int_{S^{n-1}} \rho_K^n(\xi) d\xi \leq \int_{S^{n-1}} \rho_L^n(\xi) d\xi$?

Now let $f(\xi) = \rho_K^{n-1}(\xi)$ and $g(\xi) = \rho_L^{n-1}(\xi)$ the above becomes

Consider two positive, even functions $f,g: S^{n-1} \to \mathbb{R}$. Let $Rf(\xi) \leq Rg(\xi), \forall \xi \in \mathbb{S}^{n-1}$. Does it follow that $\|f\|_{L_{\frac{n}{n-1}}(S^{n-1})} \leq \|g\|_{L_{\frac{n}{n-1}}(S^{n-1})}$

Spherical Radon Transform:

$$Rf(\xi) = \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d\theta$$

э

Spherical Radon Transform:

$$Rf(\xi) = \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d\theta$$

Spherical Comparison Problem

Fix p > 0. Consider two positive, even functions $f, g: S^{n-1} \to \mathbb{R}$. Let $Rf(\xi) \le Rg(\xi), \forall \xi \in \mathbb{S}^{n-1}$. Does it follow that $\|f\|_{L_p(S^{n-1})} \le \|g\|_{L_p(S^{n-1})}$?

э

Spherical Radon Transform:

$$Rf(\xi) = \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d\theta$$

Spherical Comparison Problem

Fix p > 0. Consider two positive, even functions $f, g: S^{n-1} \to \mathbb{R}$. Let $Rf(\xi) \le Rg(\xi), \forall \xi \in \mathbb{S}^{n-1}$. Does it follow that $||f||_{L_p(S^{n-1})} \le ||g||_{L_p(S^{n-1})}$?

Case p = 1 is "easy" (it is a Fubini theorem on S^{n-1}). Case p = n/(n-1) is a Busemann-Petty problem.

(▲ 글 ▶) 글

Spherical Radon Transform: $Rf(\xi) = \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d\theta$

Spherical Comparison Problem

Fix p > 0. Consider two positive, even functions $f, g: S^{n-1} \to \mathbb{R}$. Let $Rf(\xi) \le Rg(\xi), \forall \xi \in \mathbb{S}^{n-1}$. Does it follow that $||f||_{L_p(S^{n-1})} \le ||g||_{L_p(S^{n-1})}$?

э.

Spherical Radon Transform: $Rf(\xi) = \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d\theta$

Spherical Comparison Problem

Fix p > 0. Consider two positive, even functions $f, g: S^{n-1} \to \mathbb{R}$. Let $Rf(\xi) \le Rg(\xi), \forall \xi \in \mathbb{S}^{n-1}$. Does it follow that $||f||_{L_{q}(S^{n-1})} \le ||g||_{L_{q}(S^{n-1})}$?

Radon Transform:

$$\mathcal{R}\varphi(t,\xi) = \int_{\xi^{\perp}+t\xi} \varphi(x) dx, \ \xi \in S^{n-1}, t \in \mathbb{R}$$

돌▶ < 돌▶ ·

э.

Spherical Radon Transform: $Rf(\xi) = \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d\theta$

Spherical Comparison Problem

Fix p > 0. Consider two positive, even functions $f, g: S^{n-1} \to \mathbb{R}$. Let $Rf(\xi) \le Rg(\xi), \forall \xi \in \mathbb{S}^{n-1}$. Does it follow that $||f||_{L_n(S^{n-1})} \le ||g||_{L_n(S^{n-1})}$?

Radon Transform:

$$\mathcal{R}\varphi(t,\xi) = \int_{\xi^{\perp}+t\xi} \varphi(x) dx, \ \xi \in S^{n-1}, t \in \mathbb{R}$$

Comparison Problem for Radon Transform

Fix p>0. Consider two positive, even functions $\varphi,\psi\colon\mathbb{R}^n\to\mathbb{R}_+,\ n\geq 2,$. Let

 $\mathcal{R}\varphi(t, heta) \leq \mathcal{R}\psi(t, heta), \quad ext{for all } (t, heta) \in \mathbb{R} imes S^{n-1}.$

Does it follow that $\|\varphi\|_{L^p(\mathbb{R}^n)} \le \|\psi\|_{L^p(\mathbb{R}^n)}$?

3 N A 3 N

э
Spherical Radon Transform: $Rf(\xi) = \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d\theta$

Spherical Comparison Problem

Fix p > 0. Consider two positive, even functions $f, g: S^{n-1} \to \mathbb{R}$. Let $Rf(\xi) \le Rg(\xi), \forall \xi \in \mathbb{S}^{n-1}$. Does it follow that $||f||_{L_n(S^{n-1})} \le ||g||_{L_n(S^{n-1})}$?

Radon Transform:

$$\mathcal{R}\varphi(t,\xi) = \int_{\xi^{\perp}+t\xi} \varphi(x) dx, \ \xi \in S^{n-1}, t \in \mathbb{R}$$

Comparison Problem for Radon Transform

Fix p > 0. Consider two positive, even functions $\varphi, \psi \colon \mathbb{R}^n \to \mathbb{R}_+, \ n \ge 2$. Let

 $\mathcal{R}\varphi(t,\theta) \leq \mathcal{R}\psi(t,\theta), \quad \text{for all } (t,\theta) \in \mathbb{R} \times S^{n-1}.$

Does it follow that $\|\varphi\|_{L^p(\mathbb{R}^n)} \leq \|\psi\|_{L^p(\mathbb{R}^n)}$?

Clearly, case p = 1 is "a joke" in both cases.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

э

Radon Transform:

$$\mathcal{R}\varphi(t,\xi) = \int_{\xi^{\perp}+t\xi} \varphi(x) dx, \ \xi \in S^{n-1}, t \in \mathbb{R}$$

Comparison Problem for Radon Transform

Fix p > 0. Consider two positive, even functions $\varphi, \psi: \mathbb{R}^n \to \mathbb{R}_+, n \ge 2$,. Let $\mathcal{R}\varphi(t,\theta) \le \mathcal{R}\psi(t,\theta)$, for all $(t,\theta) \in \mathbb{R} \times S^{n-1}$. Does it follow that $\|\varphi\|_{L^p(\mathbb{R}^n)} \le \|\psi\|_{L^p(\mathbb{R}^n)}$?

