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• Gibbs measures: spin systems and permutations

• Relative entropy, subadditivity and factorizations

• Approximate Shearer inequalities

• A general class of Gibbs samplers (heat bath dynamics)

• Recent results for spin systems

• Entropy subadditivity for permutations and proof of a
conjecture of Carlen, Lieb, Loss (’04) and Samorodnitsky (’08)
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Spin systems on a graph and permutations

µ is a Gibbs measure: a probability on Ω = ×n
i=1Ωi describing

some interacting system:

For instance, a spin system on a graph G = (V ,E ), with |V | = n,
is a Gibbs measure µ on Ω = [q]V , [q] = {1, . . . , q} for some
q ∈ N, associated with some interaction along the edges of G .
[Some results for continuous spins as well]
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µ is a Gibbs measure: a probability on Ω = ×n
i=1Ωi describing

some interacting system:

For instance, a spin system on a graph G = (V ,E ), with |V | = n,
is a Gibbs measure µ on Ω = [q]V , [q] = {1, . . . , q} for some
q ∈ N, associated with some interaction along the edges of G .
[Some results for continuous spins as well]

Some examples:

Potts Model: µ(σ) = exp (βM(σ))
Z(G ,β) , M(σ) =

∑

xy∈E 1(σx = σy )

Here q > 2. When q = 2 it is known as the Ising Model.
When β > 0 the Potts model is called ferromagnetic.

q-Colorings: µ(σ) =
1(σ∈ΩG ,q)

|ΩG ,q|
, ΩG ,q = {proper q-colorings of G}

Permutations: µ(σ) = 1
n! 1(σ ∈ Sn) , Sn = permutations of [n]



Entropy subadditivity
The entropy of f : Ω 7→ R+ w.r.t. µ is defined by

Ent(f ) = µ [f log(f /µ[f ])] =

∫

f log( f
µ[f ]) dµ .

Rel. entropy, KL-div. Ent(f ) = H(f µ |µ) when µ[f ] = 1.
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The entropy of f : Ω 7→ R+ w.r.t. µ is defined by

Ent(f ) = µ [f log(f /µ[f ])] =

∫

f log( f
µ[f ]) dµ .

Rel. entropy, KL-div. Ent(f ) = H(f µ |µ) when µ[f ] = 1.

Approximate Subadditivity with const. C : Let fx(σ) := µ(f |σx),
∑

x∈[n]Ent fx 6 C Ent f , f : Ω 7→ R+,

[Barthe ’98; Carlen,Lieb,Loss ’04; Carlen, Cordero Erausquin ’09,...]

• C = 1 if µ is product

• C = 2 if µ is uniform over the sphere S
n−1 (optimal)

• C = 2 if µ is uniform over permutations Sn (NOT optimal)

• Equivalent to B-L type ineq. for all ϕx : Ωx 7→ R+,

µ
[

∏

x∈[n]ϕx(σx)
]

6
∏

x∈[n] µ
[

ϕx (σx)
C
]

1
C
,

Questions: spin systems ? permutations ?



Entropy tensorization
Approximate Tensorization with const. C :
Let Entx f := Ent(f |σy , y 6= x),

Ent f 6 C
∑

x∈[n] µ [Entx f ] , f : Ω 7→ R+,



Entropy tensorization
Approximate Tensorization with const. C :
Let Entx f := Ent(f |σy , y 6= x),

Ent f 6 C
∑

x∈[n] µ [Entx f ] , f : Ω 7→ R+,

Essentially equivalent to a (modified) log-Sobolev inequality for
Glauber dynamics:

• C = 1 if µ is product

• Spin systems on G ⊂ Z
d under Strong Spatial Mixing (SSM):

Stroock-Zegarlinski ’92; Martinelli, Olivieri ’94; Cesi ’01.

• For general graphs at high temp: C,Menz,Tetali’14;
Marton’14; Bauerschmidt, Bodineau’19,

• Negative dependence: Cryan,Guo,Mousa’19; Hermon,Salez’19

• Major recent progress: entropic independence by Anari et
al.’21, Chen, Feng, Yin, Zhang’21, stochastic localization by
Chen, Eldan’22

Natural problem: find unified framework for subadd. and tensoriz.



