Comparison problems for bodies, measures and functions.

Artem Zvavitch
Kent State University

(based on a joint work with Alexander Koldobsky and Michael Roysdon)
"61 Probability Encounters, In honor of Sergey Bobkov",
Paul Sabatier University, Toulouse, May 29 - June 2, 2023

$\boldsymbol{K} \cap \theta^{\perp}$

$\boldsymbol{L} \cap \theta^{\perp}$
K, L origin symmetric convex bodies in \mathbb{R}^{n}. Let

$$
\operatorname{vol}_{n-1}\left(K \cap \boldsymbol{\theta}^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \theta^{\perp}\right), \forall \boldsymbol{\theta} \in \mathbb{S}^{n-1}
$$

Does it follow that

$$
\operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L) ?
$$

$\boldsymbol{K} \cap \theta^{\perp}$

$\boldsymbol{L} \cap \theta^{\perp}$
K, L origin symmetric convex bodies in \mathbb{R}^{n}. Let

$$
\operatorname{vol}_{n-1}\left(K \cap \boldsymbol{\theta}^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \boldsymbol{\theta}^{\perp}\right), \forall \boldsymbol{\theta} \in \mathbb{S}^{n-1}
$$

Does it follow that

$$
\operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L) ?
$$

$$
\text { Yes, } n \leq 4 ; \text { No, } n \geq 5
$$

K. Ball, J. Bourgain, R. Gardner, A.Giannopoulos, A. Koldobsky, D. Larman, E. Lutwak, M. Papadimitrakis, C. Rogers, T. Schlumprecht, G. Zhang.

General measures

$f(x)$ - even, positive, continuous function on \mathbb{R}^{n}.

General measures

$f(x)$ - even, positive, continuous function on \mathbb{R}^{n}.
μ - measure on \mathbb{R}^{n} with the density f, i.e.

$$
\mu(K)=\int_{K} f(x) d x \text { and } \mu\left(K \cap \boldsymbol{\theta}^{\perp}\right)=\int_{K \cap \boldsymbol{\theta}^{\perp}} f(x) d x .
$$

$f(x)$ - even, positive, continuous function on \mathbb{R}^{n}.
μ - measure on \mathbb{R}^{n} with the density f, i.e.

$$
\mu(K)=\int_{K} f(x) d x \text { and } \mu\left(K \cap \boldsymbol{\theta}^{\perp}\right)=\int_{K \cap \boldsymbol{\theta}^{\perp}} f(x) d x .
$$

Fix $n \geq 2$. Given two convex origin-symmetric bodies K and L in \mathbb{R}^{n} such that

$$
\mu\left(K \cap \boldsymbol{\theta}^{\perp}\right) \leq \mu\left(L \cap \boldsymbol{\theta}^{\perp}\right)
$$

for every $\boldsymbol{\theta} \in \mathbb{S}^{n-1}$, does it follow that

$$
\mu(K) \leq \mu(L) ?
$$

$f(x)$ - even, positive, continuous function on \mathbb{R}^{n}.
μ - measure on \mathbb{R}^{n} with the density f, i.e.

$$
\mu(K)=\int_{K} f(x) d x \text { and } \mu\left(K \cap \boldsymbol{\theta}^{\perp}\right)=\int_{K \cap \boldsymbol{\theta}^{\perp}} f(x) d x .
$$

Fix $n \geq 2$. Given two convex origin-symmetric bodies K and L in \mathbb{R}^{n} such that

$$
\mu\left(K \cap \boldsymbol{\theta}^{\perp}\right) \leq \mu\left(L \cap \boldsymbol{\theta}^{\perp}\right)
$$

for every $\boldsymbol{\theta} \in \mathbb{S}^{n-1}$, does it follow that

$$
\mu(K) \leq \mu(L) ?
$$

(A.Z., 2005):

The answer to the above problem is independent from the "choice" of measure and depends only on the dimension n (i.e. YES for $n \leq 4$ and NO for $n \geq 5$).

Does there exist a constant $\mathcal{L}>0$, so that if

$$
\operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \theta^{\perp}\right), \forall \theta \in \mathbb{S}^{d-1}
$$

then

$$
\operatorname{vol}_{n}(K) \leq \mathcal{L} \cdot \operatorname{vol}_{n}(L) ?
$$

Does there exist a constant $\mathcal{L}>0$, so that if

$$
\operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \theta^{\perp}\right), \forall \theta \in \mathbb{S}^{d-1}
$$

then

$$
\operatorname{vol}_{n}(K) \leq \mathcal{L} \cdot \operatorname{vol}_{n}(L) ?
$$

Best known result follows from direct connection to the slicing problem of Bourgain and works of V. Milman, A. Pajor/J. Brogain/ B. Klartag / Y. Chen/ B. Klartag and J. Lehec / A. Jambulapati, Y. T. Lee and S. Vempala / B. Klartag:

$$
\mathcal{L} \leq C \sqrt{\log n}
$$

Isomorphic version of the Busemann-Petty problem

Does there exist a constant $\mathcal{L}>0$, so that if

$$
\operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \theta^{\perp}\right), \forall \theta \in \mathbb{S}^{d-1}
$$

then

$$
\operatorname{vol}_{n}(K) \leq \mathcal{L} \cdot \operatorname{vol}_{n}(L) ?
$$

Best known result follows from direct connection to the slicing problem of Bourgain and works of V. Milman, A. Pajor/J. Brogain/ B. Klartag / Y. Chen/ B. Klartag and J. Lehec / A. Jambulapati, Y. T. Lee and S. Vempala / B. Klartag:

$$
\mathcal{L} \leq C \sqrt{\log n}
$$

As we just noted his question is equivalent to the slicing problem of J. Bourgain:

Slicing Problem:

Does there exist a constant \mathcal{L}_{1} such that for any convex symmetric body $K \subset \mathbb{R}^{d}$

$$
\operatorname{vol}_{n}(K)^{\frac{n-1}{n}} \leq \mathcal{L}_{1} \max _{\theta \in \mathbb{S}^{n-1}} \operatorname{vol}_{n-1}\left(K \cap \boldsymbol{\theta}^{\perp}\right) ?
$$

$$
\mathcal{L} \approx \mathcal{L}_{1}
$$

Isomorphic version Busemann-Petty problem for arbitrary measures.

Problem:

Does there exist a constant \mathcal{L}_{2}, so that if $\mu\left(K \cap \boldsymbol{\theta}^{\perp}\right) \leq \mu\left(L \cap \boldsymbol{\theta}^{\perp}\right)$ for every $\boldsymbol{\theta} \in \mathbb{S}^{n-1}$, then $\mu(K) \leq \mathcal{L}_{2} \mu(L)$?

Isomorphic version Busemann-Petty problem for arbitrary measures.

Problem:

Does there exist a constant \mathcal{L}_{2}, so that if $\mu\left(K \cap \boldsymbol{\theta}^{\perp}\right) \leq \mu\left(L \cap \boldsymbol{\theta}^{\perp}\right)$ for every $\boldsymbol{\theta} \in \mathbb{S}^{n-1}$, then $\mu(K) \leq \mathcal{L}_{2} \mu(L)$?
(A. Koldobsky - A.Z, 2014 / Denghui Wu, 2020)

- $\mathcal{L}_{2} \leq \sqrt{n}$ - Independent of μ !

Isomorphic version Busemann-Petty problem for arbitrary measures.

Problem:

Does there exist a constant \mathcal{L}_{2}, so that if $\mu\left(K \cap \boldsymbol{\theta}^{\perp}\right) \leq \mu\left(L \cap \boldsymbol{\theta}^{\perp}\right)$ for every $\boldsymbol{\theta} \in \mathbb{S}^{n-1}$, then $\mu(K) \leq \mathcal{L}_{2} \mu(L)$?
(A. Koldobsky - A.Z, 2014 / Denghui Wu, 2020)

- $\mathcal{L}_{2} \leq \sqrt{n}$ - Independent of μ !
- If μ satisfies a concavity assumption then $\mathcal{L}_{2} \approx \mathcal{L}$ (follows from works of K . Ball and S . Bobkov) and thus $\mathcal{L}_{2} \leq C \sqrt{\log n}$.

Isomorphic version Busemann-Petty problem for arbitrary measures.

Problem:

Does there exist a constant \mathcal{L}_{2}, so that if $\mu\left(K \cap \boldsymbol{\theta}^{\perp}\right) \leq \mu\left(L \cap \boldsymbol{\theta}^{\perp}\right)$ for every $\boldsymbol{\theta} \in \mathbb{S}^{n-1}$, then $\mu(K) \leq \mathcal{L}_{2} \mu(L)$?
(A. Koldobsky - A.Z, 2014 / Denghui Wu, 2020)

- $\mathcal{L}_{2} \leq \sqrt{n}$ - Independent of μ !
- If μ satisfies a concavity assumption then $\mathcal{L}_{2} \approx \mathcal{L}$ (follows from works of K . Ball and S . Bobkov) and thus $\mathcal{L}_{2} \leq C \sqrt{\log n}$.

Problem (A. Koldobsky):

Does there exist a constant $\mathcal{L}_{3}>0$ such that for any convex symmetric body $K \subset \mathbb{R}^{n}$

$$
\mu(K) \leq \mathcal{L}_{3} \max _{\boldsymbol{\theta} \in \mathbb{S}^{n-1}} \mu\left(K \cap \boldsymbol{\theta}^{\perp}\right) \operatorname{vol}_{n}(K)^{\frac{1}{n}} ?
$$

Isomorphic version Busemann-Petty problem for arbitrary measures.

Problem:

Does there exist a constant \mathcal{L}_{2}, so that if $\mu\left(K \cap \boldsymbol{\theta}^{\perp}\right) \leq \mu\left(L \cap \boldsymbol{\theta}^{\perp}\right)$ for every $\boldsymbol{\theta} \in \mathbb{S}^{n-1}$, then $\mu(K) \leq \mathcal{L}_{2} \mu(L)$?