э.

Radon Transform:

$$\mathcal{R}\varphi(t,\xi) = \int_{\xi^{\perp}+t\xi} \varphi(x) dx, \ \xi \in S^{n-1}, t \in \mathbb{R}$$

Comparison Problem for Radon Transform

Fix p > 0. Consider two positive, even functions $\varphi, \psi: \mathbb{R}^n \to \mathbb{R}_+, n \ge 2$,. Let $\mathcal{R}\varphi(t,\theta) \le \mathcal{R}\psi(t,\theta), \text{ for all } (t,\theta) \in \mathbb{R} \times S^{n-1}.$ Does it follow that $\|\varphi\|_{L^p(\mathbb{R}^n)} \le \|\psi\|_{L^p(\mathbb{R}^n)}$?

Clearly, case p = 1 is "a joke"!

э

$$\mathcal{R}\varphi(t,\xi) = \int_{\xi^{\perp}+t\xi} \varphi(x) dx, \ \xi \in S^{n-1}, t \in \mathbb{R}$$

Comparison Problem for Radon Transform

Fix p > 0. Consider two positive, even functions $\varphi, \psi \colon \mathbb{R}^n \to \mathbb{R}_+, \ n \ge 2$. Let

 $\mathcal{R}\varphi(t,\theta) \leq \mathcal{R}\psi(t,\theta), \quad \text{for all } (t,\theta) \in \mathbb{R} \times S^{n-1}.$

Does it follow that $\|\varphi\|_{L^p(\mathbb{R}^n)} \le \|\psi\|_{L^p(\mathbb{R}^n)}$?

Clearly, case p = 1 is "a joke"! But it looks like, in general, we should have enough information for a positive answer...

$$\mathcal{R}\varphi(t,\xi) = \int_{\xi^{\perp}+t\xi} \varphi(x) dx, \ \xi \in S^{n-1}, t \in \mathbb{R}$$

Comparison Problem for Radon Transform

Fix p > 0. Consider two positive, even functions $\varphi, \psi: \mathbb{R}^n \to \mathbb{R}_+, n \ge 2$. Let

 $\mathcal{R}\varphi(t,\theta) \leq \mathcal{R}\psi(t,\theta), \quad \text{for all } (t,\theta) \in \mathbb{R} \times S^{n-1}.$

Does it follow that $\|\varphi\|_{L^p(\mathbb{R}^n)} \le \|\psi\|_{L^p(\mathbb{R}^n)}$?

Clearly, case p = 1 is "a joke"! But it looks like, in general, we should have enough information for a positive answer...

Let $n \geq 2$, take M > 1, $c = M^{-n+1}$, and set $p > \frac{n}{n-1}$.

$$\mathcal{R}\varphi(t,\xi) = \int_{\xi^{\perp}+t\xi} \varphi(x) dx, \ \xi \in S^{n-1}, t \in \mathbb{R}$$

Comparison Problem for Radon Transform

Fix p > 0. Consider two positive, even functions $\varphi, \psi: \mathbb{R}^n \to \mathbb{R}_+, n \ge 2$. Let

 $\mathcal{R}\varphi(t,\theta) \leq \mathcal{R}\psi(t,\theta), \quad \text{for all } (t,\theta) \in \mathbb{R} \times S^{n-1}.$

Does it follow that $\|\varphi\|_{L^p(\mathbb{R}^n)} \le \|\psi\|_{L^p(\mathbb{R}^n)}$?

Clearly, case p = 1 is "a joke"! But it looks like, in general, we should have enough information for a positive answer...

Let $n \ge 2$, take M > 1, $c = M^{-n+1}$, and set $p > \frac{n}{n-1}$. Consider the functions $\varphi(x) = \chi_{B_2^n}(x)$ and $\psi(x) = c\chi_{MB_2^n}(x)$.

$$\mathcal{R}\varphi(t,\xi) = \int_{\xi^{\perp}+t\xi} \varphi(x) dx, \ \xi \in S^{n-1}, t \in \mathbb{R}$$

Comparison Problem for Radon Transform

Fix p > 0. Consider two positive, even functions $\varphi, \psi \colon \mathbb{R}^n \to \mathbb{R}_+, \ n \ge 2$. Let

 $\mathcal{R}\varphi(t,\theta) \leq \mathcal{R}\psi(t,\theta), \quad \text{for all } (t,\theta) \in \mathbb{R} \times S^{n-1}.$

Does it follow that $\|\varphi\|_{L^p(\mathbb{R}^n)} \le \|\psi\|_{L^p(\mathbb{R}^n)}$?

Clearly, case p = 1 is "a joke"! But it looks like, in general, we should have enough information for a positive answer...

Let $n \ge 2$, take M > 1, $c = M^{-n+1}$, and set $p > \frac{n}{n-1}$. Consider the functions $\varphi(x) = \chi_{B_2^n}(x)$ and $\psi(x) = c\chi_{MB_2^n}(x)$. Then $\mathcal{R}\varphi(t,\xi) \le \mathcal{R}\psi(t,\xi)$, for all $(t,\xi) \in \mathbb{R} \times S^{n-1}$,

$$\mathcal{R}\varphi(t,\xi) = \int_{\xi^{\perp}+t\xi} \varphi(x) dx, \ \xi \in S^{n-1}, t \in \mathbb{R}$$

Comparison Problem for Radon Transform

Fix p > 0. Consider two positive, even functions $\varphi, \psi \colon \mathbb{R}^n \to \mathbb{R}_+, \ n \ge 2$. Let

 $\mathcal{R}\varphi(t,\theta) \leq \mathcal{R}\psi(t,\theta), \quad \text{for all } (t,\theta) \in \mathbb{R} \times S^{n-1}.$

Does it follow that $\|\varphi\|_{L^p(\mathbb{R}^n)} \le \|\psi\|_{L^p(\mathbb{R}^n)}$?

Clearly, case p = 1 is "a joke"! But it looks like, in general, we should have enough information for a positive answer...

