Andrea Colesanti
 Università di Firenze

Around the log-Brunn-Minkowski inequality

61 probability encounters - In honour of Sergey Bobkov

Toulouse
May 29th - June 2nd, 2023

The Brunn-Minkowski inequality

The Brunn-Minkowski inequality

Minkowski addition. Given A and B in \mathbb{R}^{n}, we set:

$$
A+B=\{a+b: a \in A, b \in B\}, \quad r A=\{r a: a \in A\},
$$

$$
\text { for } r \geq 0
$$

The Brunn-Minkowski inequality

Minkowski addition. Given A and B in \mathbb{R}^{n}, we set:

$$
A+B=\{a+b: a \in A, b \in B\}, \quad r A=\{r a: a \in A\},
$$

for $r \geq 0$.
Thm. Let K_{0} and K_{1} be compact and convex subsets of \mathbb{R}^{n} (convex bodies).

The Brunn-Minkowski inequality

Minkowski addition. Given A and B in \mathbb{R}^{n}, we set:

$$
A+B=\{a+b: a \in A, b \in B\}, \quad r A=\{r a: a \in A\},
$$

for $r \geq 0$.
Thm. Let K_{0} and K_{1} be compact and convex subsets of \mathbb{R}^{n} (convex bodies). Then, for every $t \in[0,1]$,

$$
\left|(1-t) K_{0}+t K_{1}\right|^{1 / n}
$$

The Brunn-Minkowski inequality

Minkowski addition. Given A and B in \mathbb{R}^{n}, we set:

$$
A+B=\{a+b: a \in A, b \in B\}, \quad r A=\{r a: a \in A\},
$$

for $r \geq 0$.
Thm. Let K_{0} and K_{1} be compact and convex subsets of \mathbb{R}^{n} (convex bodies). Then, for every $t \in[0,1]$,

$$
\left|(1-t) K_{0}+t K_{1}\right|^{1 / n} \geq(1-t)\left|K_{0}\right|^{1 / n}+t\left|K_{1}\right|^{1 / n} .
$$

The Brunn-Minkowski inequality

Minkowski addition. Given A and B in \mathbb{R}^{n}, we set:

$$
A+B=\{a+b: a \in A, b \in B\}, \quad r A=\{r a: a \in A\},
$$

for $r \geq 0$.
Thm. Let K_{0} and K_{1} be compact and convex subsets of \mathbb{R}^{n} (convex bodies). Then, for every $t \in[0,1]$,

$$
\begin{equation*}
\left|(1-t) K_{0}+t K_{1}\right|^{1 / n} \geq(1-t)\left|K_{0}\right|^{1 / n}+t\left|K_{1}\right|^{1 / n} . \tag{BM}
\end{equation*}
$$

The Brunn-Minkowski inequality

Minkowski addition. Given A and B in \mathbb{R}^{n}, we set:

$$
A+B=\{a+b: a \in A, b \in B\}, \quad r A=\{r a: a \in A\},
$$

for $r \geq 0$.
Thm. Let K_{0} and K_{1} be compact and convex subsets of \mathbb{R}^{n} (convex bodies). Then, for every $t \in[0,1]$,

$$
\begin{equation*}
\left|(1-t) K_{0}+t K_{1}\right|^{1 / n} \geq(1-t)\left|K_{0}\right|^{1 / n}+t\left|K_{1}\right|^{1 / n} . \tag{BM}
\end{equation*}
$$

Here $|\cdot|$ denotes the Lebesgue measure.

The support function

The support function

Let $K \subset \mathbb{R}^{n}$ be a convex body.

The support function

Let $K \subset \mathbb{R}^{n}$ be a convex body. The support function of K, $h_{K}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, is defined as

$$
h_{K}(y)=\sup _{x \in K}\langle x, y\rangle
$$

The support function

Let $K \subset \mathbb{R}^{n}$ be a convex body. The support function of K, $h_{K}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, is defined as

$$
h_{K}(y)=\sup _{x \in K}\langle x, y\rangle
$$

If $y \in \mathbb{S}^{n-1}$ is a unit vector,

The support function

Let $K \subset \mathbb{R}^{n}$ be a convex body. The support function of K, $h_{K}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, is defined as

$$
h_{K}(y)=\sup _{x \in K}\langle x, y\rangle
$$

If $y \in \mathbb{S}^{n-1}$ is a unit vector, then

$$
h_{K}(y)
$$

is the (signed) distance from the origin, of the supporting hyperplane to K, with unit outer normal y.

The support function

Let $K \subset \mathbb{R}^{n}$ be a convex body. The support function of K, $h_{K}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, is defined as

$$
h_{K}(y)=\sup _{x \in K}\langle x, y\rangle
$$

If $y \in \mathbb{S}^{n-1}$ is a unit vector, then

$$
h_{K}(y)
$$

is the (signed) distance from the origin, of the supporting hyperplane to K, with unit outer normal y.

Remark. h_{k} is a 1-homogeneous convex function.

The support function

Let $K \subset \mathbb{R}^{n}$ be a convex body. The support function of K, $h_{K}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, is defined as

$$
h_{K}(y)=\sup _{x \in K}\langle x, y\rangle
$$

If $y \in \mathbb{S}^{n-1}$ is a unit vector, then

$$
h_{K}(y)
$$

is the (signed) distance from the origin, of the supporting hyperplane to K, with unit outer normal y.

Remark. h_{k} is a 1-homogeneous convex function. Viceversa, every 1-homogeneous convex function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the support function of a (unique) convex body.

Support functions and Minkowski addition

Support functions and Minkowski addition

The map

$$
K \longrightarrow h_{K}
$$

is linear with respect to Minkowski addition.

Support functions and Minkowski addition

The map

$$
K \longrightarrow h_{K}
$$

is linear with respect to Minkowski addition.
If K and L are convex bodies in \mathbb{R}^{n}, then

$$
h_{K+L}=h_{K}+h_{L} \quad \text { and } \quad h_{\alpha K}=\alpha h_{K}
$$

for every $\alpha \geq 0$.

The p-addition, $p \geq 1$ (Firey, 1962)

The p-addition, $p \geq 1$ (Firey, 1962)

Let $p \geq 1$.

The p-addition, $p \geq 1$ (Firey, 1962)

Let $p \geq 1$. Let K and L be convex bodies containing the origin;

The p-addition, $p \geq 1$ (Firey, 1962)

Let $p \geq 1$. Let K and L be convex bodies containing the origin; this implies in particular $h_{K} \geq 0, h_{L} \geq 0$.

The p-addition, $p \geq 1$ (Firey, 1962)

Let $p \geq 1$. Let K and L be convex bodies containing the origin; this implies in particular $h_{K} \geq 0, h_{L} \geq 0$.

For $\alpha, \beta \geq 0$, consider the function

$$
\left(\alpha h_{K}^{p}+\beta h_{L}^{p}\right)^{1 / p} ;
$$

The p-addition, $p \geq 1$ (Firey, 1962)

Let $p \geq 1$. Let K and L be convex bodies containing the origin; this implies in particular $h_{K} \geq 0, h_{L} \geq 0$.

For $\alpha, \beta \geq 0$, consider the function

$$
\left(\alpha h_{K}^{p}+\beta h_{L}^{p}\right)^{1 / p}
$$

this is a (non-negative) 1-homogeneous convex function; that is, a support function.

The p-addition, $p \geq 1$ (Firey, 1962)

Let $p \geq 1$. Let K and L be convex bodies containing the origin; this implies in particular $h_{K} \geq 0, h_{L} \geq 0$.

For $\alpha, \beta \geq 0$, consider the function

$$
\left(\alpha h_{K}^{p}+\beta h_{L}^{p}\right)^{1 / p}
$$

this is a (non-negative) 1-homogeneous convex function; that is, a support function.

Define

$$
\alpha \cdot K+{ }_{p} \beta \cdot L,
$$

through:

$$
h_{\alpha \cdot K+{ }_{p} \beta \cdot L}=\left(\alpha h_{K}^{p}+\beta h_{L}^{p}\right)^{1 / p} .
$$

(BM) for the p-addition, $p \geq 1$

(BM) for the p-addition, $p \geq 1$

Theorem (Firey, 1962) Let $p \geq 1$. For every K_{0}, K_{1}, containing the origin, and for every $t \in[0,1]$:

$$
\left|(1-t) \cdot K_{0}+_{p} t \cdot K_{1}\right|^{p / n} \geq(1-t)\left|K_{0}\right|^{p / n}+t\left|K_{1}\right|^{p / n} .
$$

(BM) for the p-addition, $p \geq 1$

Theorem (Firey, 1962) Let $p \geq 1$. For every K_{0}, K_{1}, containing the origin, and for every $t \in[0,1]$:

$$
\left|(1-t) \cdot K_{0}+_{p} t \cdot K_{1}\right|^{p / n} \geq(1-t)\left|K_{0}\right|^{p / n}+t\left|K_{1}\right|^{p / n} .
$$

Proof.

- Ingredient 1: the inclusion

$$
(1-t) \cdot K_{0}+_{p} t \cdot K_{1} \supset(1-t) K_{0}+t K_{1} .
$$

(BM) for the p-addition, $p \geq 1$

Theorem (Firey, 1962) Let $p \geq 1$. For every K_{0}, K_{1}, containing the origin, and for every $t \in[0,1]$:

$$
\left|(1-t) \cdot K_{0}+_{p} t \cdot K_{1}\right|^{p / n} \geq(1-t)\left|K_{0}\right|^{p / n}+t\left|K_{1}\right|^{p / n} .
$$

Proof.