(A. Koldobsky - A.Z, 2014 / Denghui Wu, 2020)

- $\mathcal{L}_{2} \leq \sqrt{n}$ - Independent of μ !
- If μ satisfies a concavity assumption then $\mathcal{L}_{2} \approx \mathcal{L}$ (follows from works of K . Ball and S . Bobkov) and thus $\mathcal{L}_{2} \leq C \sqrt{\log n}$.

Problem (A. Koldobsky):

Does there exist a constant $\mathcal{L}_{3}>0$ such that for any convex symmetric body $K \subset \mathbb{R}^{n}$

$$
\mu(K) \leq \mathcal{L}_{3} \max _{\boldsymbol{\theta} \in \mathbb{S}^{n-1}} \mu\left(K \cap \boldsymbol{\theta}^{\perp}\right) \operatorname{vol}_{n}(K)^{\frac{1}{n}} ?
$$

- (A. Koldobsky): $\mathcal{L}_{3} \leq C \sqrt{n}$ and $\mathcal{L}_{3} \leq C$ for many special classes of bodies K.

Isomorphic version Busemann-Petty problem for arbitrary measures.

Problem:

Does there exist a constant \mathcal{L}_{2}, so that if $\mu\left(K \cap \boldsymbol{\theta}^{\perp}\right) \leq \mu\left(L \cap \boldsymbol{\theta}^{\perp}\right)$ for every $\boldsymbol{\theta} \in \mathbb{S}^{n-1}$, then $\mu(K) \leq \mathcal{L}_{2} \mu(L)$?

(A. Koldobsky - A.Z, 2014 / Denghui Wu, 2020)

- $\mathcal{L}_{2} \leq \sqrt{n}$ - Independent of μ !
- If μ satisfies a concavity assumption then $\mathcal{L}_{2} \approx \mathcal{L}$ (follows from works of K . Ball and S . Bobkov) and thus $\mathcal{L}_{2} \leq C \sqrt{\log n}$.

Problem (A. Koldobsky):

Does there exist a constant $\mathcal{L}_{3}>0$ such that for any convex symmetric body $K \subset \mathbb{R}^{n}$

$$
\mu(K) \leq \mathcal{L}_{3} \max _{\boldsymbol{\theta} \in \mathbb{S}^{n-1}} \mu\left(K \cap \boldsymbol{\theta}^{\perp}\right) \operatorname{vol}_{n}(K)^{\frac{1}{n}} ?
$$

- (A. Koldobsky): $\mathcal{L}_{3} \leq C \sqrt{n}$ and $\mathcal{L}_{3} \leq C$ for many special classes of bodies K.
- (A. Koldobsky - A.Z, 2014) If μ satisfy a concavity assumption then $\mathcal{L}_{3} \approx \mathcal{L}$ (follows from works of K. Ball and S . Bobkov) and thus $\mathcal{L}_{2} \leq C \sqrt{\log n}$.

Isomorphic version Busemann-Petty problem for arbitrary measures.

Problem:

Does there exist a constant \mathcal{L}_{2}, so that if $\mu\left(K \cap \boldsymbol{\theta}^{\perp}\right) \leq \mu\left(L \cap \boldsymbol{\theta}^{\perp}\right)$ for every $\boldsymbol{\theta} \in \mathbb{S}^{n-1}$, then $\mu(K) \leq \mathcal{L}_{2} \mu(L)$?

(A. Koldobsky - A.Z, 2014 / Denghui Wu, 2020)

- $\mathcal{L}_{2} \leq \sqrt{n}$ - Independent of μ !
- If μ satisfies a concavity assumption then $\mathcal{L}_{2} \approx \mathcal{L}$ (follows from works of K . Ball and S . Bobkov) and thus $\mathcal{L}_{2} \leq C \sqrt{\log n}$.

Problem (A. Koldobsky):

Does there exist a constant $\mathcal{L}_{3}>0$ such that for any convex symmetric body $K \subset \mathbb{R}^{n}$

$$
\mu(K) \leq \mathcal{L}_{3} \max _{\boldsymbol{\theta} \in \mathbb{S}^{n-1}} \mu\left(K \cap \boldsymbol{\theta}^{\perp}\right) \operatorname{vol}_{n}(K)^{\frac{1}{n}} ?
$$

- (A. Koldobsky): $\mathcal{L}_{3} \leq C \sqrt{n}$ and $\mathcal{L}_{3} \leq C$ for many special classes of bodies K.
- (A. Koldobsky - A.Z, 2014) If μ satisfy a concavity assumption then $\mathcal{L}_{3} \approx \mathcal{L}$ (follows from works of K. Ball and S . Bobkov) and thus $\mathcal{L}_{2} \leq C \sqrt{\log n}$.
- (A. Koldobsky - B. Klartag/ B. Klartag - G. Livshyts) $\mathcal{L}_{3} \approx \sqrt{n}$.

Isomorphic version Busemann-Petty problem for arbitrary measures.

Problem:

Does there exist a constant \mathcal{L}_{2}, so that if $\mu\left(K \cap \boldsymbol{\theta}^{\perp}\right) \leq \mu\left(L \cap \boldsymbol{\theta}^{\perp}\right)$ for every $\boldsymbol{\theta} \in \mathbb{S}^{n-1}$, then $\mu(K) \leq \mathcal{L}_{2} \mu(L)$?

(A. Koldobsky - A.Z, 2014 / Denghui Wu, 2020)

- $\mathcal{L}_{2} \leq \sqrt{n}$ - Independent of μ !
- If μ satisfies a concavity assumption then $\mathcal{L}_{2} \approx \mathcal{L}$ (follows from works of K . Ball and S . Bobkov) and thus $\mathcal{L}_{2} \leq C \sqrt{\log n}$.

Problem (A. Koldobsky):

Does there exist a constant $\mathcal{L}_{3}>0$ such that for any convex symmetric body $K \subset \mathbb{R}^{n}$

$$
\mu(K) \leq \mathcal{L}_{3} \max _{\boldsymbol{\theta} \in \mathbb{S}^{n-1}} \mu\left(K \cap \boldsymbol{\theta}^{\perp}\right) \operatorname{vol}_{n}(K)^{\frac{1}{n}} ?
$$

- (A. Koldobsky): $\mathcal{L}_{3} \leq C \sqrt{n}$ and $\mathcal{L}_{3} \leq C$ for many special classes of bodies K.
- (A. Koldobsky - A.Z, 2014) If μ satisfy a concavity assumption then $\mathcal{L}_{3} \approx \mathcal{L}$ (follows from works of K. Ball and S. Bobkov) and thus $\mathcal{L}_{2} \leq C \sqrt{\log n}$.
- (A. Koldobsky - B. Klartag/ B. Klartag - G. Livshyts) $\mathcal{L}_{3} \approx \sqrt{n}$.
- Many applications of those facts (including distances to L_{p}^{n} spaces) were done by (S. Bobkov, A. Giannopoulos, B. Klartag, A. Koldobsky, G. Livshyts, G. Paouris, A.Z.).

Isomorphic version Busemann-Petty problem for arbitrary measures.

Problem:

Does there exist a constant \mathcal{L}_{2}, so that if $\mu\left(K \cap \boldsymbol{\theta}^{\perp}\right) \leq \mu\left(L \cap \boldsymbol{\theta}^{\perp}\right)$ for every $\boldsymbol{\theta} \in \mathbb{S}^{n-1}$, then $\mu(K) \leq \mathcal{L}_{2} \mu(L)$?

(A. Koldobsky - A.Z, 2014 / Denghui Wu, 2020)

- $\mathcal{L}_{2} \leq \sqrt{n}$ - Independent of μ !
- If μ satisfies a concavity assumption then $\mathcal{L}_{2} \approx \mathcal{L}$ (follows from works of K . Ball and S . Bobkov) and thus $\mathcal{L}_{2} \leq C \sqrt{\log n}$.

Problem (A. Koldobsky):

Does there exist a constant $\mathcal{L}_{3}>0$ such that for any convex symmetric body $K \subset \mathbb{R}^{n}$

$$
\mu(K) \leq \mathcal{L}_{3} \max _{\boldsymbol{\theta} \in \mathbb{S}^{n-1}} \mu\left(K \cap \boldsymbol{\theta}^{\perp}\right) \operatorname{vol}_{n}(K)^{\frac{1}{n}} ?
$$

- (A. Koldobsky): $\mathcal{L}_{3} \leq C \sqrt{n}$ and $\mathcal{L}_{3} \leq C$ for many special classes of bodies K.
- (A. Koldobsky - A.Z, 2014) If μ satisfy a concavity assumption then $\mathcal{L}_{3} \approx \mathcal{L}$ (follows from works of K. Ball and S. Bobkov) and thus $\mathcal{L}_{2} \leq C \sqrt{\log n}$.
- (A. Koldobsky - B. Klartag/ B. Klartag - G. Livshyts) $\mathcal{L}_{3} \approx \sqrt{n}$.
- Many applications of those facts (including distances to L_{p}^{n} spaces) were done by (S. Bobkov, A. Giannopoulos, B. Klartag, A. Koldobsky, G. Livshyts, G. Paouris, A.Z.).
- No idea how \mathcal{L}_{2} is connected to \mathcal{L}_{3}

Isomorphic version Busemann-Petty problem for arbitrary measures.

Problem:

Does there exist a constant \mathcal{L}_{2}, so that if $\mu\left(K \cap \boldsymbol{\theta}^{\perp}\right) \leq \mu\left(L \cap \boldsymbol{\theta}^{\perp}\right)$ for every $\boldsymbol{\theta} \in \mathbb{S}^{n-1}$, then $\mu(K) \leq \mathcal{L}_{2} \mu(L)$?

(A. Koldobsky - A.Z, 2014 / Denghui Wu, 2020)

- $\mathcal{L}_{2} \leq \sqrt{n}$ - Independent of μ !
- If μ satisfies a concavity assumption then $\mathcal{L}_{2} \approx \mathcal{L}$ (follows from works of K . Ball and S . Bobkov) and thus $\mathcal{L}_{2} \leq C \sqrt{\log n}$.