Let $n \ge 2$, take M > 1, $c = M^{-n+1}$, and set $p > \frac{n}{n-1}$. Consider the functions $\varphi(x) = \chi_{B_2^n}(x)$ and $\psi(x) = c\chi_{MB_2^n}(x)$. Then $\mathcal{R}\varphi(t,\xi) \le \mathcal{R}\psi(t,\xi)$, for all $(t,\xi) \in \mathbb{R} \times S^{n-1}$, but $\|\varphi\|_{L^p(\mathbb{R}^n)} > \|\psi\|_{L^p(\mathbb{R}^n)}$.

Radon Transform:
$$\mathcal{R}\varphi(t,\xi) = \int_{\xi^{\perp}+t\xi} \varphi(x) dx, \ \xi \in S^{n-1}, t \in \mathbb{R}$$

 $L^{p}-L^{q}$ -estimates for the Radon transform, have been studied for decades.

э

Radon Transform:
$$\mathcal{R}\varphi(t,\xi) = \int_{\xi^{\perp} + t\xi} \varphi(x) dx, \ \xi \in S^{n-1}, t \in \mathbb{R}$$

 $L^{p}-L^{q}$ -estimates for the Radon transform, have been studied for decades. D.M. Oberlin and E.M. Stein proved that given any function $f \colon \mathbb{R}^{n} \to \mathbb{R}, f \in L^{p}(\mathbb{R}^{n})$:

$$\left(\int_{S^{n-1}}\left(\int_{\mathbb{R}}|\mathcal{R}f(t,\xi)|^{r}dt\right)^{\frac{q}{r}}d\xi\right)^{\frac{1}{q}}\leq C_{n,p,q}\|f\|_{L^{p}(\mathbb{R}^{n})},$$

where $1 \le p < \frac{n}{n-1}$, $q \le p'$ $(\frac{1}{p} + \frac{1}{p'} = 1)$, and $\frac{1}{r} = \frac{n}{p} - n + 1$.

Radon Transform:
$$\mathcal{R}\varphi(t,\xi) = \int_{\xi^{\perp}+t\xi} \varphi(x) dx, \ \xi \in S^{n-1}, t \in \mathbb{R}$$

 L^p - L^q -estimates for the Radon transform, have been studied for decades. D.M. Oberlin and E.M. Stein proved that given any function $f: \mathbb{R}^n \to \mathbb{R}, f \in L^p(\mathbb{R}^n)$:

$$\left(\int_{\mathcal{S}^{n-1}}\left(\int_{\mathbb{R}}|\mathcal{R}f(t,\xi)|^rdt\right)^{\frac{q}{r}}d\xi\right)^{\frac{1}{q}}\leq C_{n,p,q}\|f\|_{L^p(\mathbb{R}^n)},$$

where $1 \le p < \frac{n}{n-1}$, $q \le p'$ $(\frac{1}{p} + \frac{1}{p'} = 1)$, and $\frac{1}{r} = \frac{n}{p} - n + 1$. Also

$$\left(\int_{S^{n-1}} \left(\sup_{t\in\mathbb{R}} |\mathcal{R}f(t,\xi)|\right)^s\right)^{\frac{1}{s}} \leq C_{\rho_1,\rho_2,s} \|f\|_{L^{\rho_1}(\mathbb{R}^n)}^{\alpha} \|f\|_{L^{\rho_2}(\mathbb{R}^n)}^{1-\alpha}$$

whenever $s \leq n$, $1 \leq p_1 < \frac{n}{n-1} < p_2 \leq \infty$, and $\frac{\alpha}{p_1} + \frac{1-\alpha}{p_2} = \frac{n-1}{n}$.

Radon Transform:
$$\mathcal{R}\varphi(t,\xi) = \int_{\xi^{\perp}+t\xi} \varphi(x) dx, \ \xi \in S^{n-1}, t \in \mathbb{R}$$

 L^p - L^q -estimates for the Radon transform, have been studied for decades. D.M. Oberlin and E.M. Stein proved that given any function $f: \mathbb{R}^n \to \mathbb{R}, f \in L^p(\mathbb{R}^n)$:

$$\left(\int_{S^{n-1}}\left(\int_{\mathbb{R}}|\mathcal{R}f(t,\xi)|^r dt\right)^{\frac{q}{r}}d\xi\right)^{\frac{1}{q}}\leq C_{n,p,q}\|f\|_{L^p(\mathbb{R}^n)},$$

where $1 \le p < \frac{n}{n-1}$, $q \le p'$ $(\frac{1}{p} + \frac{1}{p'} = 1)$, and $\frac{1}{r} = \frac{n}{p} - n + 1$. Also

$$\left(\int_{S^{n-1}} \left(\sup_{t\in\mathbb{R}} |\mathcal{R}f(t,\xi)|\right)^s\right)^{\frac{1}{s}} \leq C_{\rho_1,\rho_2,s} \|f\|_{L^{\rho_1}(\mathbb{R}^n)}^{\alpha} \|f\|_{L^{\rho_2}(\mathbb{R}^n)}^{1-\alpha}$$

whenever $s \le n$, $1 \le p_1 < \frac{n}{n-1} < p_2 \le \infty$, and $\frac{\alpha}{p_1} + \frac{1-\alpha}{p_2} = \frac{n-1}{n}$. E. Lutwak noticed that the limiting case of above takes as back to Convex Geometry.

Radon Transform:
$$\mathcal{R}\varphi(t,\xi) = \int_{\xi^{\perp}+t\xi} \varphi(x) dx, \ \xi \in S^{n-1}, t \in \mathbb{R}$$