Entropy factorizations: Approximate Shearer inequalities
Let µτ

A be the conditional distribution µ(·|σAc = τ), A ⊂ V
τ is a boundary condition or a pinning. For f : Ω 7→ R, µAf is
conditional expectation µAf (σ) := µσAc

A [f ] and
EntA(f ) := µA [f log(f /µA[f ])] is conditional entropy :

µ [EntA(f )] = µ
[

µA [f log(f /µA[f ])]
]

= Ent f − Ent (µAf ).
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Entropy factorizations: Approximate Shearer inequalities
Let µτ

A be the conditional distribution µ(·|σAc = τ), A ⊂ V
τ is a boundary condition or a pinning. For f : Ω 7→ R, µAf is
conditional expectation µAf (σ) := µσAc

A [f ] and
EntA(f ) := µA [f log(f /µA[f ])] is conditional entropy :

µ [EntA(f )] = µ
[

µA [f log(f /µA[f ])]
]

= Ent f − Ent (µAf ).

Let α := {αA, A ⊂ V } a probability and γ(α) := minx
∑

A∋x αA .

Def: α-block factorization with const. C (α) :

γ(α)Ent f 6 C (α)
∑

A⊂[n] αA µ [EntAf ] , f : Ω 7→ R+,

Remarks:

• C (α) ≡ 1 for all α if µ is product (Shearer inequality)
• Equivalent to subadditivity statement (by chain rule):

∑

A⊂[n] αA EntµAf 6

[

1− γ(α)
C(α)

]

Ent f , f : Ω 7→ R+,

• αA = 1
n
1|A|=1 ⇒ App.Tens. and αA = 1

n
1|A|=n−1 ⇒ App.Sub.



Gibbs samplers, Mixing
Consider the Markov chain where at each step a subset A ⊂ [n] is
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updated according to µσAc

A . This chain has transition operator

Pαf =
∑

A⊂[n]αA µAf , f : Ω 7→ R,

call it the α- block dynamics. Note: αA = 1
n
1|A|=1 ⇒ Glauber dyn.



Gibbs samplers, Mixing
Consider the Markov chain where at each step a subset A ⊂ [n] is
picked with probab. αA and its spins σA = {σx , x ∈ A} are
updated according to µσAc

A . This chain has transition operator

Pαf =
∑

A⊂[n]αA µAf , f : Ω 7→ R,

call it the α- block dynamics. Note: αA = 1
n
1|A|=1 ⇒ Glauber dyn.

Pα is reversible and has Dirichlet form:

Dα(f , g) = 〈f , (1 − Pα)g〉 =
∑

A⊂[n]αAµ [CovA(f , g)]

where CovA(f , g) = µA[(f − µAf )(g − µAg)]. Mixing time:

Tmix(Pα) := inf{t ∈ N : maxσ‖P
t
α(σ, ·) − µ‖TV 6 1/4} .



Gibbs samplers, Mixing
Consider the Markov chain where at each step a subset A ⊂ [n] is
picked with probab. αA and its spins σA = {σx , x ∈ A} are
updated according to µσAc

A . This chain has transition operator

Pαf =
∑

A⊂[n]αA µAf , f : Ω 7→ R,

call it the α- block dynamics. Note: αA = 1
n
1|A|=1 ⇒ Glauber dyn.

Pα is reversible and has Dirichlet form:

Dα(f , g) = 〈f , (1 − Pα)g〉 =
∑

A⊂[n]αAµ [CovA(f , g)]

where CovA(f , g) = µA[(f − µAf )(g − µAg)]. Mixing time:

Tmix(Pα) := inf{t ∈ N : maxσ‖P
t
α(σ, ·) − µ‖TV 6 1/4} .

By Pinsker’s inequality ‖ν − µ‖2TV 6
1
2H(ν|µ),

Ent(Pαf ) 6 (1−δ)Ent(f ) ⇒ Tmix(Pα) 6 4 δ−1 log log(1/µ∗) ,

where µ∗ = minσ µ(σ).
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Consider the Markov chain where at each step a subset A ⊂ [n] is
picked with probab. αA and its spins σA = {σx , x ∈ A} are
updated according to µσAc

A . This chain has transition operator

Pαf =
∑

A⊂[n]αA µAf , f : Ω 7→ R,

call it the α- block dynamics. Note: αA = 1
n
1|A|=1 ⇒ Glauber dyn.