Problem (A. Koldobsky):

Does there exist a constant $\mathcal{L}_{3}>0$ such that for any convex symmetric body $K \subset \mathbb{R}^{n}$

$$
\mu(K) \leq \mathcal{L}_{3} \max _{\boldsymbol{\theta} \in \mathbb{S}^{n-1}} \mu\left(K \cap \boldsymbol{\theta}^{\perp}\right) \operatorname{vol}_{n}(K)^{\frac{1}{n}} ?
$$

- (A. Koldobsky): $\mathcal{L}_{3} \leq C \sqrt{n}$ and $\mathcal{L}_{3} \leq C$ for many special classes of bodies K.
- (A. Koldobsky - A.Z, 2014) If μ satisfy a concavity assumption then $\mathcal{L}_{3} \approx \mathcal{L}$ (follows from works of K. Ball and S. Bobkov) and thus $\mathcal{L}_{2} \leq C \sqrt{\log n}$.
- (A. Koldobsky - B. Klartag/ B. Klartag - G. Livshyts) $\mathcal{L}_{3} \approx \sqrt{n}$.
- Many applications of those facts (including distances to L_{p}^{n} spaces) were done by (S. Bobkov, A. Giannopoulos, B. Klartag, A. Koldobsky, G. Livshyts, G. Paouris, A.Z.).
- No idea how \mathcal{L}_{2} is connected to \mathcal{L}_{3} (or how any of them really connected to \mathcal{L}).

Radial function: $\rho_{K}(\xi)=\sup \{a: a \xi \in K\}$, for $\xi \in S^{n-1}$.

Radial function: $\rho_{K}(\xi)=\sup \{a: a \xi \in K\}$, for $\xi \in S^{n-1}$.

Also $\rho_{K}(\xi)=\|\xi\|_{K}^{-1}$, where $\|\xi\|_{K}^{-1}$ is a Minkowski functional, or, in convex symmetric case, just a norm for which K is a unit ball.

Radial function: $\rho_{K}(\xi)=\sup \{a: a \xi \in K\}$, for $\xi \in S^{n-1}$.

Also $\rho_{K}(\xi)=\|\xi\|_{K}^{-1}$, where $\|\xi\|_{K}^{-1}$ is a Minkowski functional, or, in convex symmetric case, just a norm for which K is a unit ball.

- K is a star body if $\rho_{K}(\xi)$ is positive and continuous function on S^{n-1}.

Radial function: $\rho_{K}(\xi)=\sup \{a: a \xi \in K\}$, for $\xi \in S^{n-1}$.

Also $\rho_{K}(\xi)=\|\xi\|_{K}^{-1}$, where $\|\xi\|_{K}^{-1}$ is a Minkowski functional, or, in convex symmetric case, just a norm for which K is a unit ball.

- K is a star body if $\rho_{K}(\xi)$ is positive and continuous function on S^{n-1}.

Spherical coordinates and Volume:

$$
\operatorname{vol}_{n}(K)=\int_{S^{n-1}} \int_{0}^{\rho_{K}(\theta)} r^{n-1} d r d \theta=\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n}(\theta) d \theta
$$

Can we further generalize this question and WHY?

Using spherical coordinates in ξ^{\perp} we get

$$
\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right)=\frac{1}{n-1} \int_{S^{n-1} \cap \xi^{\perp}} \rho_{K}^{n-1}(\theta) d \theta=\frac{1}{n-1} R \rho_{K}^{n-1}(\xi) .
$$

Can we further generalize this question and WHY?

Using spherical coordinates in ξ^{\perp} we get

$$
\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right)=\frac{1}{n-1} \int_{S^{n-1} \cap \xi^{\perp}} \rho_{K}^{n-1}(\theta) d \theta=\frac{1}{n-1} R \rho_{K}^{n-1}(\xi) .
$$

Spherical Radon Transform:

$$
R f(\xi)=\int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

Can we further generalize this question and WHY?

Using spherical coordinates in ξ^{\perp} we get

$$
\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right)=\frac{1}{n-1} \int_{S^{n-1} \cap \xi^{\perp}} \rho_{K}^{n-1}(\theta) d \theta=\frac{1}{n-1} R \rho_{K}^{n-1}(\xi) .
$$

Spherical Radon Transform:

$$
R f(\xi)=\int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

So we can rewrite the classical Busemann-Petty problem
K, L origin symmetric convex bodies in \mathbb{R}^{n}. Let

$$
\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1}
$$

Does it follow that $\operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L)$?
In the following way

Can we further generalize this question and WHY?

Using spherical coordinates in ξ^{\perp} we get

$$
\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right)=\frac{1}{n-1} \int_{S^{n-1} \cap \xi^{\perp}} \rho_{K}^{n-1}(\theta) d \theta=\frac{1}{n-1} R \rho_{K}^{n-1}(\xi) .
$$

Spherical Radon Transform:

$$
R f(\xi)=\int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

So we can rewrite the classical Busemann-Petty problem
K, L origin symmetric convex bodies in \mathbb{R}^{n}. Let

$$
\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1}
$$

Does it follow that $\operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L)$?
In the following way
K, L origin symmetric convex bodies in \mathbb{R}^{n}. Let

$$
R \rho_{K}^{n-1}(\xi) \leq R \rho_{L}^{n-1}(\xi), \forall \xi \in \mathbb{S}^{n-1}
$$

Does it follow that $\int_{S^{n-1}} \rho_{K}^{n}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n}(\xi) d \xi$?

Can we further generalize this question and WHY?

Spherical Radon Transform:

$$
R f(\xi)=\int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

So we can rewrite the classical Busemann-Petty problem In the following way
K, L origin symmetric convex bodies in \mathbb{R}^{n}. Let

$$
R \rho_{K}^{n-1}(\xi) \leq R \rho_{L}^{n-1}(\xi), \forall \xi \in \mathbb{S}^{n-1}
$$

Does it follow that $\int_{S^{n-1}} \rho_{K}^{n}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n}(\xi) d \xi$?

Spherical Radon Transform:

$$
R f(\xi)=\int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

So we can rewrite the classical Busemann-Petty problem In the following way
K, L origin symmetric convex bodies in \mathbb{R}^{n}. Let

$$
R \rho_{K}^{n-1}(\xi) \leq R \rho_{L}^{n-1}(\xi), \forall \xi \in \mathbb{S}^{n-1}
$$

Does it follow that $\int_{S^{n-1}} \rho_{K}^{n}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n}(\xi) d \xi$?
Now let $f(\xi)=\rho_{K}^{n-1}(\xi)$ and $g(\xi)=\rho_{L}^{n-1}(\xi)$ the above becomes
Consider two positive, even functions $f, g: S^{n-1} \rightarrow \mathbb{R}$. Let

$$
\operatorname{Rf}(\xi) \leq \operatorname{Rg}(\xi), \forall \xi \in \mathbb{S}^{n-1}
$$

Does it follow that $\|f\|_{L_{\frac{n}{n-1}}\left(S^{n-1}\right)} \leq\|g\|_{L_{\frac{n}{n-1}}\left(S^{n-1}\right)}$

Can we further generalize this question and WHY?

Spherical Radon Transform:

$$
R f(\xi)=\int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

Spherical Radon Transform:

$$
R f(\xi)=\int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

Spherical Comparison Problem

Fix $p>0$. Consider two positive, even functions $f, g: S^{n-1} \rightarrow \mathbb{R}$. Let

$$
R f(\xi) \leq \operatorname{Rg}(\xi), \forall \xi \in \mathbb{S}^{n-1}
$$

Does it follow that $\|f\|_{L_{p}\left(S^{n-1}\right)} \leq\|g\|_{L_{p}\left(S^{n-1}\right)}$?

Spherical Radon Transform:

$$
R f(\xi)=\int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

Spherical Comparison Problem

Fix $p>0$. Consider two positive, even functions $f, g: S^{n-1} \rightarrow \mathbb{R}$. Let

$$
R f(\xi) \leq R g(\xi), \forall \xi \in \mathbb{S}^{n-1}
$$

Does it follow that $\|f\|_{L_{p}\left(S^{n-1}\right)} \leq\|g\|_{L_{p}\left(S^{n-1}\right)}$?
Case $p=1$ is "easy" (it is a Fubini theorem on S^{n-1}). Case $p=n /(n-1)$ is a Busemann-Petty problem.

Can we further generalize this question and WHY?

$$
\text { Spherical Radon Transform: } R f(\xi)=\int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

Spherical Comparison Problem

Fix $p>0$. Consider two positive, even functions $f, g: S^{n-1} \rightarrow \mathbb{R}$. Let

$$
R f(\xi) \leq \operatorname{Rg}(\xi), \forall \xi \in \mathbb{S}^{n-1}
$$

Does it follow that $\|f\|_{L_{p}\left(S^{n-1}\right)} \leq\|g\|_{L_{p}\left(S^{n-1}\right)}$?

Can we further generalize this question and WHY?

Spherical Radon Transform: $\operatorname{Rf}(\xi)=\int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta$

Spherical Comparison Problem

Fix $p>0$. Consider two positive, even functions $f, g: S^{n-1} \rightarrow \mathbb{R}$. Let

$$
R f(\xi) \leq \operatorname{Rg}(\xi), \forall \xi \in \mathbb{S}^{n-1}
$$

Does it follow that $\|f\|_{L_{p}\left(S^{n-1}\right)} \leq\|g\|_{L_{p}\left(S^{n-1}\right)}$?

Radon Transform:

$$
\mathcal{R} \varphi(t, \xi)=\int_{\xi^{\perp}+t \xi} \varphi(x) d x, \quad \xi \in S^{n-1}, t \in \mathbb{R}
$$

Can we further generalize this question and WHY?

Spherical Radon Transform: $\operatorname{Rf}(\xi)=\int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta$

Spherical Comparison Problem

Fix $p>0$. Consider two positive, even functions $f, g: S^{n-1} \rightarrow \mathbb{R}$. Let

$$
R f(\xi) \leq \operatorname{Rg}(\xi), \forall \xi \in \mathbb{S}^{n-1}
$$

Does it follow that $\|f\|_{L_{p}\left(S^{n-1}\right)} \leq\|g\|_{L_{p}\left(S^{n-1}\right)}$?