 L^p - L^q -estimates for the Radon transform, have been studied for decades. D.M. Oberlin and E.M. Stein proved that given any function $f: \mathbb{R}^n \to \mathbb{R}, f \in L^p(\mathbb{R}^n)$:

$$\left(\int_{S^{n-1}}\left(\int_{\mathbb{R}}|\mathcal{R}f(t,\xi)|^rdt\right)^{\frac{q}{r}}d\xi\right)^{\frac{1}{q}}\leq C_{n,p,q}\|f\|_{L^p(\mathbb{R}^n)},$$

where $1 \le p < \frac{n}{n-1}$, $q \le p'$ $(\frac{1}{p} + \frac{1}{p'} = 1)$, and $\frac{1}{r} = \frac{n}{p} - n + 1$. Also

$$\left(\int_{S^{n-1}} \left(\sup_{t\in\mathbb{R}} |\mathcal{R}f(t,\xi)|\right)^s\right)^{\frac{1}{s}} \leq C_{\rho_1,\rho_2,s} \|f\|_{L^{\rho_1}(\mathbb{R}^n)}^{\alpha} \|f\|_{L^{\rho_2}(\mathbb{R}^n)}^{1-\alpha}$$

whenever $s \le n$, $1 \le p_1 < \frac{n}{n-1} < p_2 \le \infty$, and $\frac{\alpha_1}{p_1} + \frac{1-\alpha}{p_2} = \frac{n-1}{n}$. E. Lutwak noticed that the limiting case of above takes as back to Convex Geometry. Take f to be the characteristic function of a measurable set in $A \subset \mathbb{R}^n$, s = n, $p_1, p_2 \to \frac{n}{n-1}$,

$$\left(\int_{S^{n-1}}\left(\sup_{t\in\mathbb{R}}|A\cap(\xi^{\perp}+t\xi)|\right)^n\right)^{\frac{1}{n}}\leq C_n|A|^{\frac{n-1}{n}}.$$

Radon Transform:
$$\mathcal{R}\varphi(t,\xi) = \int_{\xi^{\perp} + t\xi} \varphi(x) dx, \ \xi \in S^{n-1}, t \in \mathbb{R}$$

 L^p - L^q -estimates for the Radon transform, have been studied for decades. D.M. Oberlin and E.M. Stein proved that given any function $f: \mathbb{R}^n \to \mathbb{R}, f \in L^p(\mathbb{R}^n)$:

$$\left(\int_{S^{n-1}}\left(\int_{\mathbb{R}}|\mathcal{R}f(t,\xi)|^{r}dt\right)^{\frac{q}{r}}d\xi\right)^{\frac{1}{q}}\leq C_{n,p,q}\|f\|_{L^{p}(\mathbb{R}^{n})},$$

where $1 \le p < \frac{n}{n-1}$, $q \le p'$ $(\frac{1}{p} + \frac{1}{p'} = 1)$, and $\frac{1}{r} = \frac{n}{p} - n + 1$. Also

$$\left(\int_{S^{n-1}} \left(\sup_{t\in\mathbb{R}} |\mathcal{R}f(t,\xi)|\right)^s\right)^{\frac{1}{s}} \leq C_{\rho_1,\rho_2,s} \|f\|_{L^{\rho_1}(\mathbb{R}^n)}^{\alpha} \|f\|_{L^{\rho_2}(\mathbb{R}^n)}^{1-\alpha}$$

whenever $s \leq n$, $1 \leq p_1 < \frac{n}{n-1} < p_2 \leq \infty$, and $\frac{\alpha}{p_1} + \frac{1-\alpha}{p_2} = \frac{n-1}{n}$. E. Lutwak noticed that the limiting case of above takes as back to Convex Geometry. Take f to be the characteristic function of a measurable set in $A \subset \mathbb{R}^n$, s = n, $p_1, p_2 \rightarrow \frac{n}{n-1}$,

$$\left(\int_{S^{n-1}}\left(\sup_{t\in\mathbb{R}}|A\cap(\xi^{\perp}+t\xi)|\right)^n\right)^{\frac{1}{n}}\leq C_n|A|^{\frac{n-1}{n}}.$$

Take A - convex and symmetric apply Brunn concavity principle you get Busemann intersection inequality.

Radon Transform:
$$\mathcal{R}\varphi(t,\xi) = \int_{\xi^{\perp} + t\xi} \varphi(x) dx, \ \xi \in S^{n-1}, t \in \mathbb{R}$$

 L^p - L^q -estimates for the Radon transform, have been studied for decades. D.M. Oberlin and E.M. Stein proved that given any function $f: \mathbb{R}^n \to \mathbb{R}, f \in L^p(\mathbb{R}^n)$:

$$\left(\int_{S^{n-1}}\left(\int_{\mathbb{R}}|\mathcal{R}f(t,\xi)|^{r}dt\right)^{\frac{q}{r}}d\xi\right)^{\frac{1}{q}}\leq C_{n,p,q}\|f\|_{L^{p}(\mathbb{R}^{n})},$$

where $1 \le p < \frac{n}{n-1}$, $q \le p'$ $(\frac{1}{p} + \frac{1}{p'} = 1)$, and $\frac{1}{r} = \frac{n}{p} - n + 1$. Also

$$\left(\int_{S^{n-1}} \left(\sup_{t\in\mathbb{R}} |\mathcal{R}f(t,\xi)|\right)^s\right)^{\frac{1}{s}} \leq C_{\rho_1,\rho_2,s} \|f\|_{L^{\rho_1}(\mathbb{R}^n)}^{\alpha} \|f\|_{L^{\rho_2}(\mathbb{R}^n)}^{1-\alpha}$$

whenever $s \leq n$, $1 \leq p_1 < \frac{n}{n-1} < p_2 \leq \infty$, and $\frac{\alpha}{p_1} + \frac{1-\alpha}{p_2} = \frac{n-1}{n}$. E. Lutwak noticed that the limiting case of above takes as back to Convex Geometry. Take f to be the characteristic function of a measurable set in $A \subset \mathbb{R}^n$, s = n, $p_1, p_2 \rightarrow \frac{n}{n-1}$,

$$\left(\int_{S^{n-1}}\left(\sup_{t\in\mathbb{R}}|A\cap(\xi^{\perp}+t\xi)|\right)^n\right)^{\frac{1}{n}}\leq C_n|A|^{\frac{n-1}{n}}.$$

Take A - convex and symmetric apply Brunn concavity principle you get Busemann intersection inequality.

Our "dream" to prove "reverse" inequalities, may be for some classes of functions.