- Ingredient 1: the inclusion

$$
(1-t) \cdot K_{0}+_{p} t \cdot K_{1} \supset(1-t) K_{0}+t K_{1} .
$$

- Ingredient 2: the standard Brunn-Minkowski inequality ($p=1$).

(BM) for the p-addition, $p \geq 1$

Theorem (Firey, 1962) Let $p \geq 1$. For every K_{0}, K_{1}, containing the origin, and for every $t \in[0,1]$:

$$
\left|(1-t) \cdot K_{0}+_{p} t \cdot K_{1}\right|^{p / n} \geq(1-t)\left|K_{0}\right|^{p / n}+t\left|K_{1}\right|^{p / n} .
$$

Proof.

- Ingredient 1: the inclusion

$$
(1-t) \cdot K_{0}+_{p} t \cdot K_{1} \supset(1-t) K_{0}+t K_{1} .
$$

- Ingredient 2: the standard Brunn-Minkowski inequality ($p=1$).
- Ingredient 3: a standard argument based on homogeneity of the Lebesgue measure.

The passage to $p \leq 1$

The passage to $p \leq 1$

- The main problem when passing to $p \leq 1$ (and $p \geq 0$), is that, given two convex bodies K and L,

$$
\left(h_{K}^{p}+h_{L}^{p}\right)^{1 / p}
$$

is not convex, in general (and then it is not a support function).

The Wulff shape

The Wulff shape

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be: continuous, 1-homogeneous and non-negative.

The Wulff shape

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be: continuous, 1-homogeneous and non-negative.

Define

$$
K[f]
$$

The Wulff shape

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be: continuous, 1-homogeneous and non-negative.

Define

$$
K[f]=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq f(y), \forall y \in \mathbb{R}^{n}\right\}
$$

The Wulff shape

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be: continuous, 1-homogeneous and non-negative.

Define

$$
K[f]=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq f(y), \forall y \in \mathbb{R}^{n}\right\}
$$

- $K[f]$ is bounded.

The Wulff shape

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be: continuous, 1-homogeneous and non-negative.

Define

$$
K[f]=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq f(y), \forall y \in \mathbb{R}^{n}\right\}
$$

- $K[f]$ is bounded.
- $K[f]$ is closed and convex (as intersection of closed half-spaces).

The Wulff shape

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be: continuous, 1-homogeneous and non-negative.

Define

$$
K[f]=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq f(y), \forall y \in \mathbb{R}^{n}\right\}
$$

- $K[f]$ is bounded.
- $K[f]$ is closed and convex (as intersection of closed half-spaces). Hence it is a convex body.

The Wulff shape

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be: continuous, 1-homogeneous and non-negative.

Define

$$
K[f]=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq f(y), \forall y \in \mathbb{R}^{n}\right\}
$$

- $K[f]$ is bounded.
- $K[f]$ is closed and convex (as intersection of closed half-spaces). Hence it is a convex body.

$$
h_{K[f]} \leq f
$$

The Wulff shape

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be: continuous, 1-homogeneous and non-negative.

Define

$$
K[f]=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq f(y), \forall y \in \mathbb{R}^{n}\right\}
$$

- $K[f]$ is bounded.
- $K[f]$ is closed and convex (as intersection of closed half-spaces). Hence it is a convex body.

$$
h_{K[f]} \leq f, \quad("=" \text { if } f \text { is convex })
$$

The Wulff shape

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be: continuous, 1-homogeneous and non-negative.

Define

$$
K[f]=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq f(y), \forall y \in \mathbb{R}^{n}\right\}
$$

- $K[f]$ is bounded.
- $K[f]$ is closed and convex (as intersection of closed half-spaces). Hence it is a convex body.

$$
h_{K[f]} \leq f, \quad("=\text { " if } f \text { is convex })
$$

$h_{K[f]}$ is the largest 1-homogeneous convex function smaller than f.

The p convex linear combination of two convex bodies, for $p \geq 0$ (Böröczky, Lutwak, Yang, Zhang, 2012)

The p convex linear combination of two convex bodies, for $p \geq 0$ (Böröczky, Lutwak, Yang, Zhang, 2012)

- Let $p \geq 0$.

The p convex linear combination of two convex bodies, for $p \geq 0$ (Böröczky, Lutwak, Yang, Zhang, 2012)

- Let $p \geq 0$.
- Let K_{0}, K_{1} be convex bodies containing the origin.

The p convex linear combination of two convex bodies, for $p \geq 0$ (Böröczky, Lutwak, Yang, Zhang, 2012)

- Let $p \geq 0$.
- Let K_{0}, K_{1} be convex bodies containing the origin. For $t \in[0,1]$, let

$$
h_{t, p}=\left[(1-t) h_{k_{0}}^{p}+t h_{K_{1}}^{p}\right]^{1 / p}, \quad \text { if } p>0
$$

The p convex linear combination of two convex bodies, for $p \geq 0$ (Böröczky, Lutwak, Yang, Zhang, 2012)

- Let $p \geq 0$.
- Let K_{0}, K_{1} be convex bodies containing the origin. For $t \in[0,1]$, let

$$
\begin{aligned}
& h_{t, p}=\left[(1-t) h_{k_{0}}^{p}+t h_{K_{1}}^{p}\right]^{1 / p}, \quad \text { if } p>0, \\
& h_{t, 0}=h_{K_{0}}^{1-t} h_{K_{1}}^{t} .
\end{aligned}
$$

The p convex linear combination of two convex bodies, for $p \geq 0$ (Böröczky, Lutwak, Yang, Zhang, 2012)

- Let $p \geq 0$.
- Let K_{0}, K_{1} be convex bodies containing the origin. For $t \in[0,1]$, let

$$
\begin{aligned}
& h_{t, p}=\left[(1-t) h_{k_{0}}^{p}+t h_{K_{1}}^{p}\right]^{1 / p}, \quad \text { if } p>0, \\
& h_{t, 0}=h_{K_{0}}^{1-t} h_{K_{1}}^{t}
\end{aligned}
$$

- Consider the set

$$
K_{t, p}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq h_{t, p}(y), \forall y \in \mathbb{R}^{n}\right\}
$$

The p convex linear combination of two convex bodies, for $p \geq 0$ (Böröczky, Lutwak, Yang, Zhang, 2012)

- Let $p \geq 0$.
- Let K_{0}, K_{1} be convex bodies containing the origin. For $t \in[0,1]$, let

$$
\begin{aligned}
& h_{t, p}=\left[(1-t) h_{k_{0}}^{p}+t h_{K_{1}}^{p}\right]^{1 / p}, \quad \text { if } p>0, \\
& h_{t, 0}=h_{K_{0}}^{1-t} h_{K_{1}}^{t}
\end{aligned}
$$

- Consider the set

$$
K_{t, p}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq h_{t, p}(y), \forall y \in \mathbb{R}^{n}\right\}=K\left[h_{t, p}\right]
$$

The p convex linear combination of two convex bodies, for $p \geq 0$ (Böröczky, Lutwak, Yang, Zhang, 2012)

- Let $p \geq 0$.
- Let K_{0}, K_{1} be convex bodies containing the origin. For $t \in[0,1]$, let

$$
\begin{aligned}
& h_{t, p}=\left[(1-t) h_{k_{0}}^{p}+t h_{K_{1}}^{p}\right]^{1 / p}, \quad \text { if } p>0, \\
& h_{t, 0}=h_{K_{0}}^{1-t} h_{K_{1}}^{t}
\end{aligned}
$$

- Consider the set

$$
\begin{aligned}
K_{t, p} & =\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq h_{t, p}(y), \forall y \in \mathbb{R}^{n}\right\}=K\left[h_{t, p}\right] \\
& :=(1-t) \cdot K_{0}+_{p} t \cdot K_{1}
\end{aligned}
$$

The p convex linear combination of two convex bodies, for $p \geq 0$ (Böröczky, Lutwak, Yang, Zhang, 2012)

- Let $p \geq 0$.
- Let K_{0}, K_{1} be convex bodies containing the origin. For $t \in[0,1]$, let

$$
\begin{aligned}
& h_{t, p}=\left[(1-t) h_{k_{0}}^{p}+t h_{K_{1}}^{p}\right]^{1 / p}, \quad \text { if } p>0, \\
& h_{t, 0}=h_{K_{0}}^{1-t} h_{K_{1}}^{t}
\end{aligned}
$$

- Consider the set

$$
\begin{aligned}
K_{t, p}= & \left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq h_{t, p}(y), \forall y \in \mathbb{R}^{n}\right\}=K\left[h_{t, p}\right] \\
:= & (1-t) \cdot K_{0}+_{p} t \cdot K_{1} . \\
& K_{t, 0}
\end{aligned}
$$

The p convex linear combination of two convex bodies, for $p \geq 0$ (Böröczky, Lutwak, Yang, Zhang, 2012)

- Let $p \geq 0$.
- Let K_{0}, K_{1} be convex bodies containing the origin. For $t \in[0,1]$, let

$$
\begin{aligned}
& h_{t, p}=\left[(1-t) h_{k_{0}}^{p}+t h_{K_{1}}^{p}\right]^{1 / p}, \quad \text { if } p>0, \\
& h_{t, 0}=h_{K_{0}}^{1-t} h_{K_{1}}^{t}
\end{aligned}
$$