Radon Transform:

$$
\mathcal{R} \varphi(t, \xi)=\int_{\xi^{\perp}+t \xi} \varphi(x) d x, \quad \xi \in S^{n-1}, t \in \mathbb{R}
$$

Comparison Problem for Radon Transform

Fix $p>0$. Consider two positive, even functions $\varphi, \psi: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}, n \geq 2$,. Let

$$
\mathcal{R} \varphi(t, \theta) \leq \mathcal{R} \psi(t, \theta), \quad \text { for all }(t, \theta) \in \mathbb{R} \times S^{n-1}
$$

Does it follow that $\|\varphi\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\|\psi\|_{L^{p}\left(\mathbb{R}^{n}\right)}$?

Can we further generalize this question and WHY?

Spherical Radon Transform: $\operatorname{Rf}(\xi)=\int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta$

Spherical Comparison Problem

Fix $p>0$. Consider two positive, even functions $f, g: S^{n-1} \rightarrow \mathbb{R}$. Let

$$
R f(\xi) \leq \operatorname{Rg}(\xi), \forall \xi \in \mathbb{S}^{n-1}
$$

Does it follow that $\|f\|_{L_{p}\left(S^{n-1}\right)} \leq\|g\|_{L_{p}\left(S^{n-1}\right)}$?

Radon Transform:

$$
\mathcal{R} \varphi(t, \xi)=\int_{\xi^{\perp}+t \xi} \varphi(x) d x, \quad \xi \in S^{n-1}, t \in \mathbb{R}
$$

Comparison Problem for Radon Transform

Fix $p>0$. Consider two positive, even functions $\varphi, \psi: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}, n \geq 2$,. Let

$$
\mathcal{R} \varphi(t, \theta) \leq \mathcal{R} \psi(t, \theta), \quad \text { for all }(t, \theta) \in \mathbb{R} \times S^{n-1}
$$

Does it follow that $\|\varphi\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\|\psi\|_{L^{p}\left(\mathbb{R}^{n}\right)}$?
Clearly, case $p=1$ is "a joke" in both cases.

Can we further generalize this question and WHY?

Radon Transform:

$$
\mathcal{R} \varphi(t, \xi)=\int_{\xi^{\perp}+t \xi} \varphi(x) d x, \quad \xi \in S^{n-1}, t \in \mathbb{R}
$$

Comparison Problem for Radon Transform

Fix $p>0$. Consider two positive, even functions $\varphi, \psi: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}, n \geq 2$,. Let

$$
\mathcal{R} \varphi(t, \theta) \leq \mathcal{R} \psi(t, \theta), \quad \text { for all }(t, \theta) \in \mathbb{R} \times S^{n-1}
$$

Does it follow that $\|\varphi\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\|\psi\|_{L^{p}\left(\mathbb{R}^{n}\right)}$?

Can we further generalize this question and WHY?

Radon Transform:

$$
\mathcal{R} \varphi(t, \xi)=\int_{\xi^{\perp}+t \xi} \varphi(x) d x, \quad \xi \in S^{n-1}, t \in \mathbb{R}
$$

Comparison Problem for Radon Transform

Fix $p>0$. Consider two positive, even functions $\varphi, \psi: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}, n \geq 2$,. Let

$$
\mathcal{R} \varphi(t, \theta) \leq \mathcal{R} \psi(t, \theta), \quad \text { for all }(t, \theta) \in \mathbb{R} \times S^{n-1}
$$

Does it follow that $\|\varphi\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\|\psi\|_{L^{p}\left(\mathbb{R}^{n}\right)}$?
Clearly, case $p=1$ is "a joke"!

Can we further generalize this question and WHY?

Radon Transform:

$$
\mathcal{R} \varphi(t, \xi)=\int_{\xi^{\perp}+t \xi} \varphi(x) d x, \quad \xi \in S^{n-1}, t \in \mathbb{R}
$$

Comparison Problem for Radon Transform

Fix $p>0$. Consider two positive, even functions $\varphi, \psi: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}, n \geq 2$,. Let

$$
\mathcal{R} \varphi(t, \theta) \leq \mathcal{R} \psi(t, \theta), \quad \text { for all }(t, \theta) \in \mathbb{R} \times S^{n-1}
$$

Does it follow that $\|\varphi\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\|\psi\|_{L^{p}\left(\mathbb{R}^{n}\right)}$?
Clearly, case $p=1$ is "a joke"! But it looks like, in general, we should have enough information for a positive answer...

Radon Transform:

$$
\mathcal{R} \varphi(t, \xi)=\int_{\xi^{\perp}+t \xi} \varphi(x) d x, \quad \xi \in S^{n-1}, t \in \mathbb{R}
$$

Comparison Problem for Radon Transform

Fix $p>0$. Consider two positive, even functions $\varphi, \psi: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}, n \geq 2$,. Let

$$
\mathcal{R} \varphi(t, \theta) \leq \mathcal{R} \psi(t, \theta), \quad \text { for all }(t, \theta) \in \mathbb{R} \times S^{n-1}
$$

Does it follow that $\|\varphi\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\|\psi\|_{L^{p}\left(\mathbb{R}^{n}\right)}$?
Clearly, case $p=1$ is "a joke"! But it looks like, in general, we should have enough information for a positive answer...

Let $n \geq 2$, take $M>1, c=M^{-n+1}$, and set $p>\frac{n}{n-1}$.

Radon Transform:

$$
\mathcal{R} \varphi(t, \xi)=\int_{\xi^{\perp}+t \xi} \varphi(x) d x, \quad \xi \in S^{n-1}, t \in \mathbb{R}
$$

Comparison Problem for Radon Transform

Fix $p>0$. Consider two positive, even functions $\varphi, \psi: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}, n \geq 2$,. Let

$$
\mathcal{R} \varphi(t, \theta) \leq \mathcal{R} \psi(t, \theta), \quad \text { for all }(t, \theta) \in \mathbb{R} \times S^{n-1}
$$

Does it follow that $\|\varphi\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\|\psi\|_{L^{p}\left(\mathbb{R}^{n}\right)}$?
Clearly, case $p=1$ is "a joke"! But it looks like, in general, we should have enough information for a positive answer...

Let $n \geq 2$, take $M>1, c=M^{-n+1}$, and set $p>\frac{n}{n-1}$. Consider the functions $\varphi(x)=\chi_{B_{2}^{n}}(x)$ and $\psi(x)=c \chi_{M B_{2}^{n}}(x)$.

Radon Transform:

$$
\mathcal{R} \varphi(t, \xi)=\int_{\xi^{\perp}+t \xi} \varphi(x) d x, \quad \xi \in S^{n-1}, t \in \mathbb{R}
$$

Comparison Problem for Radon Transform

Fix $p>0$. Consider two positive, even functions $\varphi, \psi: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}, n \geq 2$,. Let

$$
\mathcal{R} \varphi(t, \theta) \leq \mathcal{R} \psi(t, \theta), \quad \text { for all }(t, \theta) \in \mathbb{R} \times S^{n-1}
$$

Does it follow that $\|\varphi\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\|\psi\|_{L^{p}\left(\mathbb{R}^{n}\right)}$?
Clearly, case $p=1$ is "a joke"! But it looks like, in general, we should have enough information for a positive answer...

Let $n \geq 2$, take $M>1, c=M^{-n+1}$, and set $p>\frac{n}{n-1}$. Consider the functions $\varphi(x)=\chi_{B_{2}^{n}}(x)$ and $\psi(x)=c \chi_{M B_{2}^{n}}(x)$. Then

$$
\mathcal{R} \varphi(t, \xi) \leq \mathcal{R} \psi(t, \xi), \quad \text { for all }(t, \xi) \in \mathbb{R} \times S^{n-1}
$$

Radon Transform:

$$
\mathcal{R} \varphi(t, \xi)=\int_{\xi^{\perp}+t \xi} \varphi(x) d x, \quad \xi \in S^{n-1}, t \in \mathbb{R}
$$

Comparison Problem for Radon Transform

Fix $p>0$. Consider two positive, even functions $\varphi, \psi: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}, n \geq 2$,. Let

$$
\mathcal{R} \varphi(t, \theta) \leq \mathcal{R} \psi(t, \theta), \quad \text { for all }(t, \theta) \in \mathbb{R} \times S^{n-1}
$$

Does it follow that $\|\varphi\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\|\psi\|_{L^{p}\left(\mathbb{R}^{n}\right)}$?
Clearly, case $p=1$ is "a joke"! But it looks like, in general, we should have enough information for a positive answer...

Let $n \geq 2$, take $M>1, c=M^{-n+1}$, and set $p>\frac{n}{n-1}$. Consider the functions $\varphi(x)=\chi_{B_{2}^{n}}(x)$ and $\psi(x)=c \chi_{M B_{2}^{n}}(x)$. Then

$$
\mathcal{R} \varphi(t, \xi) \leq \mathcal{R} \psi(t, \xi), \quad \text { for all }(t, \xi) \in \mathbb{R} \times S^{n-1}
$$

but $\|\varphi\|_{L^{p}\left(\mathbb{R}^{n}\right)}>\|\psi\|_{L^{p}\left(\mathbb{R}^{n}\right)}$.

Can we further generalize this question and WHY?

Radon Transform: $\mathcal{R} \varphi(t, \xi)=\int_{\xi^{\perp}+t \xi} \varphi(x) d x, \quad \xi \in S^{n-1}, t \in \mathbb{R}$
$L^{p}-L^{q}$-estimates for the Radon transform, have been studied for decades.