 $\operatorname{vol}_{n-1}\left(K\cap\xi^{\perp}\right)\leq\operatorname{vol}_{n-1}\left(L\cap\xi^{\perp}\right),\forall\xi\in\mathbb{S}^{n-1}\Longrightarrow\operatorname{vol}_{n}(K)\leq\operatorname{vol}_{n}(L)?$

э

Idea of the solution of the Busemann-Petty Problem in \mathbb{R}^n

$$\mathrm{vol}_{n-1}\left(K\cap\xi^{\perp}\right)\leq\mathrm{vol}_{n-1}\left(L\cap\xi^{\perp}\right),\forall\xi\in\mathbb{S}^{n-1}\Longrightarrow\mathrm{vol}_{n}(K)\leq\mathrm{vol}_{n}(L)?$$

We have $R\rho_K^{n-1}(\xi) \leq R\rho_L^{n-1}(\xi), \forall \xi \in \mathbb{S}^{n-1}.$

э

Idea of the solution of the Busemann-Petty Problem in \mathbb{R}^n

$$\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1} \Longrightarrow \operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L)?$$

We have $R\rho_K^{n-1}(\xi) \leq R\rho_L^{n-1}(\xi), \forall \xi \in \mathbb{S}^{n-1}$. We need $\int_{S^{n-1}} \rho_K^n(\xi) d\xi \leq \int_{S^{n-1}} \rho_L^n(\xi) d\xi$?

Idea of the solution of the Busemann-Petty Problem in \mathbb{R}^n

$$\mathsf{vol}_{n-1}\left(K\cap\xi^{\perp}\right)\leq\mathsf{vol}_{n-1}\left(L\cap\xi^{\perp}\right),\forall\xi\in\mathbb{S}^{n-1}\Longrightarrow\mathsf{vol}_{n}(K)\leq\mathsf{vol}_{n}(L)?$$

We have $R\rho_K^{n-1}(\xi) \leq R\rho_L^{n-1}(\xi), \forall \xi \in \mathbb{S}^{n-1}$. We need $\int_{S^{n-1}} \rho_K^n(\xi) d\xi \leq \int_{S^{n-1}} \rho_L^n(\xi) d\xi$? Still the best idea (E. Lutwak) is to use "Fubini theorem".

$$\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1} \Longrightarrow \operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L)?$$

$$\mathsf{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \le \mathsf{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1} \Longrightarrow \mathsf{vol}_n(K) \le \mathsf{vol}_n(L)?$$

$$\int_{S^{n-1}} R\rho_K^{n-1}(\xi) d\mu_K \leq \int_{S^{n-1}} R\rho_L^{n-1}(\xi) d\mu_K.$$

$$\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1} \Longrightarrow \operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L)?$$

$$\int_{S^{n-1}} R\rho_{K}^{n-1}(\xi) d\mu_{K} \leq \int_{S^{n-1}} R\rho_{L}^{n-1}(\xi) d\mu_{K}.$$
$$\int_{S^{n-1}} \rho_{K}^{n-1}(\xi) R\mu_{K}(\xi) d\xi \leq \int_{S^{n-1}} \rho_{L}^{n-1}(\xi) R\mu_{K} d\xi$$

$$\mathsf{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \le \mathsf{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1} \Longrightarrow \mathsf{vol}_n(K) \le \mathsf{vol}_n(L)?$$

$$\int_{S^{n-1}} R\rho_{K}^{n-1}(\xi) d\mu_{K} \leq \int_{S^{n-1}} R\rho_{L}^{n-1}(\xi) d\mu_{K}.$$

$$\int_{S^{n-1}} \rho_{K}^{n-1}(\xi) R\mu_{K}(\xi) d\xi \leq \int_{S^{n-1}} \rho_{L}^{n-1}(\xi) R\mu_{K} d\xi$$

$$\int_{S^{n-1}} \rho_{K}^{n}(\xi) d\xi \leq \int_{S^{n-1}} \rho_{L}^{n-1}(\xi) \rho_{K}(\xi) d\xi$$

$$\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1} \Longrightarrow \operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L)?$$

$$\int_{S^{n-1}} R\rho_{K}^{n-1}(\xi) d\mu_{K} \leq \int_{S^{n-1}} R\rho_{L}^{n-1}(\xi) d\mu_{K}.$$

$$\int_{S^{n-1}} \rho_{K}^{n-1}(\xi) R\mu_{K}(\xi) d\xi \leq \int_{S^{n-1}} \rho_{L}^{n-1}(\xi) R\mu_{K} d\xi$$

$$\int_{S^{n-1}} \rho_{K}^{n}(\xi) d\xi \leq \int_{S^{n-1}} \rho_{L}^{n-1}(\xi) \rho_{K}(\xi) d\xi$$

Apply Hölder's inequality and finish.

$$\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1} \Longrightarrow \operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L)?$$

$$\int_{S^{n-1}} R\rho_K^{n-1}(\xi) d\mu_K \leq \int_{S^{n-1}} R\rho_L^{n-1}(\xi) d\mu_K.$$
$$\int_{S^{n-1}} \rho_K^{n-1}(\xi) R\mu_K(\xi) d\xi \leq \int_{S^{n-1}} \rho_L^{n-1}(\xi) R\mu_K d\xi$$
$$\int_{S^{n-1}} \rho_K^n(\xi) d\xi \leq \int_{S^{n-1}} \rho_L^{n-1}(\xi) \rho_K(\xi) d\xi$$

Apply Hölder's inequality and finish.

(E.Lutvak; R. Gardner; G. Zhang) K is an intersection body if there exists a non-negative, finite Borel measure μ_K

$$\int_{S^{n-1}} \rho_K(\xi) f(x) dx = \langle \rho_K(\xi), f \rangle = \langle R\mu_K, f \rangle = \int_{S^{n-1}} [Rf](\xi) d\mu_K(\xi) d\mu_K($$

holds for all $f \in C(S^{n-1})$.

$$\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1} \Longrightarrow \operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L)?$$

$$\int_{S^{n-1}} R\rho_{K}^{n-1}(\xi) d\mu_{K} \leq \int_{S^{n-1}} R\rho_{L}^{n-1}(\xi) d\mu_{K}.$$

$$\int_{S^{n-1}} \rho_{K}^{n-1}(\xi) R\mu_{K}(\xi) d\xi \leq \int_{S^{n-1}} \rho_{L}^{n-1}(\xi) R\mu_{K} d\xi$$

$$\int_{S^{n-1}} \rho_{K}^{n}(\xi) d\xi \leq \int_{S^{n-1}} \rho_{L}^{n-1}(\xi) \rho_{K}(\xi) d\xi$$

Apply Hölder's inequality and finish.