- Consider the set

$$
\begin{aligned}
K_{t, p}= & \left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq h_{t, p}(y), \forall y \in \mathbb{R}^{n}\right\}=K\left[h_{t, p}\right] \\
:= & (1-t) \cdot K_{0}+_{p} t \cdot K_{1} \\
& K_{t, 0} \subset \underset{\log }{\substack{0<p<1}} K_{t, p}
\end{aligned}
$$

The p convex linear combination of two convex bodies, for $p \geq 0$ (Böröczky, Lutwak, Yang, Zhang, 2012)

- Let $p \geq 0$.
- Let K_{0}, K_{1} be convex bodies containing the origin. For $t \in[0,1]$, let

$$
\begin{aligned}
& h_{t, p}=\left[(1-t) h_{k_{0}}^{p}+t h_{K_{1}}^{p}\right]^{1 / p}, \quad \text { if } p>0, \\
& h_{t, 0}=h_{K_{0}}^{1-t} h_{K_{1}}^{t}
\end{aligned}
$$

- Consider the set

$$
\begin{aligned}
K_{t, p}= & \left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq h_{t, p}(y), \forall y \in \mathbb{R}^{n}\right\}=K\left[h_{t, p}\right] \\
:= & (1-t) \cdot K_{0}+{ }_{p} t \cdot K_{1} . \\
& \underset{\text { log }}{K_{t, 0} \subset \underset{0<p<1}{ } \subset \underset{\text { Minkowski }}{K_{t, p}} \subset \underset{t, 1}{K_{t-p}}} .
\end{aligned}
$$

The p convex linear combination of two convex bodies, for $p \geq 0$ (Böröczky, Lutwak, Yang, Zhang, 2012)

- Let $p \geq 0$.
- Let K_{0}, K_{1} be convex bodies containing the origin. For $t \in[0,1]$, let

$$
\begin{aligned}
& h_{t, p}=\left[(1-t) h_{k_{0}}^{p}+t h_{K_{1}}^{p}\right]^{1 / p}, \quad \text { if } p>0, \\
& h_{t, 0}=h_{K_{0}}^{1-t} h_{K_{1}}^{t}
\end{aligned}
$$

- Consider the set

$$
\begin{aligned}
K_{t, p}= & \left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq h_{t, p}(y), \forall y \in \mathbb{R}^{n}\right\}=K\left[h_{t, p}\right] \\
:= & (1-t) \cdot K_{0}+{ }_{p} t \cdot K_{1} . \\
& \underset{\log }{K_{t, 0} \subset \underset{\substack{0<p<1}}{ } K_{t, p} \subset \underset{\text { Minkowski }}{K_{t, 1}} \subset \underset{\substack{ \\
p>1}}{K_{t, p} .}} .
\end{aligned}
$$

The log-Brunn-Minkowski conjecture

The log-Brunn-Minkowski conjecture

Conjecture (Böröczky, Lutwak, Yang and Zhang, 2012). Let $K_{0}, K_{1} \in \mathcal{K}_{0}^{n}$, be centrally symmetric convex bodies, and let $t \in[0,1]$.

The log-Brunn-Minkowski conjecture

Conjecture (Böröczky, Lutwak, Yang and Zhang, 2012). Let $K_{0}, K_{1} \in \mathcal{K}_{0}^{n}$, be centrally symmetric convex bodies, and let $t \in[0,1]$. Set

$$
K_{t}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq h_{K_{0}}^{1-t}(y) h_{K_{1}}^{t}(y), \forall y \in \mathbb{R}^{n}\right\}
$$

The log-Brunn-Minkowski conjecture

Conjecture (Böröczky, Lutwak, Yang and Zhang, 2012). Let $K_{0}, K_{1} \in \mathcal{K}_{0}^{n}$, be centrally symmetric convex bodies, and let $t \in[0,1]$. Set

$$
K_{t}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq h_{K_{0}}^{1-t}(y) h_{K_{1}}^{t}(y), \forall y \in \mathbb{R}^{n}\right\}
$$

Then

$$
\left|K_{t}\right| \geq\left|K_{0}\right|^{1-t}\left|K_{1}\right|^{t}
$$

The log-Brunn-Minkowski conjecture

Conjecture (Böröczky, Lutwak, Yang and Zhang, 2012). Let $K_{0}, K_{1} \in \mathcal{K}_{0}^{n}$, be centrally symmetric convex bodies, and let $t \in[0,1]$. Set

$$
K_{t}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq h_{K_{0}}^{1-t}(y) h_{K_{1}}^{t}(y), \forall y \in \mathbb{R}^{n}\right\}
$$

Then

$$
\begin{equation*}
\left|K_{t}\right| \geq\left|K_{0}\right|^{1-t}\left|K_{1}\right|^{t} \tag{log-BM}
\end{equation*}
$$

Remarks

The log-Brunn-Minkowski conjecture

Conjecture (Böröczky, Lutwak, Yang and Zhang, 2012). Let $K_{0}, K_{1} \in \mathcal{K}_{0}^{n}$, be centrally symmetric convex bodies, and let $t \in[0,1]$. Set

$$
K_{t}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq h_{K_{0}}^{1-t}(y) h_{K_{1}}^{t}(y), \forall y \in \mathbb{R}^{n}\right\}
$$

Then

$$
\begin{equation*}
\left|K_{t}\right| \geq\left|K_{0}\right|^{1-t}\left|K_{1}\right|^{t} \tag{log-BM}
\end{equation*}
$$

Remarks

- (log-BM) implies (BM).

The log-Brunn-Minkowski conjecture

Conjecture (Böröczky, Lutwak, Yang and Zhang, 2012). Let $K_{0}, K_{1} \in \mathcal{K}_{0}^{n}$, be centrally symmetric convex bodies, and let $t \in[0,1]$. Set

$$
K_{t}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq h_{K_{0}}^{1-t}(y) h_{K_{1}}^{t}(y), \forall y \in \mathbb{R}^{n}\right\}
$$

Then

$$
\begin{equation*}
\left|K_{t}\right| \geq\left|K_{0}\right|^{1-t}\left|K_{1}\right|^{t} \tag{log-BM}
\end{equation*}
$$

Remarks

- (log-BM) implies (BM).
- Symmetry is a necessary assumption.

The log-Brunn-Minkowski conjecture

Conjecture (Böröczky, Lutwak, Yang and Zhang, 2012). Let $K_{0}, K_{1} \in \mathcal{K}_{0}^{n}$, be centrally symmetric convex bodies, and let $t \in[0,1]$. Set

$$
K_{t}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq h_{K_{0}}^{1-t}(y) h_{K_{1}}^{t}(y), \forall y \in \mathbb{R}^{n}\right\}
$$

Then

$$
\begin{equation*}
\left|K_{t}\right| \geq\left|K_{0}\right|^{1-t}\left|K_{1}\right|^{t} \tag{log-BM}
\end{equation*}
$$

Remarks

- (log-BM) implies (BM).
- Symmetry is a necessary assumption.
- A similar inequality (we will call it ($p-\mathrm{BM}$)) can be conjectured for $0<p<1$.

Results on $\log -\mathrm{BM}$

Results on $\log -\mathrm{BM}$

- $n=2$ - Böröczky, Lutwak, Yang, Zhang, 2012;

Results on $\log -\mathrm{BM}$

- $n=2$ - Böröczky, Lutwak, Yang, Zhang, 2012; (Ma, alternative proof;

Results on log-BM

- $n=2$ - Böröczky, Lutwak, Yang, Zhang, 2012; (Ma, alternative proof; Xi , Leng; extension without the symmetry assumption).

Results on log-BM

- $n=2$ - Böröczky, Lutwak, Yang, Zhang, 2012; (Ma, alternative proof; Xi , Leng; extension without the symmetry assumption).
- Complex case - Rotem, 2014 (also based on previous results by Cordero-Erausquin, 2002).

Results on $\log -\mathrm{BM}$

- $n=2$ - Böröczky, Lutwak, Yang, Zhang, 2012; (Ma, alternative proof; Xi , Leng; extension without the symmetry assumption).
- Complex case - Rotem, 2014 (also based on previous results by Cordero-Erausquin, 2002).
- Unconditional convex bodies - Saroglou, 2015 (also based on previous results by Cordero-Erausquin, Fradelizi, Maurey, 2004).

Results on $\log -\mathrm{BM}$

- $n=2$ - Böröczky, Lutwak, Yang, Zhang, 2012; (Ma, alternative proof; Xi , Leng; extension without the symmetry assumption).
- Complex case - Rotem, 2014 (also based on previous results by Cordero-Erausquin, 2002).
- Unconditional convex bodies - Saroglou, 2015 (also based on previous results by Cordero-Erausquin, Fradelizi, Maurey, 2004).
- C^{2} neighborhood of a ball - Livshyts, Marsiglietti, C. 2017; Livshyts, C., 2017; Kolesnikov, Milman, 2017.

Results on $\log -\mathrm{BM}$

- $n=2$ - Böröczky, Lutwak, Yang, Zhang, 2012; (Ma, alternative proof; Xi , Leng; extension without the symmetry assumption).
- Complex case - Rotem, 2014 (also based on previous results by Cordero-Erausquin, 2002).
- Unconditional convex bodies - Saroglou, 2015 (also based on previous results by Cordero-Erausquin, Fradelizi, Maurey, 2004).
- C^{2} neighborhood of a ball - Livshyts, Marsiglietti, C. 2017; Livshyts, C., 2017; Kolesnikov, Milman, 2017.
- $p \in\left[1-\frac{c}{n^{3 / 2}}, 1\right]$ - Kolesnikov, Milman 2017; Chen, Huang, Li, Liu, 2018; Putterman, 2019.

