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The Brunn-Minkowski inequality

Minkowski addition. Given A and B in Rn, we set:

A + B = {a + b : a ∈ A, b ∈ B}, rA = {ra : a ∈ A},

for r ≥ 0.

Thm. Let K0 and K1 be compact and convex subsets of Rn

(convex bodies). Then, for every t ∈ [0, 1],

|(1− t)K0 + tK1|1/n ≥ (1− t)|K0|1/n + t|K1|1/n. (BM)

Here | · | denotes the Lebesgue measure.
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The support function

Let K ⊂ Rn be a convex body. The support function of K ,
hK : Rn → R, is defined as

hK (y) = sup
x∈K
〈x , y〉.

If y ∈ Sn−1 is a unit vector, then

hK (y)

is the (signed) distance from the origin, of the supporting
hyperplane to K , with unit outer normal y .

Remark. hk is a 1-homogeneous convex function. Viceversa, every
1-homogeneous convex function h : Rn → R is the support
function of a (unique) convex body.
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Support functions and Minkowski addition

The map
K −→ hK

is linear with respect to Minkowski addition.

If K and L are convex bodies in Rn, then

hK+L = hK + hL and hαK = αhK

for every α ≥ 0.
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The p-addition, p ≥ 1 (Firey, 1962)

Let p ≥ 1. Let K and L be convex bodies containing the origin;
this implies in particular hK ≥ 0, hL ≥ 0.

For α, β ≥ 0, consider the function

(αhpK + βhpL)1/p;

this is a (non-negative) 1-homogeneous convex function; that is, a
support function.

Define
α · K +p β · L,

through:
hα·K+pβ·L = (αhpK + βhpL)1/p.



The p-addition, p ≥ 1 (Firey, 1962)

Let p ≥ 1.

Let K and L be convex bodies containing the origin;
this implies in particular hK ≥ 0, hL ≥ 0.

For α, β ≥ 0, consider the function

(αhpK + βhpL)1/p;

this is a (non-negative) 1-homogeneous convex function; that is, a
support function.

Define
α · K +p β · L,

through:
hα·K+pβ·L = (αhpK + βhpL)1/p.



The p-addition, p ≥ 1 (Firey, 1962)

Let p ≥ 1. Let K and L be convex bodies containing the origin;

this implies in particular hK ≥ 0, hL ≥ 0.

For α, β ≥ 0, consider the function

(αhpK + βhpL)1/p;

this is a (non-negative) 1-homogeneous convex function; that is, a
support function.

Define
α · K +p β · L,

through:
hα·K+pβ·L = (αhpK + βhpL)1/p.



The p-addition, p ≥ 1 (Firey, 1962)

Let p ≥ 1. Let K and L be convex bodies containing the origin;
this implies in particular hK ≥ 0, hL ≥ 0.

For α, β ≥ 0, consider the function

(αhpK + βhpL)1/p;

this is a (non-negative) 1-homogeneous convex function; that is, a
support function.

Define
α · K +p β · L,

through:
hα·K+pβ·L = (αhpK + βhpL)1/p.



The p-addition, p ≥ 1 (Firey, 1962)

Let p ≥ 1. Let K and L be convex bodies containing the origin;
this implies in particular hK ≥ 0, hL ≥ 0.

For α, β ≥ 0, consider the function

(αhpK + βhpL)1/p;

this is a (non-negative) 1-homogeneous convex function; that is, a
support function.

Define
α · K +p β · L,

through:
hα·K+pβ·L = (αhpK + βhpL)1/p.



The p-addition, p ≥ 1 (Firey, 1962)

Let p ≥ 1. Let K and L be convex bodies containing the origin;
this implies in particular hK ≥ 0, hL ≥ 0.

For α, β ≥ 0, consider the function

(αhpK + βhpL)1/p;

this is a (non-negative) 1-homogeneous convex function; that is, a
support function.

Define
α · K +p β · L,

through:
hα·K+pβ·L = (αhpK + βhpL)1/p.



The p-addition, p ≥ 1 (Firey, 1962)

Let p ≥ 1. Let K and L be convex bodies containing the origin;
this implies in particular hK ≥ 0, hL ≥ 0.

For α, β ≥ 0, consider the function

(αhpK + βhpL)1/p;

this is a (non-negative) 1-homogeneous convex function; that is, a
support function.

Define
α · K +p β · L,

through:
hα·K+pβ·L = (αhpK + βhpL)1/p.



(BM) for the p-addition, p ≥ 1

Theorem (Firey, 1962) Let p ≥ 1. For every K0,K1, containing
the origin, and for every t ∈ [0, 1]:

|(1− t) · K0 +p t · K1|p/n ≥ (1− t)|K0|p/n + t|K1|p/n.

Proof.