(E.Lutvak; R. Gardner; G. Zhang) K is an intersection body if there exists a non-negative, finite Borel measure μ_K

$$\int_{S^{n-1}} \rho_K(\xi) f(x) dx = \langle \rho_K(\xi), f \rangle = \langle R\mu_K, f \rangle = \int_{S^{n-1}} [Rf](\xi) d\mu_K(\xi) d\mu_K($$

holds for all $f \in C(S^{n-1})$. (A. Koldobsky) An origin-symmetric star body K in \mathbb{R}^n is an **intersection body** if, and only if, ρ_K is a positive definite distribution on \mathbb{R}^n , i.e. " $\hat{\rho_K} > 0$ ".

Theorem (A. Koldobsky, M. Roysdon and A.Z., 2023):

Let f, g be even continuous positive functions on the sphere S^{n-1} , and suppose that

$$Rf(\theta) \le Rg(\theta), \quad \text{for all } \theta \in S^{n-1}.$$
 (1)

Then:

- (a) Suppose that for some p > 1 the function $|x|_2^{-1} f^{p-1}\left(\frac{x}{|x|_2}\right)$ represents a positive definite distribution on \mathbb{R}^n . Then $||f||_{L^p(S^{n-1})} \le ||g||_{L^p(S^{n-1})}$.
- (b) Suppose that for some 0 2</sub>⁻¹g^{p-1} (x/|x|₂) represents a positive definite distribution on ℝⁿ. Then ||f|_{L^p(Sⁿ⁻¹)} ≤ ||g||_{L^p(Sⁿ⁻¹)}.

프 🖌 🛪 프 🛌

э

Theorem (A. Koldobsky, M. Roysdon and A.Z., 2023):

Let f, g be even continuous positive functions on the sphere S^{n-1} , and suppose that

$$Rf(\theta) \le Rg(\theta),$$
 for all $\theta \in S^{n-1}$. (1)

Then:

- (a) Suppose that for some p > 1 the function $|x|_2^{-1} f^{p-1}\left(\frac{x}{|x|_2}\right)$ represents a positive definite distribution on \mathbb{R}^n . Then $||f||_{L^p(S^{n-1})} \le ||g||_{L^p(S^{n-1})}$.
- (b) Suppose that for some 0 2</sub>⁻¹g^{p-1} (x/|x|₂) represents a positive definite distribution on ℝⁿ. Then ||f||_{L^p(Sⁿ⁻¹)} ≤ ||g||_{L^p(Sⁿ⁻¹)}.

The following hold true:

- (c) Let g be an infinitely smooth strictly positive even function on S^{n-1} and p > 1. Suppose that the distribution $|x|_2^{-1}g^{p-1}\left(\frac{x}{|x|_2}\right)$ is not positive definite on \mathbb{R}^n . Then there exists an infinitely smooth even function f on S^{n-1} so that the condition (1) holds, but $||f||_{L^p(S^{n-1})} > ||g||_{L^p(S^{n-1})}$.
- (d) Let f be an infinitely smooth strictly positive even function on S^{n-1} and $0 . Suppose that the distribution <math>|x|_2^{-1}f^{p-1}\left(\frac{x}{|x|_2}\right)$ is not positive definite on \mathbb{R}^n . Then there exists an infinitely smooth even function g on S^{n-1} so that the condition (1) holds, but $||f||_{L^p(S^{n-1})} > ||g||_{L^p(S^{n-1})}$.

Corrolary (A. Koldobsky, M. Roysdon and A.Z., 2023):

Let f be a positive even, continuous function on the sphere S^{n-1} Assume p > 1 and if $|x|_2^{-1} f^{p-1}\left(\frac{x}{|x|_2}\right)$ represents a positive definite distribution on \mathbb{R}^n , then

$$\|f\|_{L^p(S^{n-1})} \leq \frac{|S^{n-1}|^{\frac{1}{p}}}{|S^{n-2}|} \max_{\xi \in S^{n-1}} Rf(\xi).$$

Corrolary (A. Koldobsky, M. Roysdon and A.Z., 2023):

Let f be a positive even, continuous function on the sphere S^{n-1} Assume p > 1 and if $|x|_2^{-1} f^{p-1}\left(\frac{x}{|x|_2}\right)$ represents a positive definite distribution on \mathbb{R}^n , then

$$\|f\|_{L^p(S^{n-1})} \leq \frac{|S^{n-1}|^{\frac{1}{p}}}{|S^{n-2}|} \max_{\xi \in S^{n-1}} Rf(\xi).$$

Let g be a positive even, continuous function on the sphere S^{n-1} Assume 0 $and if <math>|x|_2^{-1}g^{p-1}\left(\frac{x}{|x|_2}\right)$ represents a positive definite distribution on \mathbb{R}^n , then

$$\|g\|_{L^{p}(S^{n-1})} \geq \frac{|S^{n-1}|^{\frac{1}{p}}}{|S^{n-2}|} \min_{\xi \in S^{n-1}} Rg(\xi).$$

Radon Transform in \mathbb{R}^n : Intersection Functions

Definition (A. Koldobsky, M. Roysdon and A.Z., 2023):

A non-negative, even, continuous, integrable function f on \mathbb{R}^n is called an *intersection function* if, for every direction $\theta \in S^{n-1}$, the function

$$r \in \mathbb{R} \mapsto |r|^{n-1}\hat{f}(r\theta)$$

is a positive definite function on \mathbb{R} for each $\theta \in S^{n-1}$ (note where \widehat{f} denotes the Fourier transforms of f on \mathbb{R}^n).

3.1

Radon Transform in \mathbb{R}^n : Intersection Functions

Definition (A. Koldobsky, M. Roysdon and A.Z., 2023):

A non-negative, even, continuous, integrable function f on \mathbb{R}^n is called an *intersection function* if, for every direction $\theta \in S^{n-1}$, the function

$$r \in \mathbb{R} \mapsto |r|^{n-1}\hat{f}(r\theta)$$

is a positive definite function on \mathbb{R} for each $\theta \in S^{n-1}$ (note where \widehat{f} denotes the Fourier transforms of f on \mathbb{R}^n).