Results on log-BM

- $n=2$ - Böröczky, Lutwak, Yang, Zhang, 2012; (Ma, alternative proof; Xi , Leng; extension without the symmetry assumption).
- Complex case - Rotem, 2014 (also based on previous results by Cordero-Erausquin, 2002).
- Unconditional convex bodies - Saroglou, 2015 (also based on previous results by Cordero-Erausquin, Fradelizi, Maurey, 2004).
- C^{2} neighborhood of a ball - Livshyts, Marsiglietti, C. 2017; Livshyts, C., 2017; Kolesnikov, Milman, 2017.
- $p \in\left[1-\frac{c}{n^{3 / 2}}, 1\right]$ - Kolesnikov, Milman 2017; Chen, Huang, Li, Liu, 2018; Putterman, 2019.
- Convex bodies with symmetries - Böröczky, Kalantzopoulos, 2020.

Results on log-BM

- $n=2$ - Böröczky, Lutwak, Yang, Zhang, 2012; (Ma, alternative proof; Xi , Leng; extension without the symmetry assumption).
- Complex case - Rotem, 2014 (also based on previous results by Cordero-Erausquin, 2002).
- Unconditional convex bodies - Saroglou, 2015 (also based on previous results by Cordero-Erausquin, Fradelizi, Maurey, 2004).
- C^{2} neighborhood of a ball - Livshyts, Marsiglietti, C. 2017; Livshyts, C., 2017; Kolesnikov, Milman, 2017.
- $p \in\left[1-\frac{c}{n^{3 / 2}}, 1\right]$ - Kolesnikov, Milman 2017; Chen, Huang, Li, Liu, 2018; Putterman, 2019.
- Convex bodies with symmetries - Böröczky, Kalantzopoulos, 2020.
- $p \in\left[1-\frac{c}{-0.75}, 1\right]$ under an inclusion assumption - Hosle, Kolesnikov, Livshyts, 2020 (with a unifying approach including other inequalities, like Gardner-Zvavitch).

See also:

- Kolesnikov-Livshyts, 2020: On the local version of the log-Brunn-Minkowski conjecture and some related geometric inequalities;
- E. Milman, 2021: A sharp centro-affine isospectral inequality of Szegö-Weinberger type and the L^{p}-Minkowski problem.

The main question

The main question

- Is there a functional version of the log-Brunn-Minkowski inequality?

The main question

- Is there a functional version of the log-Brunn-Minkowski inequality?

Conversations about this topic with: Alexander Kolesnikov, Galyna Livshyts, Ilaria Lucardesi, Christos Saroglou, Francisco Marín-Sola, Liran Rotem, Michael Roysdon, Jacopo Ulivelli, Sudan Xing.

The main question

- Is there a functional version of the log-Brunn-Minkowski inequality?

Conversations about this topic with: Alexander Kolesnikov, Galyna Livshyts, Ilaria Lucardesi, Christos Saroglou, Francisco Marín-Sola, Liran Rotem, Michael Roysdon, Jacopo Ulivelli, Sudan Xing.

See also an unpublished note of Dario Cordero-Erausquin \& Galyna Livshyts.

The Prékopa-Leindler inequality

The Prékopa-Leindler inequality

Theorem.

The Prékopa-Leindler inequality

Theorem. Let $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$, be measurable functions.

The Prékopa-Leindler inequality

Theorem. Let $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$, be measurable functions.
Assume that, for some $t \in[0,1]$,

$$
f((1-t) x+t y) \geq g^{1-t}(x) h^{t}(x), \quad \forall x, y \in \mathbb{R}^{n} .
$$

The Prékopa-Leindler inequality

Theorem. Let $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$, be measurable functions. Assume that, for some $t \in[0,1]$,

$$
f((1-t) x+t y) \geq g^{1-t}(x) h^{t}(x), \quad \forall x, y \in \mathbb{R}^{n} .
$$

Then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f d z \geq\left(\int_{\mathbb{R}^{n}} g d x\right)^{1-t}\left(\int_{\mathbb{R}^{n}} h d y\right)^{t} \tag{PL}
\end{equation*}
$$

The Prékopa-Leindler inequality

Theorem. Let $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$, be measurable functions.
Assume that, for some $t \in[0,1]$,

$$
f((1-t) x+t y) \geq g^{1-t}(x) h^{t}(x), \quad \forall x, y \in \mathbb{R}^{n} .
$$

Then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f d z \geq\left(\int_{\mathbb{R}^{n}} g d x\right)^{1-t}\left(\int_{\mathbb{R}^{n}} h d y\right)^{t} \tag{PL}
\end{equation*}
$$

Remarks.

The Prékopa-Leindler inequality

Theorem. Let $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$, be measurable functions.
Assume that, for some $t \in[0,1]$,

$$
f((1-t) x+t y) \geq g^{1-t}(x) h^{t}(x), \quad \forall x, y \in \mathbb{R}^{n} .
$$

Then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f d z \geq\left(\int_{\mathbb{R}^{n}} g d x\right)^{1-t}\left(\int_{\mathbb{R}^{n}} h d y\right)^{t} \tag{PL}
\end{equation*}
$$

Remarks.

- (PL) implies (BM).

The Prékopa-Leindler inequality

Theorem. Let $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$, be measurable functions. Assume that, for some $t \in[0,1]$,

$$
f((1-t) x+t y) \geq g^{1-t}(x) h^{t}(x), \quad \forall x, y \in \mathbb{R}^{n} .
$$

Then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f d z \geq\left(\int_{\mathbb{R}^{n}} g d x\right)^{1-t}\left(\int_{\mathbb{R}^{n}} h d y\right)^{t} \tag{PL}
\end{equation*}
$$

Remarks.

- (PL) implies (BM). In fact, it is commonly considered to be the functional counterpart of (BM).

The Prékopa-Leindler inequality

Theorem. Let $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$, be measurable functions. Assume that, for some $t \in[0,1]$,

$$
f((1-t) x+t y) \geq g^{1-t}(x) h^{t}(x), \quad \forall x, y \in \mathbb{R}^{n} .
$$

Then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f d z \geq\left(\int_{\mathbb{R}^{n}} g d x\right)^{1-t}\left(\int_{\mathbb{R}^{n}} h d y\right)^{t} \tag{PL}
\end{equation*}
$$

Remarks.

- (PL) implies (BM). In fact, it is commonly considered to be the functional counterpart of (BM).
- (PL) "reverses" Hölder inequality.

The Prékopa-Leindler inequality

Theorem. Let $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$, be measurable functions. Assume that, for some $t \in[0,1]$,

$$
f((1-t) x+t y) \geq g^{1-t}(x) h^{t}(x), \quad \forall x, y \in \mathbb{R}^{n} .
$$

Then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f d z \geq\left(\int_{\mathbb{R}^{n}} g d x\right)^{1-t}\left(\int_{\mathbb{R}^{n}} h d y\right)^{t} \tag{PL}
\end{equation*}
$$

Remarks.

- (PL) implies (BM). In fact, it is commonly considered to be the functional counterpart of (BM).
- (PL) "reverses" Hölder inequality.
- It is connected to many other important inequalities,

The Prékopa-Leindler inequality

Theorem. Let $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$, be measurable functions. Assume that, for some $t \in[0,1]$,

$$
f((1-t) x+t y) \geq g^{1-t}(x) h^{t}(x), \quad \forall x, y \in \mathbb{R}^{n} .
$$

Then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f d z \geq\left(\int_{\mathbb{R}^{n}} g d x\right)^{1-t}\left(\int_{\mathbb{R}^{n}} h d y\right)^{t} \tag{PL}
\end{equation*}
$$

Remarks.

- (PL) implies (BM). In fact, it is commonly considered to be the functional counterpart of (BM).
- (PL) "reverses" Hölder inequality.
- It is connected to many other important inequalities, like Brascamp-Lieb, Barthe, Young convolution inequality, ...

A formulation adapted to log-concave functions

A formulation adapted to log-concave functions

Let $u_{0}, u_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex functions.

A formulation adapted to log-concave functions

Let $u_{0}, u_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex functions. For $t \in[0,1]$, set:

$$
u_{t}(z)=\inf \left\{(1-t) u_{0}(x)+t u_{1}(y):(1-t) x+t y=z\right\} .
$$

A formulation adapted to log-concave functions

Let $u_{0}, u_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex functions. For $t \in[0,1]$, set:

$$
u_{t}(z)=\inf \left\{(1-t) u_{0}(x)+t u_{1}(y):(1-t) x+t y=z\right\} .
$$

Then

$$
f=e^{-u_{t}}, \quad g=e^{-u_{0}}, \quad h=e^{-u_{1}}
$$

verify the assumption of (PL); therefore

$$
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z \geq\left(\int_{\mathbb{R}^{n}} e^{-u_{0}} d x\right)^{1-t}\left(\int_{\mathbb{R}^{n}} e^{-u_{1}} d y\right)^{t} .
$$

Inf-convolution (Rockafellar, 1970)

Inf-convolution (Rockafellar, 1970)

Given $u, w: \mathbb{R}^{n} \rightarrow \mathbb{R}$, convex, let $\alpha, \beta \geq 0$.