I Ingredient 1: the inclusion

(1− t) · K0 +p t · K1 ⊃ (1− t)K0 + tK1.

I Ingredient 2: the standard Brunn-Minkowski inequality
(p = 1).

I Ingredient 3: a standard argument based on homogeneity of
the Lebesgue measure.
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The passage to p ≤ 1

I The main problem when passing to p ≤ 1 (and p ≥ 0), is
that, given two convex bodies K and L,

(hpK + hpL)1/p

is not convex, in general (and then it is not a support
function).
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The Wulff shape

Let f : Rn → R be: continuous, 1-homogeneous and
non-negative.

Define
K [f ] = {x ∈ Rn : 〈x , y〉 ≤ f (y), ∀ y ∈ Rn}.

I K [f ] is bounded.

I K [f ] is closed and convex (as intersection of closed
half-spaces). Hence it is a convex body.

I
hK [f ] ≤ f , (“=” if f is convex).

hK [f ] is the largest 1-homogeneous convex function smaller
than f .
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The p convex linear combination of two convex bodies, for
p ≥ 0 (Böröczky, Lutwak, Yang, Zhang, 2012)

I Let p ≥ 0.

I Let K0,K1 be convex bodies containing the origin. For
t ∈ [0, 1], let

ht,p = [(1− t)hpk0 + thpK1
]1/p, if p > 0,

ht,0 = h1−tK0
htK1

.

I Consider the set

Kt,p = {x ∈ Rn : 〈x , y〉 ≤ ht,p(y), ∀ y ∈ Rn} = K [ht,p]

:= (1− t) · K0 +p t · K1.

Kt,0
log

⊂ Kt,p
0 < p < 1

⊂ Kt,1
Minkowski

⊂ Kt,p
p > 1

.
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The log-Brunn-Minkowski conjecture

Conjecture (Böröczky, Lutwak, Yang and Zhang, 2012). Let
K0,K1 ∈ Kn

0 , be centrally symmetric convex bodies, and let
t ∈ [0, 1]. Set

Kt = {x ∈ Rn : 〈x , y〉 ≤ h1−tK0
(y)htK1

(y), ∀ y ∈ Rn}.

Then
|Kt | ≥ |K0|1−t |K1|t . (log-BM)

Remarks

I (log-BM) implies (BM).

I Symmetry is a necessary assumption.

I A similar inequality (we will call it (p-BM)) can be
conjectured for 0 < p < 1.
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Conjecture (Böröczky, Lutwak, Yang and Zhang, 2012). Let
K0,K1 ∈ Kn

0 , be centrally symmetric convex bodies, and let
t ∈ [0, 1]. Set

Kt = {x ∈ Rn : 〈x , y〉 ≤ h1−tK0
(y)htK1

(y), ∀ y ∈ Rn}.

Then
|Kt | ≥ |K0|1−t |K1|t . (log-BM)

Remarks

I (log-BM) implies (BM).

I Symmetry is a necessary assumption.

I A similar inequality (we will call it (p-BM)) can be
conjectured for 0 < p < 1.



The log-Brunn-Minkowski conjecture
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Conjecture (Böröczky, Lutwak, Yang and Zhang, 2012). Let
K0,K1 ∈ Kn

0 , be centrally symmetric convex bodies, and let
t ∈ [0, 1]. Set

Kt = {x ∈ Rn : 〈x , y〉 ≤ h1−tK0
(y)htK1

(y), ∀ y ∈ Rn}.

Then
|Kt | ≥ |K0|1−t |K1|t . (log-BM)

Remarks

I (log-BM) implies (BM).

I Symmetry is a necessary assumption.

I A similar inequality (we will call it (p-BM)) can be
conjectured for 0 < p < 1.



The log-Brunn-Minkowski conjecture
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Results on log-BM

I n = 2 - Böröczky, Lutwak, Yang, Zhang, 2012; (Ma,
alternative proof; Xi, Leng; extension without the symmetry
assumption).

I Complex case - Rotem, 2014 (also based on previous results
by Cordero-Erausquin, 2002).

I Unconditional convex bodies - Saroglou, 2015 (also based on
previous results by Cordero-Erausquin, Fradelizi, Maurey,
2004).

I C 2 neighborhood of a ball - Livshyts, Marsiglietti, C. 2017;
Livshyts, C., 2017; Kolesnikov, Milman, 2017.

I p ∈ [1− c
n3/2

, 1] - Kolesnikov, Milman 2017; Chen, Huang, Li,
Liu, 2018; Putterman, 2019.

I Convex bodies with symmetries - Böröczky, Kalantzopoulos,
2020.

I p ∈ [1− c
−0.75 , 1] under an inclusion assumption - Hosle,

Kolesnikov, Livshyts, 2020 (with a unifying approach including
other inequalities, like Gardner-Zvavitch).
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See also:

I Kolesnikov-Livshyts, 2020: On the local version of the
log-Brunn-Minkowski conjecture and some related geometric
inequalities;

I E. Milman, 2021: A sharp centro-affine isospectral inequality
of Szegö-Weinberger type and the Lp-Minkowski problem.