We will stay more "practical/geometric" definition as a theorem:

Radon Transform in \mathbb{R}^n : Intersection Functions

Definition (A. Koldobsky, M. Roysdon and A.Z., 2023):

A non-negative, even, continuous, integrable function f on \mathbb{R}^n is called an *intersection function* if, for every direction $\theta \in S^{n-1}$, the function

$$r \in \mathbb{R} \mapsto |r|^{n-1}\hat{f}(r\theta)$$

is a positive definite function on \mathbb{R} for each $\theta \in S^{n-1}$ (note where \widehat{f} denotes the Fourier transforms of f on \mathbb{R}^n).

We will stay more "practical/geometric" definition as a theorem:

Theorem

An even, continuous, non-negative, and integrable function f defined on \mathbb{R}^n is an intersection function if, and only if, for every direction $\theta \in S^{n-1}$, there exists a non-negative, even, finite Borel measure μ_{θ} on \mathbb{R} such that

the function

$$heta\in S^{n-1}\mapsto \int_{\mathbb{R}}\mathcal{R}arphi(t, heta)d\mu_{ heta}(t)$$

belongs to $L_1(S^{n-1})$ whenever $\varphi \in S(\mathbb{R}^n)$ (Schwartz space of rapidly decreasing infinitely differentiable test functions on \mathbb{R}^n), and

$$\int_{\mathbb{R}^n} f\varphi = \int_{S^{n-1}} \int_{\mathbb{R}} \mathcal{R}\varphi(t,\theta) d\mu_{\theta}(t) d\theta.$$

holds for all $\varphi \in \mathcal{S}(\mathbb{R}^n)$.

Theorem (A. Koldobsky, M. Roysdon and A.Z., 2023):

Let p > 0 and consider a pair of continuous, non-negative even functions $\varphi, \psi \in L^1(\mathbb{R}^n) \cap L^p(\mathbb{R}^n)$ satisfying the condition

$$\mathcal{R}\varphi(t, heta) \leq \mathcal{R}\psi(t, heta)$$
 for all $(t, heta) \in \mathbb{R} imes S^{n-1}$.

Then:

(a) if p > 1 and φ^{p-1} is an intersection function, then $\|\varphi\|_{L^p(\mathbb{R}^n)} \le \|\psi\|_{L^p(\mathbb{R}^n)}$, and

(b) if $0 and <math>\psi^{p-1}$ is an intersection function, then $\|\varphi\|_{L^p(\mathbb{R}^n)} \le \|\psi\|_{L^p(\mathbb{R}^n)}$.

э.

Theorem (A. Koldobsky, M. Roysdon and A.Z., 2023):

Let p > 0 and consider a pair of continuous, non-negative even functions $\varphi, \psi \in L^1(\mathbb{R}^n) \cap L^p(\mathbb{R}^n)$ satisfying the condition

$$\mathcal{R}\varphi(t, heta) \leq \mathcal{R}\psi(t, heta)$$
 for all $(t, heta) \in \mathbb{R} imes S^{n-1}$.

Then:

- (a) if p > 1 and φ^{p-1} is an intersection function, then $\|\varphi\|_{L^p(\mathbb{R}^n)} \le \|\psi\|_{L^p(\mathbb{R}^n)}$, and
- (b) if $0 and <math>\psi^{p-1}$ is an intersection function, then $\|\varphi\|_{L^p(\mathbb{R}^n)} \le \|\psi\|_{L^p(\mathbb{R}^n)}$.

The following hold:

(c) Fix p > 1 and let $\psi \in S(\mathbb{R}^n)$ be non-negative and even. If ψ^{p-1} is not an intersection function, then there exists an even, non-negative $\varphi \in S(\mathbb{R}^n)$ such that

$$\mathcal{R} arphi(t, heta) \leq \mathcal{R} \psi(t, heta) \quad ext{for all } (t, heta) \in \mathbb{R} imes S^{n-1},$$

but with $\|\psi\|_{L^p(\mathbb{R}^n)} < \|\varphi\|_{L^p(\mathbb{R}^n)}$.

(d) Fix $0 and let <math>\varphi \in S(\mathbb{R}^n)$ be non-negative and even. If φ^{p-1} is not an intersection function, then there exists a non-negative, even $\psi \in S(\mathbb{R}^n)$ such that $\mathcal{R}\varphi \leq \mathcal{R}\psi$, but with $\|\psi\|_{L^p(\mathbb{R}^n)} < \|\varphi\|_{L^p(\mathbb{R}^n)}$.

글 🕨 🖌 글 🕨

Artem Zvavitch Comparison problems for bodies, measures and functions.

æ

From now we will talk about very nice functions (even, continuous, integrable) only

From now we will talk about very nice functions (even, continuous, integrable) only

A function f on \mathbb{R}^n is an intersection function of the function g if, for any $\varphi \in \mathcal{S}(\mathbb{R}^n)$:

$$\langle f,\varphi\rangle = \int_{\mathbb{R}^n} \varphi(x)f(x) \ dx = \int_{S^{n-1}} \int_{\mathbb{R}} \mathcal{R}\varphi(t,\theta)g(t,\theta) \ dt \ d\theta = \langle g,\mathcal{R}\varphi\rangle.$$

From now we will talk about very nice functions (even, continuous, integrable) only

A function f on \mathbb{R}^n is an intersection function of the function g if, for any $\varphi \in S(\mathbb{R}^n)$: $\langle f, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x) f(x) \, dx = \int_{S^{n-1}} \int_{\mathbb{R}} \mathcal{R}\varphi(t,\theta) g(t,\theta) \, dt \, d\theta = \langle g, \mathcal{R}\varphi \rangle.$

Any way to connect it to intersection bodies?

From now we will talk about very nice functions (even, continuous, integrable) only

A function f on \mathbb{R}^n is an intersection function of the function g if, for any $\varphi \in \mathcal{S}(\mathbb{R}^n)$:

$$\langle f,\varphi\rangle = \int_{\mathbb{R}^n} \varphi(x)f(x) \ dx = \int_{S^{n-1}} \int_{\mathbb{R}} \mathcal{R}\varphi(t,\theta)g(t,\theta) \ dt \ d\theta = \langle g,\mathcal{R}\varphi\rangle.$$

Any way to connect it to intersection bodies?

Theorem

For any nice $g: R \times S^{n-1} \to \mathbb{R}$ the function $f: \mathbb{R}^n \to \mathbb{R}_+$ defined by

$$f(x) = \int_{S^{n-1}} g(\langle x, \theta \rangle, \theta) d\theta$$

is an intersection function of g.