Inf-convolution (Rockafellar, 1970)

Given $u, w: \mathbb{R}^{n} \rightarrow \mathbb{R}$, convex, let $\alpha, \beta \geq 0$. Set

$$
(\alpha \cdot u \square \beta \cdot w)(z)
$$

Inf-convolution (Rockafellar, 1970)

Given $u, w: \mathbb{R}^{n} \rightarrow \mathbb{R}$, convex, let $\alpha, \beta \geq 0$. Set

$$
(\alpha \cdot u \square \beta \cdot w)(z)=\inf \{\alpha u(x)+\beta w(y): \alpha x+\beta y=z\}
$$

Inf-convolution (Rockafellar, 1970)

Given $u, w: \mathbb{R}^{n} \rightarrow \mathbb{R}$, convex, let $\alpha, \beta \geq 0$. Set

$$
(\alpha \cdot u \square \beta \cdot w)(z)=\inf \{\alpha u(x)+\beta w(y): \alpha x+\beta y=z\} .
$$

Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex.

Inf-convolution (Rockafellar, 1970)

Given $u, w: \mathbb{R}^{n} \rightarrow \mathbb{R}$, convex, let $\alpha, \beta \geq 0$. Set

$$
(\alpha \cdot u \square \beta \cdot w)(z)=\inf \{\alpha u(x)+\beta w(y): \alpha x+\beta y=z\} .
$$

Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex. Define the conjugate function u^{*} of u as

$$
u^{*}(y)=\sup _{x \in \mathbb{R}^{n}}\langle x, y\rangle-u(x)
$$

Inf-convolution (Rockafellar, 1970)

Given $u, w: \mathbb{R}^{n} \rightarrow \mathbb{R}$, convex, let $\alpha, \beta \geq 0$. Set

$$
(\alpha \cdot u \square \beta \cdot w)(z)=\inf \{\alpha u(x)+\beta w(y): \alpha x+\beta y=z\} .
$$

Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex. Define the conjugate function u^{*} of u as

$$
u^{*}(y)=\sup _{x \in \mathbb{R}^{n}}\langle x, y\rangle-u(x)
$$

Lemma Let $u, w: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex; let $\alpha, \beta \geq 0$.

Inf-convolution (Rockafellar, 1970)

Given $u, w: \mathbb{R}^{n} \rightarrow \mathbb{R}$, convex, let $\alpha, \beta \geq 0$. Set

$$
(\alpha \cdot u \square \beta \cdot w)(z)=\inf \{\alpha u(x)+\beta w(y): \alpha x+\beta y=z\} .
$$

Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex. Define the conjugate function u^{*} of u as

$$
u^{*}(y)=\sup _{x \in \mathbb{R}^{n}}\langle x, y\rangle-u(x)
$$

Lemma Let $u, w: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex; let $\alpha, \beta \geq 0$. Then

Inf-convolution (Rockafellar, 1970)

Given $u, w: \mathbb{R}^{n} \rightarrow \mathbb{R}$, convex, let $\alpha, \beta \geq 0$. Set

$$
(\alpha \cdot u \square \beta \cdot w)(z)=\inf \{\alpha u(x)+\beta w(y): \alpha x+\beta y=z\}
$$

Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex. Define the conjugate function u^{*} of u as

$$
u^{*}(y)=\sup _{x \in \mathbb{R}^{n}}\langle x, y\rangle-u(x)
$$

Lemma Let $u, w: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex; let $\alpha, \beta \geq 0$. Then

$$
\alpha \cdot u \square \beta \cdot w=\left(\alpha u^{*}+\beta w^{*}\right)^{*} .
$$

The Prékopa-Leindler inequality can be reformulated as follows.

The Prékopa-Leindler inequality can be reformulated as follows.
Theorem. For every $u_{0}, u_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, convex, and for every $t \in[0,1]$,

$$
\int_{\mathbb{R}^{n}} e^{-\mu_{t}} d z \geq\left(\int_{\mathbb{R}^{n}} e^{-\mu_{0}}\right)^{1-t}\left(\int_{\mathbb{R}^{n}} e^{-\mu_{1}}\right)^{t}
$$

The Prékopa-Leindler inequality can be reformulated as follows.
Theorem. For every $u_{0}, u_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, convex, and for every $t \in[0,1]$,

$$
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z \geq\left(\int_{\mathbb{R}^{n}} e^{-u_{0}}\right)^{1-t}\left(\int_{\mathbb{R}^{n}} e^{-u_{1}}\right)^{t}
$$

where

$$
u_{t}=(1-t) \cdot u_{0} \square t \cdot u_{1},
$$

or, equivalently,

$$
u_{t}=\left((1-t) u_{0}^{*}+t u_{1}^{*}\right)^{*} .
$$

A different convex combination of functions

A different convex combination of functions

- From now on we will be considering geometric convex functions u (according to Artstein-Avidan, Klartag and Milman),

A different convex combination of functions

- From now on we will be considering geometric convex functions u (according to Artstein-Avidan, Klartag and Milman), which means

$$
0=u(0) \leq u(x) \quad \forall x \in \mathbb{R}^{n} .
$$

A different convex combination of functions

- From now on we will be considering geometric convex functions u (according to Artstein-Avidan, Klartag and Milman), which means

$$
0=u(0) \leq u(x) \quad \forall x \in \mathbb{R}^{n} .
$$

Note that if u is geometric if and only if u^{*} is geometric.

A different convex combination of functions

- From now on we will be considering geometric convex functions u (according to Artstein-Avidan, Klartag and Milman), which means

$$
0=u(0) \leq u(x) \quad \forall x \in \mathbb{R}^{n} .
$$

Note that if u is geometric if and only if u^{*} is geometric.

- Given u_{0} and u_{1} as above and $t \in[0,1]$, let

$$
u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*}
$$

A different convex combination of functions

- From now on we will be considering geometric convex functions u (according to Artstein-Avidan, Klartag and Milman), which means

$$
0=u(0) \leq u(x) \quad \forall x \in \mathbb{R}^{n} .
$$

Note that if u is geometric if and only if u^{*} is geometric.

- Given u_{0} and u_{1} as above and $t \in[0,1]$, let

$$
u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*}
$$

- The function $\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}$ needs not be convex.

A different convex combination of functions

- From now on we will be considering geometric convex functions u (according to Artstein-Avidan, Klartag and Milman), which means

$$
0=u(0) \leq u(x) \quad \forall x \in \mathbb{R}^{n} .
$$

Note that if u is geometric if and only if u^{*} is geometric.

- Given u_{0} and u_{1} as above and $t \in[0,1]$, let

$$
u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*}
$$

- The function $\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}$ needs not be convex. On the other hand, its conjugate u_{t} is a geometric convex function.

Question

Question

- Given two geometric convex function u_{0} and u_{1}, and $t \in[0,1]$,

Question

- Given two geometric convex function u_{0} and u_{1}, and $t \in[0,1]$, is the inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z \geq\left(\int_{\mathbb{R}^{n}} e^{-u_{0}}\right)^{1-t}\left(\int_{\mathbb{R}^{n}} e^{-u_{1}}\right)^{t} \tag{*}
\end{equation*}
$$

true,

Question

- Given two geometric convex function u_{0} and u_{1}, and $t \in[0,1]$, is the inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z \geq\left(\int_{\mathbb{R}^{n}} e^{-u_{0}}\right)^{1-t}\left(\int_{\mathbb{R}^{n}} e^{-u_{1}}\right)^{t} \tag{*}
\end{equation*}
$$

true, with

$$
u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*}
$$

Question

- Given two geometric convex function u_{0} and u_{1}, and $t \in[0,1]$, is the inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z \geq\left(\int_{\mathbb{R}^{n}} e^{-u_{0}}\right)^{1-t}\left(\int_{\mathbb{R}^{n}} e^{-u_{1}}\right)^{t} \tag{*}
\end{equation*}
$$

true, with

$$
u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*} ?
$$

Question

- Given two geometric convex function u_{0} and u_{1}, and $t \in[0,1]$, is the inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z \geq\left(\int_{\mathbb{R}^{n}} e^{-u_{0}}\right)^{1-t}\left(\int_{\mathbb{R}^{n}} e^{-u_{1}}\right)^{t} \tag{*}
\end{equation*}
$$

true, with

$$
u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*} ?
$$

No.

Question

- Given two geometric convex function u_{0} and u_{1}, and $t \in[0,1]$, is the inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z \geq\left(\int_{\mathbb{R}^{n}} e^{-u_{0}}\right)^{1-t}\left(\int_{\mathbb{R}^{n}} e^{-u_{1}}\right)^{t} \tag{*}
\end{equation*}
$$

true, with

$$
u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*} ?
$$

No.

Remark. (*) is stronger than Prékopa-Leindler inequality.