The main question

I Is there a functional version of the log-Brunn-Minkowski
inequality?

Conversations about this topic with: Alexander Kolesnikov,
Galyna Livshyts, Ilaria Lucardesi, Christos Saroglou, Francisco
Maŕın-Sola, Liran Rotem, Michael Roysdon, Jacopo Ulivelli, Sudan
Xing.

See also an unpublished note of Dario Cordero-Erausquin & Galyna
Livshyts.
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The Prékopa-Leindler inequality

Theorem. Let f , g , h : Rn → R+, be measurable functions.
Assume that, for some t ∈ [0, 1],

f ((1− t)x + ty) ≥ g1−t(x)ht(x), ∀ x , y ∈ Rn.

Then ∫
Rn

f dz ≥
(∫

Rn

g dx

)1−t (∫
Rn

h dy

)t

. (PL)

Remarks.

I (PL) implies (BM). In fact, it is commonly considered to be
the functional counterpart of (BM).

I (PL) “reverses” Hölder inequality.

I It is connected to many other important inequalities, like
Brascamp-Lieb, Barthe, Young convolution inequality, . . .
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I (PL) “reverses” Hölder inequality.

I It is connected to many other important inequalities,

like
Brascamp-Lieb, Barthe, Young convolution inequality, . . .
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A formulation adapted to log-concave functions

Let u0, u1 : Rn → R be convex functions. For t ∈ [0, 1], set:

ut(z) = inf{(1− t)u0(x) + tu1(y) : (1− t)x + ty = z}.

Then
f = e−ut , g = e−u0 , h = e−u1

verify the assumption of (PL); therefore∫
Rn

e−ut dz ≥
(∫

Rn

e−u0 dx

)1−t (∫
Rn

e−u1 dy

)t
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Inf-convolution (Rockafellar, 1970)

Given u,w : Rn → R, convex, let α, β ≥ 0. Set

(α · u�β · w)(z) = inf{αu(x) + βw(y) : αx + βy = z}.

Let u : Rn → R be convex. Define the conjugate function u∗ of u
as

u∗(y) = sup
x∈Rn
〈x , y〉 − u(x).

Lemma Let u,w : Rn → R be convex; let α, β ≥ 0. Then

α · u�β · w = (αu∗ + βw∗)∗.
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The Prékopa-Leindler inequality can be reformulated as follows.

Theorem. For every u0, u1 : Rn → R, convex, and for every
t ∈ [0, 1], ∫

Rn

e−utdz ≥
(∫

Rn

e−u0
)1−t (∫

Rn

e−u1
)t

where
ut = (1− t) · u0� t · u1,

or, equivalently,
ut = ((1− t)u∗0 + tu∗1)∗.
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A different convex combination of functions

I From now on we will be considering geometric convex
functions u (according to Artstein-Avidan, Klartag and
Milman), which means

0 = u(0) ≤ u(x) ∀ x ∈ Rn.

Note that if u is geometric if and only if u∗ is geometric.

I Given u0 and u1 as above and t ∈ [0, 1], let

ut = ((u∗0)1−t (u∗1)t)∗.

I The function (u∗0)1−t (u∗1)t needs not be convex. On the other
hand, its conjugate ut is a geometric convex function.
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Question

I Given two geometric convex function u0 and u1, and
t ∈ [0, 1], is the inequality∫

Rn

e−utdz ≥
(∫

Rn

e−u0
)1−t (∫

Rn

e−u1
)t

(*)

true, with
ut = ((u∗0)1−t (u∗1)t)∗?

No.

Remark. (*) is stronger than Prékopa-Leindler inequality.
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Examples (indicator functions)

Given a convex body K , let

IK (x) =

{
0 if x ∈ K ,
+∞ if x 6∈ K .

If K0 and K1 contain the origin, and u0 = IK0 , u1 = IK1 , then

ut = ((u∗0)1−t (u∗1)t)∗ = IKt ,

where
Kt = {x ∈ Rn : 〈x , y〉 ≤ h1−tK0

(y)htK1
(y) ∀ y}.

Hence∫
Rn

e−utdz ≥
(∫

Rn

e−u0
)1−t (∫

Rn

e−u1
)t

⇔ |Kt | ≥ |K0|1−t |K1|t︸ ︷︷ ︸
(log-BM)

.
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Counterexamples (support functions)

Let K be a convex body containing the origin.∫
Rn

e−hK dx = c(n)|K ◦|, K ◦ = {x : 〈x , y〉 ≤ 1∀y ∈ K}

= polar body of K .