Radon Transform: $\mathcal{R} \varphi(t, \xi)=\int_{\xi^{\perp}+t \xi} \varphi(x) d x, \quad \xi \in S^{n-1}, t \in \mathbb{R}$
$L^{p}-L^{q}$-estimates for the Radon transform, have been studied for decades.
D.M. Oberlin and E.M. Stein proved that given any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f \in L^{p}\left(\mathbb{R}^{n}\right)$:

$$
\left(\int_{S^{n-1}}\left(\int_{\mathbb{R}}|\mathcal{R} f(t, \xi)|^{r} d t\right)^{\frac{q}{r}} d \xi\right)^{\frac{1}{q}} \leq C_{n, p, q}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

where $1 \leq p<\frac{n}{n-1}, q \leq p^{\prime}\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$, and $\frac{1}{r}=\frac{n}{p}-n+1$.

Radon Transform: $\mathcal{R} \varphi(t, \xi)=\int_{\xi_{+t \xi}} \varphi(x) d x, \quad \xi \in S^{n-1}, t \in \mathbb{R}$
$L^{p}-L^{q}$-estimates for the Radon transform, have been studied for decades.
D.M. Oberlin and E.M. Stein proved that given any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f \in L^{P}\left(\mathbb{R}^{n}\right)$:

$$
\left(\int_{S^{n-1}}\left(\int_{\mathbb{R}}|\mathcal{R} f(t, \xi)|^{r} d t\right)^{\frac{q}{r}} d \xi\right)^{\frac{1}{q}} \leq C_{n, p, q}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

where $1 \leq p<\frac{n}{n-1}, q \leq p^{\prime}\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$, and $\frac{1}{r}=\frac{n}{p}-n+1$. Also

$$
\left(\int_{S^{n-1}}\left(\sup _{t \in \mathbb{R}}|\mathcal{R} f(t, \xi)|\right)^{s}\right)^{\frac{1}{s}} \leq C_{p_{1}, p_{2}, s}\|f\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}^{\alpha}\|f\|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)}^{1-\alpha}
$$

whenever $s \leq n, 1 \leq p_{1}<\frac{n}{n-1}<p_{2} \leq \infty$, and $\frac{\alpha}{p_{1}}+\frac{1-\alpha}{p_{2}}=\frac{n-1}{n}$.

Radon Transform: $\mathcal{R} \varphi(t, \xi)=\int_{\xi^{\perp}+t \xi} \varphi(x) d x, \quad \xi \in S^{n-1}, t \in \mathbb{R}$
$L^{p}-L^{q}$-estimates for the Radon transform, have been studied for decades.
D.M. Oberlin and E.M. Stein proved that given any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f \in L^{P}\left(\mathbb{R}^{n}\right)$:

$$
\left(\int_{S^{n-1}}\left(\int_{\mathbb{R}}|\mathcal{R} f(t, \xi)|^{r} d t\right)^{\frac{q}{r}} d \xi\right)^{\frac{1}{q}} \leq C_{n, p, q}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

where $1 \leq p<\frac{n}{n-1}, q \leq p^{\prime}\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$, and $\frac{1}{r}=\frac{n}{p}-n+1$. Also

$$
\left(\int_{S^{n-1}}\left(\sup _{t \in \mathbb{R}}|\mathcal{R} f(t, \xi)|\right)^{s}\right)^{\frac{1}{s}} \leq C_{p_{1}, p_{2}, s}\|f\|_{L^{p_{1}\left(\mathbb{R}^{n}\right)}}^{\alpha}\|f\|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)}^{1-\alpha}
$$

whenever $s \leq n, 1 \leq p_{1}<\frac{n}{n-1}<p_{2} \leq \infty$, and $\frac{\alpha}{p_{1}}+\frac{1-\alpha}{p_{2}}=\frac{n-1}{n}$. E. Lutwak noticed that the limiting case of above takes as back to Convex Geometry.

Radon Transform: $\mathcal{R} \varphi(t, \xi)=\int_{\xi^{\perp}+t \xi} \varphi(x) d x, \quad \xi \in S^{n-1}, t \in \mathbb{R}$
$L^{p}-L^{q}$-estimates for the Radon transform, have been studied for decades.
D.M. Oberlin and E.M. Stein proved that given any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f \in L^{P}\left(\mathbb{R}^{n}\right)$:

$$
\left(\int_{S^{n-1}}\left(\int_{\mathbb{R}}|\mathcal{R} f(t, \xi)|^{r} d t\right)^{\frac{q}{r}} d \xi\right)^{\frac{1}{q}} \leq C_{n, p, q}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

where $1 \leq p<\frac{n}{n-1}, q \leq p^{\prime}\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$, and $\frac{1}{r}=\frac{n}{p}-n+1$. Also

$$
\left(\int_{S^{n-1}}\left(\sup _{t \in \mathbb{R}}|\mathcal{R} f(t, \xi)|\right)^{s}\right)^{\frac{1}{s}} \leq C_{p_{1}, p_{2}, s}\|f\|_{L^{p_{1}\left(\mathbb{R}^{n}\right)}}^{\alpha}\|f\|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)}^{1-\alpha}
$$

whenever $s \leq n, 1 \leq p_{1}<\frac{n}{n-1}<p_{2} \leq \infty$, and $\frac{\alpha}{p_{1}}+\frac{1-\alpha}{p_{2}}=\frac{n-1}{n}$. E. Lutwak noticed that the limiting case of above takes as back to Convex Geometry. Take f to be the characteristic function of a measurable set in $A \subset \mathbb{R}^{n}, s=n, p_{1}, p_{2} \rightarrow \frac{n}{n-1}$,

$$
\left(\int_{S^{n-1}}\left(\sup _{t \in \mathbb{R}}\left|A \cap\left(\xi^{\perp}+t \xi\right)\right|\right)^{n}\right)^{\frac{1}{n}} \leq C_{n}|A|^{\frac{n-1}{n}}
$$

Radon Transform: $\mathcal{R} \varphi(t, \xi)=\int_{\xi^{\perp}+t \xi} \varphi(x) d x, \quad \xi \in S^{n-1}, t \in \mathbb{R}$
$L^{p}-L^{q}$-estimates for the Radon transform, have been studied for decades.
D.M. Oberlin and E.M. Stein proved that given any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f \in L^{P}\left(\mathbb{R}^{n}\right)$:

$$
\left(\int_{S^{n-1}}\left(\int_{\mathbb{R}}|\mathcal{R} f(t, \xi)|^{r} d t\right)^{\frac{q}{r}} d \xi\right)^{\frac{1}{q}} \leq C_{n, p, q}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

where $1 \leq p<\frac{n}{n-1}, q \leq p^{\prime}\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$, and $\frac{1}{r}=\frac{n}{p}-n+1$. Also

$$
\left(\int_{S^{n-1}}\left(\sup _{t \in \mathbb{R}}|\mathcal{R} f(t, \xi)|\right)^{s}\right)^{\frac{1}{s}} \leq C_{p_{1}, p_{2}, s}\|f\|_{L^{p_{1}\left(\mathbb{R}^{n}\right)}}^{\alpha}\|f\|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)}^{1-\alpha}
$$

whenever $s \leq n, 1 \leq p_{1}<\frac{n}{n-1}<p_{2} \leq \infty$, and $\frac{\alpha}{p_{1}}+\frac{1-\alpha}{p_{2}}=\frac{n-1}{n}$. E. Lutwak noticed that the limiting case of above takes as back to Convex Geometry. Take f to be the characteristic function of a measurable set in $A \subset \mathbb{R}^{n}, s=n, p_{1}, p_{2} \rightarrow \frac{n}{n-1}$,

$$
\left(\int_{S^{n-1}}\left(\sup _{t \in \mathbb{R}}\left|A \cap\left(\xi^{\perp}+t \xi\right)\right|\right)^{n}\right)^{\frac{1}{n}} \leq C_{n}|A|^{\frac{n-1}{n}}
$$

Take A - convex and symmetric apply Brunn concavity principle you get Busemann intersection inequality.

Radon Transform: $\mathcal{R} \varphi(t, \xi)=\int_{\xi^{\perp}+t \xi} \varphi(x) d x, \quad \xi \in S^{n-1}, t \in \mathbb{R}$
$L^{p}-L^{q}$-estimates for the Radon transform, have been studied for decades.
D.M. Oberlin and E.M. Stein proved that given any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f \in L^{P}\left(\mathbb{R}^{n}\right)$:

$$
\left(\int_{S^{n-1}}\left(\int_{\mathbb{R}}|\mathcal{R} f(t, \xi)|^{r} d t\right)^{\frac{q}{r}} d \xi\right)^{\frac{1}{q}} \leq C_{n, p, q}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

where $1 \leq p<\frac{n}{n-1}, q \leq p^{\prime}\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$, and $\frac{1}{r}=\frac{n}{p}-n+1$. Also

$$
\left(\int_{S^{n-1}}\left(\sup _{t \in \mathbb{R}}|\mathcal{R} f(t, \xi)|\right)^{s}\right)^{\frac{1}{s}} \leq C_{p_{1}, p_{2}, s}\|f\|_{L^{p_{1}\left(\mathbb{R}^{n}\right)}}^{\alpha}\|f\|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)}^{1-\alpha}
$$

whenever $s \leq n, 1 \leq p_{1}<\frac{n}{n-1}<p_{2} \leq \infty$, and $\frac{\alpha}{p_{1}}+\frac{1-\alpha}{p_{2}}=\frac{n-1}{n}$. E. Lutwak noticed that the limiting case of above takes as back to Convex Geometry. Take f to be the characteristic function of a measurable set in $A \subset \mathbb{R}^{n}, s=n, p_{1}, p_{2} \rightarrow \frac{n}{n-1}$,

$$
\left(\int_{S^{n-1}}\left(\sup _{t \in \mathbb{R}}\left|A \cap\left(\xi^{\perp}+t \xi\right)\right|\right)^{n}\right)^{\frac{1}{n}} \leq C_{n}|A|^{\frac{n-1}{n}}
$$

Take A - convex and symmetric apply Brunn concavity principle you get Busemann intersection inequality.
Our "dream" to prove "reverse" inequalities, may be for some classes of functiens.

$$
\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1} \Longrightarrow \operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L) ?
$$

$$
\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1} \Longrightarrow \operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L) ?
$$