Pα is reversible and has Dirichlet form:

Dα(f , g) = 〈f , (1 − Pα)g〉 =
∑

A⊂[n]αAµ [CovA(f , g)]

where CovA(f , g) = µA[(f − µAf )(g − µAg)]. Mixing time:

Tmix(Pα) := inf{t ∈ N : maxσ‖P
t
α(σ, ·) − µ‖TV 6 1/4} .

By Pinsker’s inequality ‖ν − µ‖2TV 6
1
2H(ν|µ),

Ent(Pαf ) 6 (1−δ)Ent(f ) ⇒ Tmix(Pα) 6 4 δ−1 log log(1/µ∗) ,

where µ∗ = minσ µ(σ). The entropy contraction above is a
discrete time analog of the Modified log-Sobolev inequality

D(f , log f ) > δ Ent(f ).



Block Factorization and Mixing

Lemma
If α-B.F. holds with constant C (α), then

Ent(Pαf ) 6 (1− δ)Ent(f ) , δ = γ(α)
C(α) .

In particular, Tmix(Pα) = O(C(α)
γ(α) log n) .
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Block Factorization and Mixing

Lemma
If α-B.F. holds with constant C (α), then

Ent(Pαf ) 6 (1− δ)Ent(f ) , δ = γ(α)
C(α) .

In particular, Tmix(Pα) = O(C(α)
γ(α) log n) .

Proof. α-B.F. means that
∑

A αAµ[EntA(f )] >
γ(α)
C(α) Ent(f ).

By convexity of Ent(·):

Ent(Pαf ) 6
∑

A αA µ[Ent(µA(f ))]

= Ent(f )−
∑

A αAµ[EntA(f )] 6 (1− δ)Ent(f ).

Note: the mixing time bound is tight up to O(log n) since the
spectral gap always satisfies λ(Pα) > γ(α). Often optimal mixing.
Ex: for Glauber dynamics Tmix = O(n log n) if C = O(1)



How to establish Block Factorization ?
Three sets of results for spin systems:

in each of the following cases we prove α-Block Factorization of
entropy with C (α) = O(1) for all α:

• Strong spatial Mixing (on Z
d )

• Spectral Independence (general graphs)
• Contractive Coupling (general graphs, general coupling)



How to establish Block Factorization ?
Three sets of results for spin systems:

in each of the following cases we prove α-Block Factorization of
entropy with C (α) = O(1) for all α:

• Strong spatial Mixing (on Z
d )

• Spectral Independence (general graphs)
• Contractive Coupling (general graphs, general coupling)

Strong spatial mixing (SSM) is a classical notion of exp. decay of
correlations.

Spectral independence (SI) is a new, more general, notion of decay
of correlations introduced in [ALO20].

Contractive coupling (CC) is a classical notion in Markov chains, a
positive curvature condition.



How to establish Block Factorization ?
Three sets of results for spin systems:

in each of the following cases we prove α-Block Factorization of
entropy with C (α) = O(1) for all α:

• Strong spatial Mixing (on Z
d )

• Spectral Independence (general graphs)
• Contractive Coupling (general graphs, general coupling)

Strong spatial mixing (SSM) is a classical notion of exp. decay of
correlations.

Spectral independence (SI) is a new, more general, notion of decay
of correlations introduced in [ALO20].

Contractive coupling (CC) is a classical notion in Markov chains, a
positive curvature condition.

For permutations : We prove exact α-BF for all homogeneous α,
that is for all α of the form

αA =
∑n

ℓ=1wℓ 1|A|=ℓ , wℓ > 0.
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Entropy factorization for G ⊂ Zd under SSM

Theorem (CP21)

For G ⊂ Z
d , under SSM , the α-BF holds with C (α) = O(1) for

all α, uniformly in n and the boundary conditions.

1. Reduce to proving a bipartite factorization into even/odd
vertices αE = αO = 1/2 .
2. Use suitable recursive strategy to prove it for even/odd case
(main difficulty: lack of a simple additive structure).

Theorem (BCPSV22)

For G ⊂ Z
d , under SSM, the Swendsen-Wang dynamics for

ferromagnetic Ising/Potts models has Tmix(PSW) = Θ(log n)

1. Reduce to spin/edge factorization for Edwards-Sokal coupling ν:

Entν(F ) 6 C [ν (Entν(F |spin) + Entν(F |edge))] .

2. Lift the even/odd factorization to spin/edge factorization
3. Lower bound Tmix(PSW) by disagreement percolation estimates.
Note: it covers the whole uniqueness region β < βc in d = 2.