If K0 and K1 contain the origin, and u0 = hK0 , u1 = hK1 , then, for
t ∈ (0, 1),

ut = ((u∗0)1−t (u∗1)t)∗ = hconv(K0∪K1).

∫
Rn

e−utdz =

∫
Rn

e−hconv(K0∪K1) = c(n)|(conv(K0 ∪ K1))◦|

= c(n)|K ◦0 ∩ K ◦1 |(∫
Rn

e−u0
)1−t (∫

Rn

e−u1
)t

= c(n)|K ◦0 |1−t |K ◦1 |t .

|K ◦0 ∩ K ◦1 | ≥ |K ◦0 |1−t |K ◦1 |t is in general false.
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Back to the inequality
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(*)

with
ut = ((u∗0)1−t (u∗1)t)∗.

I We compute the first derivative with respect to t of the l.h.s.
of (*) at t = 0.

I We compute the infinitesimal form of (*).
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The first variation (under strong regularity assumptions
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dt
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t=0

=

∫
Rn

ln

(
v1
v0

)
v0e

v0−〈∇v0,y〉 det(D2v0)dy ,

where v0 = u∗0 , v1 = u∗1 (v0(0) = v1(0) = 0, v0, v1 ≥ 0).

I If v1 tends to 0 sufficiently fast at 0, this derivative is −∞.
This provides further counterexamples to∫

Rn

e−utdz ≥
(∫

Rn

e−u0
)1−t (∫

Rn

e−u1
)t

,

because the r.h.s. and l.h.s. coincide for t = 0, and the
derivative of the r.h.s. is finite at t = 0.
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Comparison with another first variation
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t=0

=

∫
Sn−1

ln

(
hK0

hK1

)
hK0dS(K0, y)︸ ︷︷ ︸
cone volume measure

,

where

Kt = {x ∈ Rn : 〈x , y〉 ≤ h1−tK0
(y)htK1

(y), ∀ y ∈ Rn},

(BLYZ, 2012). This suggests that the measure µu0 with density:

v0e
v0−〈∇v0,y〉 det(D2v0) (in the regular case)

could be considered as a functional counterpart of the cone volume
measure. Note that

µu0 = v0µ
ck
u0

where µcku0 is the moment measure, considered by Cordero-Erasquin
and Klartag.
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Infinitesimal version - I

Let u be a geometric convex function with u ∈ C 2(Rn), and
D2u > 0 in Rn. For ε > 0, define

uε = (u∗eεφ)∗, where φ = C∞c (Rn).

Consider the function

f (ε) =

∫
Rn

e−uεdx .

The inequality∫
Rn

e−utdz ≥
(∫

Rn

e−u0
)1−t (∫

Rn

e−u1
)t

(*)

implies that f is log-concave; in particular

f (0)f ′′(0)− f ′2(0) ≤ 0.
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Infinitesimal version - II

The condition
f (0)f ′′(0)− f ′2(0) ≤ 0.

becomes the following functional inequality:∫
Rn

ψ2dµ+

∫
Rn

ψ2

〈∇u, x〉 − u
dµ ≤

∫
Rn

〈(D2u)−1∇ψ,∇ψ〉dµ

+

(∫
Rn

ψdµ

)2

,

where
dµ = e−udx .

Compare with the infinitesimal form of the Prékopa-Leindler
inequality (Brascamp-Lieb, 1976):∫

Rn

ψ2dµ ≤
∫
Rn

〈(D2u)−1∇ψ,∇ψ〉dµ+

(∫
Rn

ψdµ

)2

.



Infinitesimal version - II
The condition

f (0)f ′′(0)− f ′2(0) ≤ 0.

becomes the following functional inequality:

∫
Rn

ψ2dµ+

∫
Rn

ψ2

〈∇u, x〉 − u
dµ ≤

∫
Rn

〈(D2u)−1∇ψ,∇ψ〉dµ

+

(∫
Rn

ψdµ

)2

,

where
dµ = e−udx .

Compare with the infinitesimal form of the Prékopa-Leindler
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inequality (Brascamp-Lieb, 1976):∫

Rn

ψ2dµ ≤
∫
Rn

〈(D2u)−1∇ψ,∇ψ〉dµ+
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Rn

ψdµ
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Infinitesimal version - II
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The infinitesimal form at the Gaussian

When
u = e−|x |

2/2,

the infinitesimal form becomes:∫
Rn

φ2dγn + 2

∫
Rn

φ2

|x |2
dγn ≤

∫
Rn

|∇ψ|2dγn +

(∫
Rn

φdγn

)2

.

I Checked for n = 1.

I Checked for n large enough, with the crucial help of Yaozhong
Qiu.

See also: S. Bobkov, M. Ledoux, From Brunn-Minkowski to
Brascamp-Lieb and to logarithmic Sobolev inequalities, 2000.
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