We have $R \rho_{K}^{n-1}(\xi) \leq R \rho_{L}^{n-1}(\xi), \forall \xi \in \mathbb{S}^{n-1}$.

$$
\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1} \Longrightarrow \operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L) ?
$$

We have $R \rho_{K}^{n-1}(\xi) \leq R \rho_{L}^{n-1}(\xi), \forall \xi \in \mathbb{S}^{n-1}$. We need $\int_{S^{n-1}} \rho_{K}^{n}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n}(\xi) d \xi$?

$$
\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1} \Longrightarrow \operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L) ?
$$

We have $R \rho_{K}^{n-1}(\xi) \leq R \rho_{L}^{n-1}(\xi), \forall \xi \in \mathbb{S}^{n-1}$. We need $\int_{S^{n-1}} \rho_{K}^{n}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n}(\xi) d \xi$? Still the best idea (E. Lutwak) is to use "Fubini theorem".

$$
\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1} \Longrightarrow \operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L) ?
$$

We have $R \rho_{K}^{n-1}(\xi) \leq R \rho_{L}^{n-1}(\xi), \forall \xi \in \mathbb{S}^{n-1}$. We need $\int_{S^{n-1}} \rho_{K}^{n}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n}(\xi) d \xi$? Still the best idea (E. Lutwak) is to use "Fubini theorem". If $\rho_{K}(\xi)=\left(R \mu_{K}\right)(\xi)$, where μ_{K} is a positive measure on S^{n-1}, then we are done.

$$
\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1} \Longrightarrow \operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L) ?
$$

We have $R \rho_{K}^{n-1}(\xi) \leq R \rho_{L}^{n-1}(\xi), \forall \xi \in \mathbb{S}^{n-1}$. We need $\int_{S^{n-1}} \rho_{K}^{n}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n}(\xi) d \xi$? Still the best idea (E. Lutwak) is to use "Fubini theorem". If $\rho_{K}(\xi)=\left(R \mu_{K}\right)(\xi)$, where μ_{K} is a positive measure on S^{n-1}, then we are done. Indeed integrate the condition with μ_{K} :

$$
\int_{S^{n-1}} R \rho_{K}^{n-1}(\xi) d \mu_{K} \leq \int_{S^{n-1}} R \rho_{L}^{n-1}(\xi) d \mu_{K}
$$

$$
\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1} \Longrightarrow \operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L) ?
$$

We have $R \rho_{K}^{n-1}(\xi) \leq R \rho_{L}^{n-1}(\xi), \forall \xi \in \mathbb{S}^{n-1}$. We need $\int_{S^{n-1}} \rho_{K}^{n}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n}(\xi) d \xi$? Still the best idea (E. Lutwak) is to use "Fubini theorem". If $\rho_{K}(\xi)=\left(R \mu_{K}\right)(\xi)$, where μ_{K} is a positive measure on S^{n-1}, then we are done. Indeed integrate the condition with μ_{K} :

$$
\begin{gathered}
\int_{S^{n-1}} R \rho_{K}^{n-1}(\xi) d \mu_{K} \leq \int_{S^{n-1}} R \rho_{L}^{n-1}(\xi) d \mu_{K} \\
\int_{S^{n-1}} \rho_{K}^{n-1}(\xi) R \mu_{K}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n-1}(\xi) R \mu_{K} d \xi
\end{gathered}
$$

$$
\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1} \Longrightarrow \operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L) ?
$$

We have $R \rho_{K}^{n-1}(\xi) \leq R \rho_{L}^{n-1}(\xi), \forall \xi \in \mathbb{S}^{n-1}$. We need $\int_{S^{n-1}} \rho_{K}^{n}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n}(\xi) d \xi$? Still the best idea (E. Lutwak) is to use "Fubini theorem". If $\rho_{K}(\xi)=\left(R \mu_{K}\right)(\xi)$, where μ_{K} is a positive measure on S^{n-1}, then we are done. Indeed integrate the condition with μ_{K} :

$$
\begin{gathered}
\int_{S^{n-1}} R \rho_{K}^{n-1}(\xi) d \mu_{K} \leq \int_{S^{n-1}} R \rho_{L}^{n-1}(\xi) d \mu_{K} \\
\int_{S^{n-1}} \rho_{K}^{n-1}(\xi) R \mu_{K}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n-1}(\xi) R \mu_{K} d \xi \\
\int_{S^{n-1}} \rho_{K}^{n}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n-1}(\xi) \rho_{K}(\xi) d \xi
\end{gathered}
$$

$$
\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1} \Longrightarrow \operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L) ?
$$

We have $R \rho_{K}^{n-1}(\xi) \leq R \rho_{L}^{n-1}(\xi), \forall \xi \in \mathbb{S}^{n-1}$. We need $\int_{S^{n-1}} \rho_{K}^{n}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n}(\xi) d \xi$? Still the best idea (E. Lutwak) is to use "Fubini theorem". If $\rho_{K}(\xi)=\left(R \mu_{K}\right)(\xi)$, where μ_{K} is a positive measure on S^{n-1}, then we are done. Indeed integrate the condition with μ_{K} :

$$
\begin{gathered}
\int_{S^{n-1}} R \rho_{K}^{n-1}(\xi) d \mu_{K} \leq \int_{S^{n-1}} R \rho_{L}^{n-1}(\xi) d \mu_{K} \\
\int_{S^{n-1}} \rho_{K}^{n-1}(\xi) R \mu_{K}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n-1}(\xi) R \mu_{K} d \xi \\
\int_{S^{n-1}} \rho_{K}^{n}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n-1}(\xi) \rho_{K}(\xi) d \xi
\end{gathered}
$$

Apply Hölder's inequality and finish.

$$
\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1} \Longrightarrow \operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L) ?
$$

We have $R \rho_{K}^{n-1}(\xi) \leq R \rho_{L}^{n-1}(\xi), \forall \xi \in \mathbb{S}^{n-1}$. We need $\int_{S^{n-1}} \rho_{K}^{n}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n}(\xi) d \xi$? Still the best idea (E. Lutwak) is to use "Fubini theorem". If $\rho_{K}(\xi)=\left(R \mu_{K}\right)(\xi)$, where μ_{K} is a positive measure on S^{n-1}, then we are done. Indeed integrate the condition with μ_{K} :

$$
\begin{gathered}
\int_{S^{n-1}} R \rho_{K}^{n-1}(\xi) d \mu_{K} \leq \int_{S^{n-1}} R \rho_{L}^{n-1}(\xi) d \mu_{K} \\
\int_{S^{n-1}} \rho_{K}^{n-1}(\xi) R \mu_{K}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n-1}(\xi) R \mu_{K} d \xi \\
\int_{S^{n-1}} \rho_{K}^{n}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n-1}(\xi) \rho_{K}(\xi) d \xi
\end{gathered}
$$

Apply Hölder's inequality and finish.
(E.Lutvak; R. Gardner; G. Zhang) K is an intersection body if there exists a non-negative, finite Borel measure μ_{K}

$$
\int_{S^{n-1}} \rho_{K}(\xi) f(x) d x=\left\langle\rho_{K}(\xi), f\right\rangle=\left\langle R \mu_{K}, f\right\rangle=\int_{S^{n-1}}[R f](\xi) d \mu_{K}(\xi)
$$

holds for all $f \in C\left(S^{n-1}\right)$.

$$
\operatorname{vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{vol}_{n-1}\left(L \cap \xi^{\perp}\right), \forall \xi \in \mathbb{S}^{n-1} \Longrightarrow \operatorname{vol}_{n}(K) \leq \operatorname{vol}_{n}(L) ?
$$

We have $R \rho_{K}^{n-1}(\xi) \leq R \rho_{L}^{n-1}(\xi), \forall \xi \in \mathbb{S}^{n-1}$. We need $\int_{S^{n-1}} \rho_{K}^{n}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n}(\xi) d \xi$? Still the best idea (E. Lutwak) is to use "Fubini theorem". If $\rho_{K}(\xi)=\left(R \mu_{K}\right)(\xi)$, where μ_{K} is a positive measure on S^{n-1}, then we are done. Indeed integrate the condition with μ_{K} :

$$
\begin{gathered}
\int_{S^{n-1}} R \rho_{K}^{n-1}(\xi) d \mu_{K} \leq \int_{S^{n-1}} R \rho_{L}^{n-1}(\xi) d \mu_{K} \\
\int_{S^{n-1}} \rho_{K}^{n-1}(\xi) R \mu_{K}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n-1}(\xi) R \mu_{K} d \xi \\
\int_{S^{n-1}} \rho_{K}^{n}(\xi) d \xi \leq \int_{S^{n-1}} \rho_{L}^{n-1}(\xi) \rho_{K}(\xi) d \xi
\end{gathered}
$$

Apply Hölder's inequality and finish.
(E.Lutvak; R. Gardner; G. Zhang) K is an intersection body if there exists a non-negative, finite Borel measure μ_{K}

$$
\int_{S^{n-1}} \rho_{K}(\xi) f(x) d x=\left\langle\rho_{K}(\xi), f\right\rangle=\left\langle R \mu_{K}, f\right\rangle=\int_{S^{n-1}}[R f](\xi) d \mu_{K}(\xi)
$$

holds for all $f \in C\left(S^{n-1}\right)$.
(A. Koldobsky) An origin-symmetric star body K in \mathbb{R}^{n} is an intersection body if, and only if, ρ_{K} is a positive definite distribution on \mathbb{R}^{n}, i.e. " $\widehat{\rho_{K}}>0$ ".

