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Minkowski addition. Given A and B in R”, we set:
A+B={a+b:acA beB}, rA={ra:acA},
for r > 0.
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Here | - | denotes the Lebesgue measure.
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The support function

Let K C R" be a convex body. The support function of K,
hk: R"™ — R, is defined as

hk(y) = sup(x,y).
xeK

If y € S™ 1 is a unit vector, then

hk(y)

is the (signed) distance from the origin, of the supporting
hyperplane to K, with unit outer normal y.

Remark. hy is a 1-homogeneous convex function. Viceversa, every
1-homogeneous convex function h: R” — R is the support
function of a (unique) convex body.
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Support functions and Minkowski addition

The map
K — hK

is linear with respect to Minkowski addition.
If K and L are convex bodies in R", then
hk+t = hk +hy and  hyx = ahk

for every a > 0.
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Let p > 1. Let K and L be convex bodies containing the origin;
this implies in particular hx > 0, hy > 0.

For o, B > 0, consider the function
p pP\1/p.
(ahb + BHDY/P;
this is a (non-negative) 1-homogeneous convex function; that is, a

support function.

Define
a-K+p, 8- L,

through:
ha~K+p,B~L = (ahf( + Bhf)l/p.
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Theorem (Firey, 1962) Let p > 1. For every Koy, K1, containing

the origin, and for every t € [0,1]:

(1= 1) Ko +p t- Ki|P/" = (1= 1)[ KolP/" + t|Ku|P/".

Proof.

» Ingredient 1: the inclusion
(I—t)-Ko+pt-KiD(1—t)Ko+ tKs.

» Ingredient 2: the standard Brunn-Minkowski inequality
(p=1).

» Ingredient 3: a standard argument based on homogeneity of
the Lebesgue measure.
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» The main problem when passing to p <1 (and p > 0), is
that, given two convex bodies K and L,

(hg + hp)Y/P

is not convex, in general (and then it is not a support
function).
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The Wulff shape

Let f: R"™ — R be: continuous, 1-homogeneous and
non-negative.

Define
Klfl]={xeR": (x,y) < f(y),Vy e R"}.

» K]|f] is bounded.
» K|[f] is closed and convex (as intersection of closed
half-spaces). Hence it is a convex body.

>
hgin < f, ("="if f is convex).

hi[f) is the largest 1-homogeneous convex function smaller
than f.
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> Let p>0.

> Let Ky, K1 be convex bodies containing the origin. For
t €10,1], let

hep =[(1— t)h) + thi |MP, if p >0,
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» Consider the set
p = {XER™ (x,y) < hip(y), Vy € R"} = K[ht ]
= (1—-1t)-Ko+pt- K.

K, t,0

log



The p convex linear combination of two convex bodies, for
p > 0 (Boroczky, Lutwak, Yang, Zhang, 2012)

> Let p>0.

> Let Ky, K1 be convex bodies containing the origin. For
t €10,1], let

hep =[(1— t)h) + thi |MP, if p >0,
heo = hy i,

» Consider the set

p = XER™ (x,y) < hep(y), Vy € R"} = Klhy ]
= (1—-1t)-Ko+pt- K.

Kt,O C Kt,p

log 0<p<l1



The p convex linear combination of two convex bodies, for
p > 0 (Boroczky, Lutwak, Yang, Zhang, 2012)

> Let p>0.

> Let Ky, K1 be convex bodies containing the origin. For
t €10,1], let

hep =[(1— t)h) + thi |MP, if p >0,
heo = hy i,

» Consider the set

p = XER™ (x,y) < hep(y), Vy € R"} = Klhy ]
= (1—-1t)-Ko+pt- K.

Kt’OC Kt,p C Kt,]_

log 0<p<l1 Minkowski



The p convex linear combination of two convex bodies, for
p > 0 (Boroczky, Lutwak, Yang, Zhang, 2012)

> Let p>0.

> Let Ky, K1 be convex bodies containing the origin. For
t €10,1], let

hep =[(1— t)h) + thi |MP, if p >0,
heo = hy i,

» Consider the set

p = XER™ (x,y) < hep(y), Vy € R"} = Klhy ]
= (1—-1t)-Ko+pt- K.

Kio C Kip C Kii C Kip.

log 0<p<l1 Minkowski p>1



The log-Brunn-Minkowski conjecture



The log-Brunn-Minkowski conjecture

Conjecture (Boroczky, Lutwak, Yang and Zhang, 2012). Let
Ko, K1 € K, be centrally symmetric convex bodies, and let
te[0,1].



The log-Brunn-Minkowski conjecture

Conjecture (Boroczky, Lutwak, Yang and Zhang, 2012). Let
Ko, K1 € K, be centrally symmetric convex bodies, and let
t €[0,1]. Set

Ke = {x € R": {x,y) < hi. “(y)hj,(y), Vy € R"}.



The log-Brunn-Minkowski conjecture

Conjecture (Boroczky, Lutwak, Yang and Zhang, 2012). Let
Ko, K1 € K, be centrally symmetric convex bodies, and let
t €[0,1]. Set

Ke = {x € R": {x,y) < hi. “(y)hj,(y), Vy € R"}.