Examples (indicator functions)

Examples (indicator functions)

Given a convex body K, let

$$
\mathbf{I}_{K}(x)= \begin{cases}0 & \text { if } x \in K \\ +\infty & \text { if } x \notin K\end{cases}
$$

Examples (indicator functions)

Given a convex body K, let

$$
\mathbf{I}_{K}(x)= \begin{cases}0 & \text { if } x \in K \\ +\infty & \text { if } x \notin K\end{cases}
$$

If K_{0} and K_{1} contain the origin, and $u_{0}=\mathbf{I}_{K_{0}}, u_{1}=\mathbf{I}_{K_{1}}$, then

$$
u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*}=\mathbf{I}_{K_{t}}
$$

Examples (indicator functions)

Given a convex body K, let

$$
\mathbf{I}_{K}(x)= \begin{cases}0 & \text { if } x \in K \\ +\infty & \text { if } x \notin K\end{cases}
$$

If K_{0} and K_{1} contain the origin, and $u_{0}=\mathbf{I}_{K_{0}}, u_{1}=\mathbf{I}_{K_{1}}$, then

$$
u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*}=\mathbf{I}_{K_{t}},
$$

where

$$
K_{t}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq h_{K_{0}}^{1-t}(y) h_{K_{1}}^{t}(y) \forall y\right\}
$$

Examples (indicator functions)

Given a convex body K, let

$$
\mathbf{I}_{K}(x)= \begin{cases}0 & \text { if } x \in K \\ +\infty & \text { if } x \notin K\end{cases}
$$

If K_{0} and K_{1} contain the origin, and $u_{0}=\mathbf{I}_{K_{0}}, u_{1}=\mathbf{I}_{K_{1}}$, then

$$
u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*}=\mathbf{I}_{K_{t}},
$$

where

$$
K_{t}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq h_{K_{0}}^{1-t}(y) h_{K_{1}}^{t}(y) \forall y\right\}
$$

Hence
$\int_{\mathbb{R}^{n}} e^{-\mu_{t}} d z \geq\left(\int_{\mathbb{R}^{n}} e^{-u_{0}}\right)^{1-t}\left(\int_{\mathbb{R}^{n}} e^{-u_{1}}\right)^{t} \Leftrightarrow \underbrace{\left|K_{t}\right| \geq\left|K_{0}\right|^{1-t}\left|K_{1}\right|^{t}}_{\text {(log-BM) }}$.

Counterexamples (support functions)

Counterexamples (support functions)

Let K be a convex body containing the origin.

Counterexamples (support functions)

Let K be a convex body containing the origin.

$$
\int_{\mathbb{R}^{n}} e^{-h_{K}} d x=c(n)\left|K^{\circ}\right|
$$

Counterexamples (support functions)

Let K be a convex body containing the origin.

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} e^{-h_{K}} d x=c(n)\left|K^{\circ}\right|, \quad K^{\circ} & =\{x:\langle x, y\rangle \leq 1 \forall y \in K\} \\
& =\text { polar body of } K .
\end{aligned}
$$

Counterexamples (support functions)

Let K be a convex body containing the origin.

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} e^{-h_{K}} d x=c(n)\left|K^{\circ}\right|, \quad K^{\circ} & =\{x:\langle x, y\rangle \leq 1 \forall y \in K\} \\
& =\text { polar body of } K .
\end{aligned}
$$

If K_{0} and K_{1} contain the origin, and $u_{0}=h_{K_{0}}, u_{1}=h_{K_{1}}$, then, for $t \in(0,1)$,

$$
u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*}=h_{\operatorname{conv}\left(K_{0} \cup K_{1}\right)} .
$$

Counterexamples (support functions)

Let K be a convex body containing the origin.

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} e^{-h_{K}} d x=c(n)\left|K^{\circ}\right|, \quad K^{\circ} & =\{x:\langle x, y\rangle \leq 1 \forall y \in K\} \\
& =\text { polar body of } K
\end{aligned}
$$

If K_{0} and K_{1} contain the origin, and $u_{0}=h_{K_{0}}, u_{1}=h_{K_{1}}$, then, for $t \in(0,1)$,

$$
\begin{gathered}
u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*}=h_{\operatorname{conv}\left(K_{0} \cup K_{1}\right)} \\
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z=\int_{\mathbb{R}^{n}} e^{-h_{\operatorname{conv}\left(K_{0} \cup K_{1}\right)}}
\end{gathered}
$$

Counterexamples (support functions)

Let K be a convex body containing the origin.

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} e^{-h_{K}} d x=c(n)\left|K^{\circ}\right|, \quad K^{\circ} & =\{x:\langle x, y\rangle \leq 1 \forall y \in K\} \\
& =\text { polar body of } K
\end{aligned}
$$

If K_{0} and K_{1} contain the origin, and $u_{0}=h_{K_{0}}, u_{1}=h_{K_{1}}$, then, for $t \in(0,1)$,

$$
\begin{gathered}
u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*}=h_{\operatorname{conv}\left(K_{0} \cup K_{1}\right)} \\
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z=\int_{\mathbb{R}^{n}} e^{-h_{\operatorname{conv}\left(K_{0} \cup K_{1}\right)}}=c(n)\left|\left(\operatorname{conv}\left(K_{0} \cup K_{1}\right)\right)^{\circ}\right|
\end{gathered}
$$

Counterexamples (support functions)

Let K be a convex body containing the origin.

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} e^{-h_{K}} d x=c(n)\left|K^{\circ}\right|, \quad K^{\circ} & =\{x:\langle x, y\rangle \leq 1 \forall y \in K\} \\
& =\text { polar body of } K .
\end{aligned}
$$

If K_{0} and K_{1} contain the origin, and $u_{0}=h_{K_{0}}, u_{1}=h_{K_{1}}$, then, for $t \in(0,1)$,

$$
\begin{aligned}
u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*} & =h_{\operatorname{conv}\left(K_{0} \cup K_{1}\right)} \\
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z=\int_{\mathbb{R}^{n}} e^{-h_{\operatorname{conv}\left(K_{0} \cup K_{1}\right)}} & =c(n)\left|\left(\operatorname{conv}\left(K_{0} \cup K_{1}\right)\right)^{\circ}\right| \\
& =c(n)\left|K_{0}^{\circ} \cap K_{1}^{\circ}\right|
\end{aligned}
$$

Counterexamples (support functions)

Let K be a convex body containing the origin.

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} e^{-h_{K}} d x=c(n)\left|K^{\circ}\right|, \quad K^{\circ} & =\{x:\langle x, y\rangle \leq 1 \forall y \in K\} \\
& =\text { polar body of } K
\end{aligned}
$$

If K_{0} and K_{1} contain the origin, and $u_{0}=h_{K_{0}}, u_{1}=h_{K_{1}}$, then, for $t \in(0,1)$,

$$
\begin{aligned}
u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*} & =h_{\operatorname{conv}\left(K_{0} \cup K_{1}\right)} \\
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z=\int_{\mathbb{R}^{n}} e^{-h_{\operatorname{conv}\left(K_{0} \cup K_{1}\right)}} & =c(n)\left|\left(\operatorname{conv}\left(K_{0} \cup K_{1}\right)\right)^{\circ}\right| \\
& =c(n)\left|K_{0}^{\circ} \cap K_{1}^{\circ}\right| \\
\left(\int_{\mathbb{R}^{n}} e^{-u_{0}}\right)^{1-t}\left(\int_{\mathbb{R}^{n}} e^{-u_{1}}\right)^{t} & =c(n)\left|K_{0}^{\circ}\right|^{1-t}\left|K_{1}^{\circ}\right|^{t} .
\end{aligned}
$$

Counterexamples (support functions)

Let K be a convex body containing the origin.

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} e^{-h_{K}} d x=c(n)\left|K^{\circ}\right|, \quad K^{\circ} & =\{x:\langle x, y\rangle \leq 1 \forall y \in K\} \\
& =\text { polar body of } K
\end{aligned}
$$

If K_{0} and K_{1} contain the origin, and $u_{0}=h_{K_{0}}, u_{1}=h_{K_{1}}$, then, for $t \in(0,1)$,

$$
\begin{aligned}
u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*} & =h_{\operatorname{conv}\left(K_{0} \cup K_{1}\right)} \\
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z=\int_{\mathbb{R}^{n}} e^{-h_{\operatorname{conv}\left(K_{0} \cup K_{1}\right)}} & =c(n)\left|\left(\operatorname{conv}\left(K_{0} \cup K_{1}\right)\right)^{\circ}\right| \\
& =c(n)\left|K_{0}^{\circ} \cap K_{1}^{\circ}\right| \\
\left(\int_{\mathbb{R}^{n}} e^{-u_{0}}\right)^{1-t}\left(\int_{\mathbb{R}^{n}} e^{-u_{1}}\right)^{t} & =c(n)\left|K_{0}^{\circ}\right|^{1-t}\left|K_{1}^{\circ}\right|^{t} \\
\left|K_{0}^{\circ} \cap K_{1}^{\circ}\right| \geq\left|K_{0}^{\circ}\right|^{1-t}\left|K_{1}^{\circ}\right|^{t} & \text { is in general false. }
\end{aligned}
$$

Back to the inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z \geq\left(\int_{\mathbb{R}^{n}} e^{-u_{0}}\right)^{1-t}\left(\int_{\mathbb{R}^{n}} e^{-u_{1}}\right)^{t} \tag{*}
\end{equation*}
$$

with

$$
u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*} .
$$

Back to the inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z \geq\left(\int_{\mathbb{R}^{n}} e^{-u_{0}}\right)^{1-t}\left(\int_{\mathbb{R}^{n}} e^{-u_{1}}\right)^{t} \tag{*}
\end{equation*}
$$

with

$$
u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*} .
$$

- We compute the first derivative with respect to t of the I.h.s. of $\left({ }^{*}\right)$ at $t=0$.