Theorem (A. Koldobsky, M. Roysdon and A.Z., 2023):
Let f, g be even continuous positive functions on the sphere S^{n-1}, and suppose that

$$
\begin{equation*}
R f(\theta) \leq R g(\theta), \quad \text { for all } \theta \in S^{n-1} \tag{1}
\end{equation*}
$$

Then:
(a) Suppose that for some $p>1$ the function $|x|_{2}^{-1} f^{p-1}\left(\frac{x}{|x|_{2}}\right)$ represents a positive definite distribution on \mathbb{R}^{n}. Then $\|f\|_{L^{p}\left(S^{n-1}\right)} \leq\|g\|_{L^{p}\left(S^{n-1}\right)}$.
(b) Suppose that for some $0<p<1$ the function $|x|_{2}^{-1} g^{p-1}\left(\frac{x}{|x|_{2}}\right)$ represents a positive definite distribution on \mathbb{R}^{n}. Then $\|f\|_{L^{p}\left(S^{n-1}\right)} \leq\|g\|_{L^{p}\left(S^{n-1}\right)}$.

Theorem (A. Koldobsky, M. Roysdon and A.Z., 2023):
Let f, g be even continuous positive functions on the sphere S^{n-1}, and suppose that

$$
\begin{equation*}
R f(\theta) \leq R g(\theta), \quad \text { for all } \theta \in S^{n-1} \tag{1}
\end{equation*}
$$

Then:
(a) Suppose that for some $p>1$ the function $|x|_{2}^{-1} f^{p-1}\left(\frac{x}{|x|_{2}}\right)$ represents a positive definite distribution on \mathbb{R}^{n}. Then $\|f\|_{L^{p}\left(S^{n-1}\right)} \leq\|g\|_{L^{p}\left(S^{n-1}\right)}$.
(b) Suppose that for some $0<p<1$ the function $|x|_{2}^{-1} g^{p-1}\left(\frac{x}{|x|_{2}}\right)$ represents a positive definite distribution on \mathbb{R}^{n}. Then $\|f\|_{L^{p}\left(S^{n-1}\right)} \leq\|g\|_{L^{p}\left(S^{n-1}\right)}$.

The following hold true:
(c) Let g be an infinitely smooth strictly positive even function on S^{n-1} and $p>1$. Suppose that the distribution $|x|_{2}^{-1} g^{p-1}\left(\frac{x}{|x|_{2}}\right)$ is not positive definite on \mathbb{R}^{n}. Then there exists an infinitely smooth even function f on S^{n-1} so that the condition (1) holds, but $\|f\|_{L^{p}\left(S^{n-1}\right)}>\|g\|_{L^{p}\left(S^{n-1}\right)}$.
(d) Let f be an infinitely smooth strictly positive even function on S^{n-1} and $0<p<1$. Suppose that the distribution $|x|_{2}^{-1} f^{p-1}\left(\frac{x}{|x|_{2}}\right)$ is not positive definite on \mathbb{R}^{n}. Then there exists an infinitely smooth even function g on S^{n-1} so that the condition (1) holds, but $\|f\|_{L P\left(S^{n-1}\right)}>\|g\|_{L^{p}\left(S^{n-1}\right)}$.

Corrolary (A. Koldobsky, M. Roysdon and A.Z., 2023):

Let f be a positive even, continuous function on the sphere S^{n-1} Assume $p>1$ and if $|x|_{2}^{-1} f^{p-1}\left(\frac{x}{|x|_{2}}\right)$ represents a positive definite distribution on \mathbb{R}^{n}, then

$$
\|f\|_{L^{p}\left(S^{n-1}\right)} \leq \frac{\left|S^{n-1}\right|^{\frac{1}{p}}}{\left|S^{n-2}\right|} \max _{\xi \in S^{n-1}} R f(\xi)
$$

Spherical Radon Transform: Reverse bounds
 "Slicing Theorem" FOR A VERY SPECIAL CLASS OF FUNCTIONS !

Corrolary (A. Koldobsky, M. Roysdon and A.Z., 2023):

Let f be a positive even, continuous function on the sphere S^{n-1} Assume $p>1$ and if $|x|_{2}^{-1} f^{p-1}\left(\frac{x}{|x|_{2}}\right)$ represents a positive definite distribution on \mathbb{R}^{n}, then

$$
\|f\|_{L^{p}\left(S^{n-1}\right)} \leq \frac{\left|S^{n-1}\right|^{\frac{1}{p}}}{\left|S^{n-2}\right|} \max _{\xi \in S^{n-1}} R f(\xi)
$$

Let g be a positive even, continuous function on the sphere S^{n-1} Assume $0<p<1$ and if $|x|_{2}^{-1} g^{p-1}\left(\frac{x}{|x|_{2}}\right)$ represents a positive definite distribution on \mathbb{R}^{n}, then

$$
\|g\|_{L^{p}\left(S^{n-1}\right)} \geq \frac{\left|S^{n-1}\right|^{\frac{1}{p}}}{\left|S^{n-2}\right|} \min _{\xi \in S^{n-1}} R g(\xi)
$$

Definition (A. Koldobsky, M. Roysdon and A.Z., 2023):

A non-negative, even, continuous, integrable function f on \mathbb{R}^{n} is called an intersection function if, for every direction $\theta \in S^{n-1}$, the function

$$
r \in \mathbb{R} \mapsto|r|^{n-1} \hat{f}(r \theta)
$$

is a positive definite function on \mathbb{R} for each $\theta \in S^{n-1}$ (note where \widehat{f} denotes the Fourier transforms of f on \mathbb{R}^{n}).

Definition (A. Koldobsky, M. Roysdon and A.Z., 2023):

A non-negative, even, continuous, integrable function f on \mathbb{R}^{n} is called an intersection function if, for every direction $\theta \in S^{n-1}$, the function

$$
r \in \mathbb{R} \mapsto|r|^{n-1} \hat{f}(r \theta)
$$

is a positive definite function on \mathbb{R} for each $\theta \in S^{n-1}$ (note where \widehat{f} denotes the Fourier transforms of f on \mathbb{R}^{n}).

We will stay more "practical/geometric" definition as a theorem:

Definition (A. Koldobsky, M. Roysdon and A.Z., 2023):

A non-negative, even, continuous, integrable function f on \mathbb{R}^{n} is called an intersection function if, for every direction $\theta \in S^{n-1}$, the function

$$
r \in \mathbb{R} \mapsto|r|^{n-1} \hat{f}(r \theta)
$$

is a positive definite function on \mathbb{R} for each $\theta \in S^{n-1}$ (note where \widehat{f} denotes the Fourier transforms of f on \mathbb{R}^{n}).

We will stay more "practical/geometric" definition as a theorem:

Theorem

An even, continuous, non-negative, and integrable function f defined on \mathbb{R}^{n} is an intersection function if, and only if, for every direction $\theta \in S^{n-1}$, there exists a non-negative, even, finite Borel measure μ_{θ} on \mathbb{R} such that

- the function

$$
\theta \in S^{n-1} \mapsto \int_{\mathbb{R}} \mathcal{R} \varphi(t, \theta) d \mu_{\theta}(t)
$$

belongs to $L_{1}\left(S^{n-1}\right)$ whenever $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ (Schwartz space of rapidly decreasing infinitely differentiable test functions on \mathbb{R}^{n}), and
-

$$
\int_{\mathbb{R}^{n}} f \varphi=\int_{S^{n-1}} \int_{\mathbb{R}} \mathcal{R} \varphi(t, \theta) d \mu_{\theta}(t) d \theta
$$

holds for all $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.

Theorem (A. Koldobsky, M. Roysdon and A.Z., 2023):
Let $p>0$ and consider a pair of continuous, non-negative even functions $\varphi, \psi \in L^{1}\left(\mathbb{R}^{n}\right) \cap L^{p}\left(\mathbb{R}^{n}\right)$ satisfying the condition

$$
\mathcal{R} \varphi(t, \theta) \leq \mathcal{R} \psi(t, \theta) \quad \text { for all }(t, \theta) \in \mathbb{R} \times S^{n-1}
$$

Then:
(a) if $p>1$ and φ^{p-1} is an intersection function, then $\|\varphi\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\|\psi\|_{L^{p}\left(\mathbb{R}^{n}\right)}$, and
(b) if $0<p<1$ and ψ^{p-1} is an intersection function, then $\|\varphi\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\|\psi\|_{L^{p}\left(\mathbb{R}^{n}\right)}$.

Theorem (A. Koldobsky, M. Roysdon and A.Z., 2023):

Let $p>0$ and consider a pair of continuous, non-negative even functions $\varphi, \psi \in L^{1}\left(\mathbb{R}^{n}\right) \cap L^{p}\left(\mathbb{R}^{n}\right)$ satisfying the condition

$$
\mathcal{R} \varphi(t, \theta) \leq \mathcal{R} \psi(t, \theta) \quad \text { for all }(t, \theta) \in \mathbb{R} \times S^{n-1}
$$

Then:
(a) if $p>1$ and φ^{p-1} is an intersection function, then $\|\varphi\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\|\psi\|_{L^{p}\left(\mathbb{R}^{n}\right)}$, and
(b) if $0<p<1$ and ψ^{p-1} is an intersection function, then $\|\varphi\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\|\psi\|_{L^{p}\left(\mathbb{R}^{n}\right)}$.

The following hold:
(c) Fix $p>1$ and let $\psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ be non-negative and even. If ψ^{p-1} is not an intersection function, then there exists an even, non-negative $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ such that

$$
\mathcal{R} \varphi(t, \theta) \leq \mathcal{R} \psi(t, \theta) \quad \text { for all }(t, \theta) \in \mathbb{R} \times S^{n-1}
$$

but with $\|\psi\|_{L^{p}\left(\mathbb{R}^{n}\right)}<\|\varphi\|_{L^{p}\left(\mathbb{R}^{n}\right)}$.
(d) Fix $0<p<1$ and let $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ be non-negative and even. If φ^{p-1} is not an intersection function, then there exists a non-negative, even $\psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ such that $\mathcal{R} \varphi \leq \mathcal{R} \psi$, but with $\|\psi\|_{L^{p}\left(\mathbb{R}^{n}\right)}<\|\varphi\|_{L^{p}\left(\mathbb{R}^{n}\right)}$.

Is the a humane way to understand "intersection functions"?