Then
Kl > [Kol™*|Kql. (log-BM)



The log-Brunn-Minkowski conjecture

Conjecture (Boroczky, Lutwak, Yang and Zhang, 2012). Let

Ko, K1 € K, be centrally symmetric convex bodies, and let
t €[0,1]. Set

Ki = {x € R": (x,y) < i *(y)hie, (), Vy € R"}.
Then
|Kel > | Kol ™I Ka " (log-BM)

Remarks



The log-Brunn-Minkowski conjecture

Conjecture (Boroczky, Lutwak, Yang and Zhang, 2012). Let

Ko, K1 € K, be centrally symmetric convex bodies, and let
t €[0,1]. Set

Ki = {x € R": (x,y) < i *(y)hie, (), Vy € R"}.
Then
Ke| > [Kol'~F|Ka|. (log-BM)

Remarks
» (log-BM) implies (BM).



The log-Brunn-Minkowski conjecture

Conjecture (Boroczky, Lutwak, Yang and Zhang, 2012). Let
Ko, K1 € K, be centrally symmetric convex bodies, and let

t €[0,1]. Set
Ke = {x € R": {x,y) < hi. “(y)hj,(y), Vy € R"}.
Then
|Ke| > [Kol "~ *|Ka". (log-BM)

Remarks
» (log-BM) implies (BM).

» Symmetry is a necessary assumption.



The log-Brunn-Minkowski conjecture

Conjecture (Boroczky, Lutwak, Yang and Zhang, 2012). Let

Ko, K1 € K, be centrally symmetric convex bodies, and let
t €[0,1]. Set

Ke = {x € R": {x,y) < hi. “(y)hj,(y), Vy € R"}.

Then
|Ke| > [Kol' K" (log-BM)

Remarks
» (log-BM) implies (BM).
» Symmetry is a necessary assumption.

» A similar inequality (we will call it (p-BM)) can be
conjectured for 0 < p < 1.
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Results on log-BM

» n =2 - Bordczky, Lutwak, Yang, Zhang, 2012; (Ma,
alternative proof; Xi, Leng; extension without the symmetry
assumption).

» Complex case - Rotem, 2014 (also based on previous results
by Cordero-Erausquin, 2002).

» Unconditional convex bodies - Saroglou, 2015 (also based on
previous results by Cordero-Erausquin, Fradelizi, Maurey,
2004).

> (C2 neighborhood of a ball - Livshyts, Marsiglietti, C. 2017;
Livshyts, C., 2017; Kolesnikov, Milman, 2017.

> pefl— ﬁ, 1] - Kolesnikov, Milman 2017; Chen, Huang, Li,
Liu, 2018; Putterman, 2019.

» Convex bodies with symmetries - Boroczky, Kalantzopoulos,
2020.

» p €[l — —5=, 1] under an inclusion assumption - Hosle,
Kolesnikov, Livshyts, 2020 (with a unifying approach including
other inequalities, like Gardner-Zvavitch).



See also:

» Kolesnikov-Livshyts, 2020: On the local version of the
log-Brunn-Minkowski conjecture and some related geometric
inequalities;

» E. Milman, 2021: A sharp centro-affine isospectral inequality
of Szego-Weinberger type and the LP-Minkowski problem.
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The main question

» Is there a functional version of the log-Brunn-Minkowski
inequality?

Conversations about this topic with: Alexander Kolesnikov,
Galyna Livshyts, llaria Lucardesi, Christos Saroglou, Francisco
Marin-Sola, Liran Rotem, Michael Roysdon, Jacopo Ulivelli, Sudan
Xing.

See also an unpublished note of Dario Cordero-Erausquin & Galyna
Livshyts.
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The Prékopa-Leindler inequality

Theorem. Let f, g, h: R" — R, be measurable functions.
Assume that, for some t € [0, 1],

F((1—t)x+ty) > g f(x)h*(x), Vx,y R

/nfdzz(/ngdx>l_t</nhdy>t, (PL)

» (PL) implies (BM). In fact, it is commonly considered to be
the functional counterpart of (BM).

Then

Remarks.

» (PL) “reverses” Holder inequality.

P [t is connected to many other important inequalities, like
Brascamp-Lieb, Barthe, Young convolution inequality, . ..
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A formulation adapted to log-concave functions

Let wp, ui: R” — R be convex functions. For t € [0, 1], set:
u(z) = inf{(1 — t)uo(x) + tur(y): (1 — t)x + ty = z}.

Then

to

f=e™" g=e, h=e"

verify the assumption of (PL); therefore

1-t t
/ e Yidz > (/ e 1o dx> </ e dy> .
Rn n n
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Inf-convolution (Rockafellar, 1970)

Given u,w: R" — R, convex, let o, 5 > 0. Set

(a-uOp-w)(z) = inf{au(x) + Bw(y): ax + By = z}.