Back to the inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z \geq\left(\int_{\mathbb{R}^{n}} e^{-u_{0}}\right)^{1-t}\left(\int_{\mathbb{R}^{n}} e^{-u_{1}}\right)^{t} \tag{*}
\end{equation*}
$$

with

$$
u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*} .
$$

- We compute the first derivative with respect to t of the I.h.s. of $\left({ }^{*}\right)$ at $t=0$.
- We compute the infinitesimal form of $\left(^{*}\right)$.

The first variation (under strong regularity assumptions

$$
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z, \quad \text { where } u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*}
$$

The first variation (under strong regularity assumptions

$$
\begin{gathered}
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z, \quad \text { where } u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*} . \\
\left.\frac{d}{d t} \int_{\mathbb{R}^{n}} e^{-u_{t}} d z\right|_{t=0}
\end{gathered}
$$

The first variation (under strong regularity assumptions

$$
\begin{gathered}
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z, \quad \text { where } u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*} \\
\left.\frac{d}{d t} \int_{\mathbb{R}^{n}} e^{-u_{t}} d z\right|_{t=0}=\int_{\mathbb{R}^{n}} \ln \left(\frac{v_{1}}{v_{0}}\right) v_{0} e^{v_{0}-\left\langle\nabla v_{0}, y\right\rangle} \operatorname{det}\left(D^{2} v_{0}\right) d y,
\end{gathered}
$$

where $v_{0}=u_{0}^{*}, v_{1}=u_{1}^{*}$

The first variation (under strong regularity assumptions

$$
\begin{gathered}
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z, \quad \text { where } u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*} \\
\left.\frac{d}{d t} \int_{\mathbb{R}^{n}} e^{-u_{t}} d z\right|_{t=0}=\int_{\mathbb{R}^{n}} \ln \left(\frac{v_{1}}{v_{0}}\right) v_{0} e^{v_{0}-\left\langle\nabla v_{0}, y\right\rangle} \operatorname{det}\left(D^{2} v_{0}\right) d y, \\
\text { where } v_{0}=u_{0}^{*}, v_{1}=u_{1}^{*}\left(v_{0}(0)=v_{1}(0)=0, v_{0}, v_{1} \geq 0\right)
\end{gathered}
$$

The first variation (under strong regularity assumptions

$$
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z, \quad \text { where } u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*}
$$

$$
\left.\frac{d}{d t} \int_{\mathbb{R}^{n}} e^{-u_{t}} d z\right|_{t=0}=\int_{\mathbb{R}^{n}} \ln \left(\frac{v_{1}}{v_{0}}\right) v_{0} e^{v_{0}-\left\langle\nabla v_{0}, y\right\rangle} \operatorname{det}\left(D^{2} v_{0}\right) d y
$$

where $v_{0}=u_{0}^{*}, v_{1}=u_{1}^{*}\left(v_{0}(0)=v_{1}(0)=0, v_{0}, v_{1} \geq 0\right)$.

- If v_{1} tends to 0 sufficiently fast at 0 , this derivative is $-\infty$.

The first variation (under strong regularity assumptions

$$
\begin{gathered}
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z, \quad \text { where } u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*} \\
\left.\frac{d}{d t} \int_{\mathbb{R}^{n}} e^{-u_{t}} d z\right|_{t=0}=\int_{\mathbb{R}^{n}} \ln \left(\frac{v_{1}}{v_{0}}\right) v_{0} e^{v_{0}-\left\langle\nabla v_{0}, y\right\rangle} \operatorname{det}\left(D^{2} v_{0}\right) d y,
\end{gathered}
$$

where $v_{0}=u_{0}^{*}, v_{1}=u_{1}^{*}\left(v_{0}(0)=v_{1}(0)=0, v_{0}, v_{1} \geq 0\right)$.

- If v_{1} tends to 0 sufficiently fast at 0 , this derivative is $-\infty$. This provides further counterexamples to

$$
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z \geq\left(\int_{\mathbb{R}^{n}} e^{-u_{0}}\right)^{1-t}\left(\int_{\mathbb{R}^{n}} e^{-u_{1}}\right)^{t}
$$

The first variation (under strong regularity assumptions

$$
\begin{gathered}
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z, \quad \text { where } u_{t}=\left(\left(u_{0}^{*}\right)^{1-t}\left(u_{1}^{*}\right)^{t}\right)^{*} \\
\left.\frac{d}{d t} \int_{\mathbb{R}^{n}} e^{-u_{t}} d z\right|_{t=0}=\int_{\mathbb{R}^{n}} \ln \left(\frac{v_{1}}{v_{0}}\right) v_{0} e^{v_{0}-\left\langle\nabla v_{0}, y\right\rangle} \operatorname{det}\left(D^{2} v_{0}\right) d y,
\end{gathered}
$$

where $v_{0}=u_{0}^{*}, v_{1}=u_{1}^{*}\left(v_{0}(0)=v_{1}(0)=0, v_{0}, v_{1} \geq 0\right)$.

- If v_{1} tends to 0 sufficiently fast at 0 , this derivative is $-\infty$. This provides further counterexamples to

$$
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z \geq\left(\int_{\mathbb{R}^{n}} e^{-u_{0}}\right)^{1-t}\left(\int_{\mathbb{R}^{n}} e^{-u_{1}}\right)^{t}
$$

because the r.h.s. and I.h.s. coincide for $t=0$, and the derivative of the r.h.s. is finite at $t=0$.

Comparison with another first variation

Comparison with another first variation

$$
\left.\frac{d}{d t} \int_{\mathbb{R}^{n}} e^{-u_{t}} d z\right|_{t=0}=\int_{\mathbb{R}^{n}} \ln \left(\frac{v_{1}}{v_{0}}\right) v_{0} e^{v_{0}-\left\langle\nabla v_{0}, y\right\rangle} \operatorname{det}\left(D^{2} v_{0}\right) d y
$$

Comparison with another first variation

$$
\begin{aligned}
\left.\frac{d}{d t} \int_{\mathbb{R}^{n}} e^{-u_{t}} d z\right|_{t=0} & =\int_{\mathbb{R}^{n}} \ln \left(\frac{v_{1}}{v_{0}}\right) v_{0} e^{v_{0}-\left\langle\nabla v_{0}, y\right\rangle} \operatorname{det}\left(D^{2} v_{0}\right) d y \\
\left.\frac{d}{d t}\left|K_{t}\right|\right|_{t=0} & =\int_{\mathbb{S}^{n-1}} \ln \left(\frac{h_{K_{0}}}{h_{K_{1}}}\right) \underbrace{h_{K_{0}} d S\left(K_{0}, y\right)}_{\text {cone volume measure }}
\end{aligned}
$$

Comparison with another first variation

$$
\begin{aligned}
\left.\frac{d}{d t} \int_{\mathbb{R}^{n}} e^{-u_{t}} d z\right|_{t=0} & =\int_{\mathbb{R}^{n}} \ln \left(\frac{v_{1}}{v_{0}}\right) v_{0} e^{v_{0}-\left\langle\nabla v_{0}, y\right\rangle} \operatorname{det}\left(D^{2} v_{0}\right) d y \\
\left.\frac{d}{d t}\left|K_{t}\right|\right|_{t=0} & =\int_{\mathbb{S}^{n-1}} \ln \left(\frac{h_{K_{0}}}{h_{K_{1}}}\right) \underbrace{h_{K_{0}} d S\left(K_{0}, y\right)}_{\text {cone volume measure }},
\end{aligned}
$$

where

$$
K_{t}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq h_{K_{0}}^{1-t}(y) h_{K_{1}}^{t}(y), \forall y \in \mathbb{R}^{n}\right\}
$$

Comparison with another first variation

$$
\begin{aligned}
\left.\frac{d}{d t} \int_{\mathbb{R}^{n}} e^{-u_{t}} d z\right|_{t=0} & =\int_{\mathbb{R}^{n}} \ln \left(\frac{v_{1}}{v_{0}}\right) v_{0} e^{v_{0}-\left\langle\nabla v_{0}, y\right\rangle} \operatorname{det}\left(D^{2} v_{0}\right) d y \\
\left.\frac{d}{d t}\left|K_{t}\right|\right|_{t=0} & =\int_{\mathbb{S}^{n-1}} \ln \left(\frac{h_{K_{0}}}{h_{K_{1}}}\right) \underbrace{h_{K_{0}} d S\left(K_{0}, y\right)}_{\text {cone volume measure }}
\end{aligned}
$$

where

$$
K_{t}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq h_{K_{0}}^{1-t}(y) h_{K_{1}}^{t}(y), \forall y \in \mathbb{R}^{n}\right\}
$$

(BLYZ, 2012).

Comparison with another first variation

$$
\begin{aligned}
\left.\frac{d}{d t} \int_{\mathbb{R}^{n}} e^{-u_{t}} d z\right|_{t=0} & =\int_{\mathbb{R}^{n}} \ln \left(\frac{v_{1}}{v_{0}}\right) v_{0} e^{v_{0}-\left\langle\nabla v_{0}, y\right\rangle} \operatorname{det}\left(D^{2} v_{0}\right) d y \\
\left.\frac{d}{d t}\left|K_{t}\right|\right|_{t=0} & =\int_{\mathbb{S}^{n-1}} \ln \left(\frac{h_{K_{0}}}{h_{K_{1}}}\right) \underbrace{h_{K_{0}} d S\left(K_{0}, y\right)}_{\text {cone volume measure }}
\end{aligned}
$$

where

$$
K_{t}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq h_{K_{0}}^{1-t}(y) h_{K_{1}}^{t}(y), \forall y \in \mathbb{R}^{n}\right\}
$$

(BLYZ, 2012). This suggests that the measure $\mu_{\mu_{0}}$ with density:

$$
v_{0} e^{v_{0}-\left\langle\nabla v_{0}, y\right\rangle} \operatorname{det}\left(D^{2} v_{0}\right) \quad \text { (in the regular case) }
$$

could be considered as a functional counterpart of the cone volume measure.