୦୯୯

From now we will talk about very nice functions (even, continuous, integrable)

э

From now we will talk about very nice functions (even, continuous, integrable)

A function f on \mathbb{R}^n is an intersection function of the function g if, for any $\varphi \in \mathcal{S}(\mathbb{R}^n)$:

$$\langle f,\varphi\rangle = \int_{\mathbb{R}^n} \varphi(x)f(x) \ dx = \int_{S^{n-1}} \int_{\mathbb{R}} \mathcal{R}\varphi(t,\theta)g(t,\theta) \ dt \ d\theta = \langle g,\mathcal{R}\varphi\rangle.$$

Any way to connect it to intersection bodies?

Theorem

For any nice $g: R \times S^{n-1} \to \mathbb{R}$ the function $f: \mathbb{R}^n \to \mathbb{R}_+$ defined by

$$f(x) = \int_{S^{n-1}} g(\langle x, \theta \rangle, \theta) d\theta$$

is an intersection function of g.

May be there is a formula that Artem can actually use to check?

From now we will talk about very nice functions (even, continuous, integrable)

A function f on \mathbb{R}^n is an intersection function of the function g if, for any $\varphi \in \mathcal{S}(\mathbb{R}^n)$:

$$\langle f, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x) f(x) \, dx = \int_{S^{n-1}} \int_{\mathbb{R}} \mathcal{R}\varphi(t,\theta) g(t,\theta) \, dt \, d\theta = \langle g, \mathcal{R}\varphi \rangle.$$

Any way to connect it to intersection bodies?

Theorem

For any nice $g : R \times S^{n-1} \to \mathbb{R}$ the function $f : \mathbb{R}^n \to \mathbb{R}_+$ defined by

$$f(x) = \int_{S^{n-1}} g(\langle x, \theta \rangle, \theta) d\theta$$

is an intersection function of g.

May be there is a formula that Artem can actually use to check?

Theorem

A function f on \mathbb{R}^n is an intersection function of g if, and only if,

$$f = \frac{1}{\pi} \left(|x|_2^{-n+1} \left(g(t, \frac{x}{|x|_2}) \right)_t^{\wedge} (|x|_2) \right)_x^{\wedge},$$

where the interior Fourier transform is taken with respect to $t \in \mathbb{R}$, and the exterior Fourier transform is with respect to $x \in \mathbb{R}^n$.

Example (Exponentials)

Fix $q \in (0,2]$, and let $\ell \in C(S^{n-1})$ be even and strictly positive. For each $\theta \in S^{n-1}$, set

 $h_{\theta}(r) = \ell(\theta) e^{-|r|^{q}}.$

э

Example (Exponentials)

Fix $q \in (0,2]$, and let $\ell \in C(S^{n-1})$ be even and strictly positive. For each $\theta \in S^{n-1}$, set

$$h_{\theta}(r) = \ell(\theta) e^{-|r|^{q}}$$

Note that

$$(h_{\theta})_{r}^{\wedge}(t) = \ell(\theta) \left(e^{-|r|^{q}} \right)_{r}^{\wedge}(t) := \ell(\theta) \gamma_{q}(t)$$

is a positive function on \mathbb{R} .

Example (Exponentials)

Fix $q \in (0,2]$, and let $\ell \in C(S^{n-1})$ be even and strictly positive. For each $\theta \in S^{n-1}$, set

$$h_{\theta}(r) = \ell(\theta) e^{-|r|^{q}}$$

Note that

$$(h_{\theta})_{r}^{\wedge}(t) = \ell(\theta) \left(e^{-|r|^{q}} \right)_{r}^{\wedge}(t) := \ell(\theta) \gamma_{q}(t)$$

is a positive function on $\ensuremath{\mathbb{R}}.$ Consequently, the function

$$f_q(\xi) = \frac{1}{\pi} \left[|x|_2^{-n+1} \ell\left(\frac{x}{|x|^2}\right) e^{-|x|_2^q} \right]_x^{\wedge}(\xi)$$

is the intersection function of

$$g_q(t,\theta) = \ell(\theta)\gamma_q(t).$$

э

Example

Again, take $\ell \in C(S^{n-1})$ even and strictly positive. To provide a non-example of an intersection function, for any $\theta \in S^{n-1}$ and q > 2, consider functions of the form $h_{\theta}(r) = \ell(\theta) \exp(-|r|^q)$, where $\ell \in C(S^{n-1})$ is strictly positive.

Example

Again, take $\ell \in C(S^{n-1})$ even and strictly positive. To provide a non-example of an intersection function, for any $\theta \in S^{n-1}$ and q > 2, consider functions of the form $h_{\theta}(r) = \ell(\theta) \exp(-|r|^q)$, where $\ell \in C(S^{n-1})$ is strictly positive. Taking the Fourier transform by $r \in \mathbb{R}$, we see that

$$(h_{\theta})_r^{\wedge}(t) = \ell(\theta)(e^{-|r|^q})_r^{\wedge}(t) := \ell(\theta)\gamma_q(t).$$

Example

Again, take $\ell \in C(S^{n-1})$ even and strictly positive. To provide a non-example of an intersection function, for any $\theta \in S^{n-1}$ and q > 2, consider functions of the form $h_{\theta}(r) = \ell(\theta) \exp(-|r|^q)$, where $\ell \in C(S^{n-1})$ is strictly positive. Taking the Fourier transform by $r \in \mathbb{R}$, we see that

$$(h_{\theta})_r^{\wedge}(t) = \ell(\theta)(e^{-|r|^q})_r^{\wedge}(t) := \ell(\theta)\gamma_q(t).$$

But $\gamma_q(t)$ is not always non-negative, so the function f given by

$$f(x) = \frac{1}{\pi} \left[|x|_2^{-n+1} \ell\left(\frac{x}{|x|_2}\right) e^{-|x|_2^q} \right]_{\xi}^{\wedge} (x)$$

fails to be an intersection function.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 めんぐ

Дорогой Серёна, Поздравляю вас с занегательким юбилеен! нелаю здоровых, схастык и мира! Bam, APTEM

э

→ < ∃→