General graphs: Spectral independence (SI)
[ALO20] introduced SI and used it to prove a poly(n) bound for the
Glauber dynamics of the hard-core gas in the uniqueness regime.

J(x , a; y , b) = µ(σy = b|σx = a)− µ(σy = b) for x 6= y .

J is a X × X matrix, X = [n]× [q] with real eigenvalues λi (J).

Definition
µ is η-spectrally independent if λmax(J) 6 η for all possible
pinnings. (Note: η > 0).
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General graphs: Spectral independence (SI)
[ALO20] introduced SI and used it to prove a poly(n) bound for the
Glauber dynamics of the hard-core gas in the uniqueness regime.

J(x , a; y , b) = µ(σy = b|σx = a)− µ(σy = b) for x 6= y .

J is a X × X matrix, X = [n]× [q] with real eigenvalues λi (J).

Definition
µ is η-spectrally independent if λmax(J) 6 η for all possible
pinnings. (Note: η > 0).

Theorem (ALO20)

If µ is η-SI for some η = O(1) then the Glauber dynamics has
Tmix = poly(n) .

Main idea: η-SI with η = O(1) enables a powerful recursive
scheme to prove spectral gap for the Glauber dynamics . This
“local-to-global” approach was developed in the abstract setting of
simplicial complexes: based on recent work of Oppenheim,
Dinur–Kaufman, Alev–Lau on high dim. expanders.



Main result under Spectral Independence

Theorem (BCCPSV22)

If µ is η-SI for some η = O(1) then the α- BF holds with
C (α) = O(1) for all α, uniformly in n and the boundary
conditions. Therefore, all α- block dynamics have optimal
Tmix = O(γ(α)−1 log n) . Moreover, for ferromagnetic Ising/Potts,
the SW dynamics has Tmix = O(log n) .
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Main result under Spectral Independence

Theorem (BCCPSV22)

If µ is η-SI for some η = O(1) then the α- BF holds with
C (α) = O(1) for all α, uniformly in n and the boundary
conditions. Therefore, all α- block dynamics have optimal
Tmix = O(γ(α)−1 log n) . Moreover, for ferromagnetic Ising/Potts,
the SW dynamics has Tmix = O(log n) .

For Glauber dynamics this was obtained in [Chen,Liu,Vigoda 20].
Here arbitrary blocks and SW dynamics. Moreover, the proof also
shows that Subadditivity holds with constant C = O(1).

To prove it we extend the recursive approach of [ALO20,CLV20]
and show a multi-partite factorization

Ent(f ) 6 C
∑k

i=1 µ [EntVi
(f )]

where Vi are independent sets with V = ∪k
i=1Vi , and k 6 ∆+ 1.

The multi-partite factorization is then lifted to a general BF.



Some remarks on the SI approach
Strength :

• It allows us to prove tight bounds in some cases up to the tree
uniqueness threshold. For instance, for ferro-Ising, our results
on arbitrary block dynamics and SW dynamics hold for all
β < βc (∆) = log( ∆

∆−2 ). Previously known only for Glauber
dynamics from Mossel, Sly (2013).

• SI is very flexible: we show that it covers all standard spatial
mixing notions such as Dobrushin-uniqueness condition or
SSM, and holds as soon as µ admits some form of positive
curvature, that is the existence of a contractive coupling. See
below for more precise statements

Restrictions:

• our results for BF require bounded degree ∆ = O(1). [Not for
subadditivity]

• they do not apply to unbounded or continuous spins (need
b-marginal bound minx ,a µ(σx = a) > b with 1/b = O(1)).
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Let µ be uniform distribution over permutations Sn.
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Let µ be uniform distribution over permutations Sn.

Theorem (Bristiel,C. 22)

For any ℓ = 1, . . . , n, [αA =
(

n
ℓ

)−1
1|A|=ℓ, γ(α) =

ℓ

n
, C (α) = K (n, ℓ)]

ℓ
n
Ent f 6

K(n,ℓ)

(nℓ)

∑

|A|=ℓ µ [EntAf ] , K (n, ℓ) = ℓ log(n!)
n log(ℓ!) .

The inequality is saturated uniquely at multiples of a Dirac mass.



Entropy factorizations for permutations
Let µ be uniform distribution over permutations Sn.