Let u: R” — R be convex. Define the conjugate function v* of u
as

u*(y) = sup (x,y) — u(x).
x€ER"

Lemma Let u,w: R" — R be convex; let o, 3 > 0. Then

a-ulpf-w=(au" + pw*)".
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The Prékopa-Leindler inequality can be reformulated as follows.

Theorem. For every ug, u1: R” — R, convex, and for every

t €10,1],
foemae= (L) (L)

up=1—1t)-upOt- u,

where

or, equivalently,
ur = ((1— t)ug + tup)*.
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A different convex combination of functions

» From now on we will be considering geometric convex
functions v (according to Artstein-Avidan, Klartag and
Milman), which means

0=u(0) <u(x) VxeR"

Note that if u is geometric if and only if u* is geometric.

» Given up and u; as above and t € [0, 1], let

ue = ((u5)* =" (u))"

» The function (u$)!~f (u})! needs not be convex. On the other
hand, its conjugate u; is a geometric convex function.
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Question

» Given two geometric convex function ug and wuy, and
t € [0, 1], is the inequality

forra= (L) (L) o

true, with
ue = ((ug)* " (u7)")*?

No.

Remark. (*) is stronger than Prékopa-Leindler inequality.
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Examples (indicator functions)

Given a convex body K, let

Ik (x) = 0 if x € K,
KO+ if x ¢ K.

If Ko and Ki contain the origin, and up = lk,, u1 = lk;, then

ue = ((u)' ™" (u1)")" = Ik,

where
Ki={x € R": (x,y) < " (y)hie, (¥) Yy }.

Hence

1—t t
[z ([ o) ([ em) okl = kIRl

(log-BM)
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Counterexamples (support functions)
Let K be a convex body containing the origin.

/e_thX:C(n)|KO|, K° = {x:(x,y)<1Vye K}
= polar body of K.

If Ko and Kj contain the origin, and ug = hk,, u1 = hg,, then, for
t € (0,1),
ue = ((ug)"F (1)) = heonv(kouky)-

/ e Uiz — / e heomikour) = c(n)|(conv(Ko U Ki))°|
Rn Rn
= c(n)|Kg N K{|

(/neuo)lt </e>t = c(n)|Ks " tIKTI".

|Kg N KD| > |KSIMEIKT|E is in general false.
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Back to the inequality

forraz (L) (L) o

*\1— * *
ue = ((ug)" " (u1)")".
» We compute the first derivative with respect to t of the |.h.s.
of (¥)at t=0.

» We compute the infinitesimal form of (*).

with
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The first variation (under strong regularity assumptions

/ e Ydz, where u; = ((uak)lft (Uf)t)*

c(fjt/n e Ydz

where vo = u§, vi = uj (w(0) = v1(0) =0, wvo, vi > 0).

:/ In <"1) vpe0 (Vo) det(D?vp)dy,

t=0 Vo

> If v; tends to O sufficiently fast at 0, this derivative is —oo.
This provides further counterexamples to

foema= (=) (L)

because the r.h.s. and |.h.s. coincide for t = 0, and the
derivative of the r.h.s. is finite at t = 0.
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Comparison with another first variation

q e "dz = /In (Vl> voeo VoY) det(D2 vy ) dy
dt Rn t=0 n VO
h
akl = In<"°>hK0d5(Ko,y),
dt =0 n—1 hK1 —_———
cone volume measure
where

Ke ={x € R": (x,y) < i (y)hi,(y), Vy € R"},
(BLYZ, 2012). This suggests that the measure p,, with density:
voe0~ (V) det(D?vy)  (in the regular case)

could be considered as a functional counterpart of the cone volume
measure. Note that

My = VOMZ’O(
where ,uf,é( is the moment measure, considered by Cordero-Erasquin
and Klartag.
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Let u be a geometric convex function with u € C?(R"), and
D?u > 0in R™. For ¢ > 0, define

ue = (u*e?)*,  where ¢ = C2(R").
f(e) = / e “edx.
The inequality

forrez (L) (L) o

implies that f is log-concave; in particular

Consider the function

£(0)f"(0) — f2(0) < 0.
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Infinitesimal version - 1l

The condition
f(0)f"(0) — f2(0) < 0.

becomes the following functional inequality:

[ vdut /R <¢2du < [ (00, Vo)

Vu,x)—u
2
+( [ wan)

where
du = e Ydx.

Compare with the infinitesimal form of the Prékopa-Leindler
inequality (Brascamp-Lieb, 1976):

2
P < / <(Dzu)—1w,w>du+< / wdu> .
Rn Rn Rn
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The infinitesimal form at the Gaussian

When ,
u=e X /27

the infinitesimal form becomes:

2 2
¢2d%+2/ %d% S/ V[P dyn + </ cbdvn) :
Rn Rre |X| Rn Rn

» Checked for n = 1.
» Checked for n large enough, with the crucial help of Yaozhong
Qiu.

See also: S. Bobkov, M. Ledoux, From Brunn-Minkowski to
Brascamp-Lieb and to logarithmic Sobolev inequalities, 2000.