E. Lutwak: Intersection body, of a body K
$\mathrm{K} \longrightarrow \mathrm{IK}$

E. Lutwak: Intersection body, of a body K

So $\rho_{\mathrm{IK}}(\xi)=[R g](\xi)$, where $g: S^{n-1} \rightarrow \mathbb{R}^{+}$
E. Lutwak: Intersection body, of a body K

So $\rho_{\mathrm{I} K}(\xi)=[R g](\xi)$, where $g: S^{n-1} \rightarrow \mathbb{R}^{+}$(o.k. in this case $g(\xi)=\frac{1}{n-1} \rho_{K}^{n-1}(\xi)$).
E. Lutwak: Intersection body, of a body K

So $\rho_{\mathrm{I} K}(\xi)=[R g](\xi)$, where $g: S^{n-1} \rightarrow \mathbb{R}^{+}$(o.k. in this case $g(\xi)=\frac{1}{n-1} \rho_{K}^{n-1}(\xi)$).
From now we will talk about very nice functions (even, continuous, integrable) only
E. Lutwak: Intersection body, of a body K

$$
\mathrm{K} \longrightarrow \mathrm{IK}
$$

So $\rho_{\mathrm{I} K}(\xi)=[R g](\xi)$, where $g: S^{n-1} \rightarrow \mathbb{R}^{+}$(o.k. in this case $g(\xi)=\frac{1}{n-1} \rho_{K}^{n-1}(\xi)$).
From now we will talk about very nice functions (even, continuous, integrable) only
A function f on \mathbb{R}^{n} is an intersection function of the function g if, for any $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$:

$$
\langle f, \varphi\rangle=\int_{\mathbb{R}^{n}} \varphi(x) f(x) d x=\int_{S^{n-1}} \int_{\mathbb{R}} \mathcal{R} \varphi(t, \theta) g(t, \theta) d t d \theta=\langle g, \mathcal{R} \varphi\rangle
$$

E. Lutwak: Intersection body, of a body K

So $\rho_{\mathrm{I} K}(\xi)=[R g](\xi)$, where $g: S^{n-1} \rightarrow \mathbb{R}^{+}$(o.k. in this case $g(\xi)=\frac{1}{n-1} \rho_{K}^{n-1}(\xi)$).
From now we will talk about very nice functions (even, continuous, integrable) only
A function f on \mathbb{R}^{n} is an intersection function of the function g if, for any $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$:

$$
\langle f, \varphi\rangle=\int_{\mathbb{R}^{n}} \varphi(x) f(x) d x=\int_{S^{n-1}} \int_{\mathbb{R}} \mathcal{R} \varphi(t, \theta) g(t, \theta) d t d \theta=\langle g, \mathcal{R} \varphi\rangle
$$

Any way to connect it to intersection bodies?
E. Lutwak: Intersection body, of a body K

So $\rho_{\mathrm{I} K}(\xi)=[R g](\xi)$, where $g: S^{n-1} \rightarrow \mathbb{R}^{+}$(o.k. in this case $\left.g(\xi)=\frac{1}{n-1} \rho_{K}^{n-1}(\xi)\right)$.
From now we will talk about very nice functions (even, continuous, integrable) only
A function f on \mathbb{R}^{n} is an intersection function of the function g if, for any $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$:

$$
\langle f, \varphi\rangle=\int_{\mathbb{R}^{n}} \varphi(x) f(x) d x=\int_{S^{n-1}} \int_{\mathbb{R}} \mathcal{R} \varphi(t, \theta) g(t, \theta) d t d \theta=\langle g, \mathcal{R} \varphi\rangle
$$

Any way to connect it to intersection bodies?

Theorem

For any nice $g: R \times S^{n-1} \rightarrow \mathbb{R}$ the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$defined by

$$
f(x)=\int_{S^{n-1}} g(\langle x, \theta\rangle, \theta) d \theta
$$

is an intersection function of g.

Is the a humane way to understand "intersection functions"?

From now we will talk about very nice functions (even, continuous, integrable)

Is the a humane way to understand "intersection functions"?

From now we will talk about very nice functions (even, continuous, integrable)

A function f on \mathbb{R}^{n} is an intersection function of the function g if, for any $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$:

$$
\langle f, \varphi\rangle=\int_{\mathbb{R}^{n}} \varphi(x) f(x) d x=\int_{S^{n-1}} \int_{\mathbb{R}} \mathcal{R} \varphi(t, \theta) g(t, \theta) d t d \theta=\langle g, \mathcal{R} \varphi\rangle
$$

Any way to connect it to intersection bodies?

Theorem

For any nice $g: R \times S^{n-1} \rightarrow \mathbb{R}$ the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$defined by

$$
f(x)=\int_{S^{n-1}} g(\langle x, \theta\rangle, \theta) d \theta
$$

is an intersection function of g.
May be there is a formula that Artem can actually use to check?

Is the a humane way to understand "intersection functions"?

From now we will talk about very nice functions (even, continuous, integrable)

A function f on \mathbb{R}^{n} is an intersection function of the function g if, for any $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$:

$$
\langle f, \varphi\rangle=\int_{\mathbb{R}^{n}} \varphi(x) f(x) d x=\int_{S^{n-1}} \int_{\mathbb{R}} \mathcal{R} \varphi(t, \theta) g(t, \theta) d t d \theta=\langle g, \mathcal{R} \varphi\rangle
$$

Any way to connect it to intersection bodies?

Theorem

For any nice $g: R \times S^{n-1} \rightarrow \mathbb{R}$ the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$defined by

$$
f(x)=\int_{S^{n-1}} g(\langle x, \theta\rangle, \theta) d \theta
$$

is an intersection function of g.
May be there is a formula that Artem can actually use to check?

Theorem

A function f on \mathbb{R}^{n} is an intersection function of g if, and only if,

$$
f=\frac{1}{\pi}\left(|x|_{2}^{-n+1}\left(g\left(t, \frac{x}{|x|_{2}}\right)\right)_{t}^{\wedge}\left(|x|_{2}\right)\right)_{x}^{\wedge}
$$

where the interior Fourier transform is taken with respect to $t \in \mathbb{R}$, and the exterior Fourier transform is with respect to $x \in \mathbb{R}^{n}$.

Example (Exponentials)

Fix $q \in(0,2]$, and let $\ell \in C\left(S^{n-1}\right)$ be even and strictly positive. For each $\theta \in S^{n-1}$, set

$$
h_{\theta}(r)=\ell(\theta) e^{-|r|^{q}} .
$$

Example (Exponentials)

Fix $q \in(0,2]$, and let $\ell \in C\left(S^{n-1}\right)$ be even and strictly positive. For each $\theta \in S^{n-1}$, set

$$
h_{\theta}(r)=\ell(\theta) e^{-|r|^{q}} .
$$

Note that

$$
\left(h_{\theta}\right)_{r}^{\wedge}(t)=\ell(\theta)\left(e^{-|r|^{q}}\right)_{r}^{\wedge}(t):=\ell(\theta) \gamma_{q}(t)
$$

is a positive function on \mathbb{R}.

Example (Exponentials)

Fix $q \in(0,2]$, and let $\ell \in C\left(S^{n-1}\right)$ be even and strictly positive. For each $\theta \in S^{n-1}$, set

$$
h_{\theta}(r)=\ell(\theta) e^{-|r|^{q}} .
$$

Note that

$$
\left(h_{\theta}\right)_{r}^{\wedge}(t)=\ell(\theta)\left(e^{-|r|^{q}}\right)_{r}^{\wedge}(t):=\ell(\theta) \gamma_{q}(t)
$$

is a positive function on \mathbb{R}. Consequently, the function

$$
f_{q}(\xi)=\frac{1}{\pi}\left[|x|_{2}^{-n+1} \ell\left(\frac{x}{|x|^{2}}\right) e^{-|x|_{2}^{q}}\right]_{x}^{\wedge}(\xi)
$$

is the intersection function of

$$
g_{q}(t, \theta)=\ell(\theta) \gamma_{q}(t) .
$$

Example

Again, take $\ell \in C\left(S^{n-1}\right)$ even and strictly positive. To provide a non-example of an intersection function, for any $\theta \in S^{n-1}$ and $q>2$, consider functions of the form $h_{\theta}(r)=\ell(\theta) \exp \left(-|r|^{q}\right)$, where $\ell \in C\left(S^{n-1}\right)$ is strictly positive.

Example

Again, take $\ell \in C\left(S^{n-1}\right)$ even and strictly positive. To provide a non-example of an intersection function, for any $\theta \in S^{n-1}$ and $q>2$, consider functions of the form $h_{\theta}(r)=\ell(\theta) \exp \left(-|r|^{q}\right)$, where $\ell \in C\left(S^{n-1}\right)$ is strictly positive. Taking the Fourier transform by $r \in \mathbb{R}$, we see that

$$
\left(h_{\theta}\right)_{r}^{\wedge}(t)=\ell(\theta)\left(e^{-|r|^{q}}\right)_{r}^{\wedge}(t):=\ell(\theta) \gamma_{q}(t)
$$

Example

Again, take $\ell \in C\left(S^{n-1}\right)$ even and strictly positive. To provide a non-example of an intersection function, for any $\theta \in S^{n-1}$ and $q>2$, consider functions of the form $h_{\theta}(r)=\ell(\theta) \exp \left(-|r|^{q}\right)$, where $\ell \in C\left(S^{n-1}\right)$ is strictly positive. Taking the Fourier transform by $r \in \mathbb{R}$, we see that

$$
\left(h_{\theta}\right)_{r}^{\wedge}(t)=\ell(\theta)\left(e^{-|r|^{q}}\right)_{r}^{\wedge}(t):=\ell(\theta) \gamma_{q}(t)
$$

But $\gamma_{q}(t)$ is not always non-negative, so the function f given by

$$
f(x)=\frac{1}{\pi}\left[|x|_{2}^{-n+1} \ell\left(\frac{x}{|x|_{2}}\right) e^{-|x|_{2}^{q}}\right]_{\xi}^{\wedge}(x)
$$

fails to be an intersection function.

Dopozoú Cepëжа,
Mozgpabars bac c занегагенькнн Dлилеен! мелан зgopolbr, cractir a mupa!

Bam,