Theorem (Bristiel,C. 22)

For any ℓ = 1, . . . , n, [αA =
(

n
ℓ

)−1
1|A|=ℓ, γ(α) =

ℓ

n
, C (α) = K (n, ℓ)]

ℓ
n
Ent f 6

K(n,ℓ)

(nℓ)

∑

|A|=ℓ µ [EntAf ] , K (n, ℓ) = ℓ log(n!)
n log(ℓ!) .

The inequality is saturated uniquely at multiples of a Dirac mass.
In particular (ℓ = n− 1): subadd. with Cn = n log n

log(n!) = 1 + O( 1
log n ),

∑

x∈[n]Ent fx , 6
n log n
log(n!) Ent f .

Note that ℓ = 1 is trivial since fixing all labels except x determines the
label at x . Similarly, the case ℓ = n is trivial with K (n, n) = 1.

Proof uses martingale recursive approach as in the proof of Log-Sob and

modified Log-Sob for Random Transpositions, see [Lee,Yau ’00] and

[Goel ’05], [Guo,Quastel ’05]. Note: we compute optimal constants

exactly (an advantage of BF over LSI or MLSI).



A combinatorial application

The following sharp upper bound on the permanent of a matrix
with arbitrary nonnegative entries was independently conjectured
by [Carlen, Lieb, Loss ’04] and by [Samorodnitsky ’08] . Let
A = (ai ,j) denote an n × n matrix, and consider its permanent

perm(A) =
∑

σ∈Sn

n
∏

i=1

ai ,σi
.

Theorem
For any p > 1, for any n × n matrix A with nonnegative entries,

perm(A) 6 max

{

1,
n!

nn/p

} n
∏

i=1

‖Ri‖p,

where Ri is the i−th row of A and ‖ · ‖p is the ℓp-norm, with
equality uniquely achieved at either the identity or the all 1 matrix.



Permanent upper bound

Note that 1 and n!
nn/p

correspond to the case where A is the
identity matrix or A is the all-1 matrix respectively.
The proof uses the subadditivity from previous theorem,

∑

x∈[n]

Ent fx , 6
n log n

log(n!)
Entf , f : Sn 7→ R+,

Setting pc := n log n
log(n!) , this is equivalent to: ∀ϕx : [n] 7→ R+,

µ
[

∏
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ρn . In particular, if ρ > ε/n then µ is η-spectrally

independent with η = 2/ε. Moreover, it has BF with C = O(1).

The theorem can be considerably extended by allowing other
distances and much more general Markov chains (see below).
But even in the above setting this is quite a strong result:
If Glauber has a contractive coupling then our theorems show that
all heat bath dynamics as well as SW dynamics have optimal
entropy decay and optimal mixing. [⇒ Peres-Tetali conjecture ?]
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As in Bresler-Nagaraj ’19, the proof uses Poisson eq.
(1− P)h = f − µ[f ], ν[f ]− µ[f ] = ν[(Q − P)h],
(Q − P)h(σ) 6 L(h)W1,d(P(σ, ·),Q(σ, ·)), L(h) 6 L(f )/ρ.
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P is arbitrary provided Pτ has stat. distr. µτ (pinned Gibbs meas.).
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Φ-local if for any two adjacent pinnings τ, τ ′ and τ ′ = τ ∪ (x , a),

W1(Pτ (σ, ·),Pτ ′ (σ, ·)) ≤ Φ.

P is arbitrary provided Pτ has stat. distr. µτ (pinned Gibbs meas.).

Theorem
If P is Φ-local and (P, dH) has curvature ρ > 0, then µ is
η-spectrally independent with η = 2Φ

ρ .

Proof: very similar to previous theorem. Moreover, it extends to
non-Hamming distance d ≍ dH. This is very useful in applications.
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1. For general spin systems Dobrushin uniqueness implies spectral
independence. (Extending results of Hayes ’06,
Dyer,Goldberg,Jerrum ’09 who proved that DU and related
conditions imply curvature bounds).

2. Flip dynamics for q-colorings (Vigoda ’00, Chen, Delcourt,
Moitra, Perarnau, Postle ’19) is contractive w.r.t. some d ≍ dH as
soon as q > (116 − ε0)∆.

3. Ferromagnetic Potts model has contractive coupling for β < β1
(Bordewich, Greenhill, Patel ’16 use heat bath block dynamics with
bounded block size) where β1 ≈ tree uniqueness as q → ∞.