Comparison with another first variation

$$
\begin{aligned}
\left.\frac{d}{d t} \int_{\mathbb{R}^{n}} e^{-u_{t}} d z\right|_{t=0} & =\int_{\mathbb{R}^{n}} \ln \left(\frac{v_{1}}{v_{0}}\right) v_{0} e^{v_{0}-\left\langle\nabla v_{0}, y\right\rangle} \operatorname{det}\left(D^{2} v_{0}\right) d y \\
\left.\frac{d}{d t}\left|K_{t}\right|\right|_{t=0} & =\int_{\mathbb{S}^{n-1}} \ln \left(\frac{h_{K_{0}}}{h_{K_{1}}}\right) \underbrace{h_{K_{0}} d S\left(K_{0}, y\right)}_{\text {cone volume measure }}
\end{aligned}
$$

where

$$
K_{t}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq h_{K_{0}}^{1-t}(y) h_{K_{1}}^{t}(y), \forall y \in \mathbb{R}^{n}\right\}
$$

(BLYZ, 2012). This suggests that the measure $\mu_{\mu_{0}}$ with density:

$$
v_{0} e^{v_{0}-\left\langle\nabla v_{0}, y\right\rangle} \operatorname{det}\left(D^{2} v_{0}\right) \quad \text { (in the regular case) }
$$

could be considered as a functional counterpart of the cone volume measure. Note that

$$
\mu_{u_{0}}=v_{0} \mu_{\mu_{0}}^{c k}
$$

where $\mu_{\mu_{0}}^{c k}$ is the moment measure, considered by Cordero-Erasquin and Klartag.

Infinitesimal version - I

Infinitesimal version - I

Let u be a geometric convex function with $u \in C^{2}\left(\mathbb{R}^{n}\right)$, and $D^{2} u>0$ in \mathbb{R}^{n}.

Infinitesimal version - I

Let u be a geometric convex function with $u \in C^{2}\left(\mathbb{R}^{n}\right)$, and $D^{2} u>0$ in \mathbb{R}^{n}. For $\epsilon>0$, define

$$
u_{\epsilon}=\left(u^{*} e^{\epsilon \phi}\right)^{*}, \quad \text { where } \phi=C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

Infinitesimal version - I

Let u be a geometric convex function with $u \in C^{2}\left(\mathbb{R}^{n}\right)$, and $D^{2} u>0$ in \mathbb{R}^{n}. For $\epsilon>0$, define

$$
u_{\epsilon}=\left(u^{*} e^{\epsilon \phi}\right)^{*}, \quad \text { where } \phi=C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

Consider the function

$$
f(\epsilon)=\int_{\mathbb{R}^{n}} e^{-u_{\epsilon}} d x
$$

Infinitesimal version - I

Let u be a geometric convex function with $u \in C^{2}\left(\mathbb{R}^{n}\right)$, and $D^{2} u>0$ in \mathbb{R}^{n}. For $\epsilon>0$, define

$$
u_{\epsilon}=\left(u^{*} e^{\epsilon \phi}\right)^{*}, \quad \text { where } \phi=C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

Consider the function

$$
f(\epsilon)=\int_{\mathbb{R}^{n}} e^{-u_{\epsilon}} d x
$$

The inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z \geq\left(\int_{\mathbb{R}^{n}} e^{-u_{0}}\right)^{1-t}\left(\int_{\mathbb{R}^{n}} e^{-u_{1}}\right)^{t} \tag{}
\end{equation*}
$$

implies that f is log-concave;

Infinitesimal version - I

Let u be a geometric convex function with $u \in C^{2}\left(\mathbb{R}^{n}\right)$, and $D^{2} u>0$ in \mathbb{R}^{n}. For $\epsilon>0$, define

$$
u_{\epsilon}=\left(u^{*} e^{\epsilon \phi}\right)^{*}, \quad \text { where } \phi=C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

Consider the function

$$
f(\epsilon)=\int_{\mathbb{R}^{n}} e^{-u_{\epsilon}} d x
$$

The inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-u_{t}} d z \geq\left(\int_{\mathbb{R}^{n}} e^{-u_{0}}\right)^{1-t}\left(\int_{\mathbb{R}^{n}} e^{-u_{1}}\right)^{t} \tag{}
\end{equation*}
$$

implies that f is log-concave; in particular

$$
f(0) f^{\prime \prime}(0)-f^{\prime 2}(0) \leq 0
$$

Infinitesimal version - II

Infinitesimal version - II

The condition

$$
f(0) f^{\prime \prime}(0)-f^{\prime 2}(0) \leq 0 .
$$

becomes the following functional inequality:

Infinitesimal version - II

The condition

$$
f(0) f^{\prime \prime}(0)-f^{\prime 2}(0) \leq 0
$$

becomes the following functional inequality:

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \psi^{2} d \mu+\int_{\mathbb{R}^{n}} \frac{\psi^{2}}{\langle\nabla u, x\rangle-u} d \mu \leq \int_{\mathbb{R}^{n}}\left\langle\left(D^{2} u\right)^{-1} \nabla \psi, \nabla \psi\right\rangle d \mu \\
& +\left(\int_{\mathbb{R}^{n}} \psi d \mu\right)^{2}
\end{aligned}
$$

Infinitesimal version - II

The condition

$$
f(0) f^{\prime \prime}(0)-f^{\prime 2}(0) \leq 0
$$

becomes the following functional inequality:

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \psi^{2} d \mu+\int_{\mathbb{R}^{n}} \frac{\psi^{2}}{\langle\nabla u, x\rangle-u} d \mu \leq \int_{\mathbb{R}^{n}}\left\langle\left(D^{2} u\right)^{-1} \nabla \psi, \nabla \psi\right\rangle d \mu \\
& +\left(\int_{\mathbb{R}^{n}} \psi d \mu\right)^{2}
\end{aligned}
$$

where

$$
\mathrm{d} \mu=e^{-u} d x
$$

Infinitesimal version - II

The condition

$$
f(0) f^{\prime \prime}(0)-f^{\prime 2}(0) \leq 0
$$

becomes the following functional inequality:

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \psi^{2} d \mu+\int_{\mathbb{R}^{n}} \frac{\psi^{2}}{\langle\nabla u, x\rangle-u} d \mu \leq \int_{\mathbb{R}^{n}}\left\langle\left(D^{2} u\right)^{-1} \nabla \psi, \nabla \psi\right\rangle d \mu \\
& +\left(\int_{\mathbb{R}^{n}} \psi d \mu\right)^{2}
\end{aligned}
$$

where

$$
\mathrm{d} \mu=e^{-u} d x
$$

Compare with the infinitesimal form of the Prékopa-Leindler inequality (Brascamp-Lieb, 1976):

$$
\int_{\mathbb{R}^{n}} \psi^{2} d \mu \leq \int_{\mathbb{R}^{n}}\left\langle\left(D^{2} u\right)^{-1} \nabla \psi, \nabla \psi\right\rangle d \mu+\left(\int_{\mathbb{R}^{n}} \psi d \mu\right)^{2}
$$

The infinitesimal form at the Gaussian

The infinitesimal form at the Gaussian

When

$$
u=e^{-|x|^{2} / 2}
$$

the infinitesimal form becomes:

The infinitesimal form at the Gaussian

When

$$
u=e^{-|x|^{2} / 2}
$$

the infinitesimal form becomes:

$$
\int_{\mathbb{R}^{n}} \phi^{2} d \gamma_{n}+2 \int_{\mathbb{R}^{n}} \frac{\phi^{2}}{|x|^{2}} d \gamma_{n} \leq \int_{\mathbb{R}^{n}}|\nabla \psi|^{2} d \gamma_{n}+\left(\int_{\mathbb{R}^{n}} \phi d \gamma_{n}\right)^{2}
$$

The infinitesimal form at the Gaussian

When

$$
u=e^{-|x|^{2} / 2}
$$

the infinitesimal form becomes:

$$
\int_{\mathbb{R}^{n}} \phi^{2} d \gamma_{n}+2 \int_{\mathbb{R}^{n}} \frac{\phi^{2}}{|x|^{2}} d \gamma_{n} \leq \int_{\mathbb{R}^{n}}|\nabla \psi|^{2} d \gamma_{n}+\left(\int_{\mathbb{R}^{n}} \phi d \gamma_{n}\right)^{2}
$$

- Checked for $n=1$.

The infinitesimal form at the Gaussian

When

$$
u=e^{-|x|^{2} / 2}
$$

the infinitesimal form becomes:

$$
\int_{\mathbb{R}^{n}} \phi^{2} d \gamma_{n}+2 \int_{\mathbb{R}^{n}} \frac{\phi^{2}}{|x|^{2}} d \gamma_{n} \leq \int_{\mathbb{R}^{n}}|\nabla \psi|^{2} d \gamma_{n}+\left(\int_{\mathbb{R}^{n}} \phi d \gamma_{n}\right)^{2} .
$$

- Checked for $n=1$.
- Checked for n large enough, with the crucial help of Yaozhong Qiu.

See also: S. Bobkov, M. Ledoux, From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, 2000.

