On Fenchel and Bézout type inequalities for the Lebesgue and the Gaussian measures.

Matthieu Fradelizi

Laboratoire d'Analyse et de Mathématiques Appliquées
Université Gustave Eiffel
Recent work in collaboration with
Dylan Langharst, Mokshay Madiman, Mathieu Meyer and Artem Zvavitch:
F.-Madiman-Zvavitch: Sumset estimates in convex geometry. arXiv:2206.01565.

FMMZ: On the volume of the Minkowski sum of zonoids. arXiv:2206.02123.
Dylan Langharst, Mokshay Madiman and Artem Zvavitch:
Weighted Brunn-Minkowski Theory I: On Weighted Surface Area Measures Weighted Brunn-Minkowski Theory II: On Inequalities for Mixed Measures

61 Probability Encounters, In honour of Sergey Bobkov Université de Toulouse, 2023-06-1

Contents

History
Prehistory: Brunn-Minkowski, Minkowski and Fenchel Betke-Weil's conjecture for mixed volumes

Contents

History
Prehistory: Brunn-Minkowski, Minkowski and Fenchel Betke-Weil's conjecture for mixed volumes

Bézout type inequalities
Bézout type inequality for mixed volumes Bézout type inequality for Minkowski sums Bézout inequality for sums with constant one Courtade's conjecture

Contents

History
Prehistory: Brunn-Minkowski, Minkowski and Fenchel
Betke-Weil's conjecture for mixed volumes
Bézout type inequalities
Bézout type inequality for mixed volumes
Bézout type inequality for Minkowski sums
Bézout inequality for sums with constant one
Courtade's conjecture
Generalization to measures
Minkowski and Fenchel's inequalities
Bézout for rotation invariant measures

Plan

History
Prehistory: Brunn-Minkowski, Minkowski and Fenchel Betke-Weil's conjecture for mixed volumes

Bézout type inequalities
 Bézout type inequality for mixed volumes
 Bézout type inequality for Minkowski sums
 Bézout inequality for sums with constant one
 Courtade's conjecture

Generalization to measures
Minkowski and Fenchel's inequalities
Bézout for rotation invariant measures

Prehistory: Brunn-Minkowski, Minkowski and Fenchel

Prehistory: Brunn-Minkowski, Minkowski and Fenchel

Brunn-Minkowski's inequality (19th century). Let A and B be two compact convex sets in \mathbb{R}^{n}. Then

$$
\operatorname{vol}_{n}(A+B)^{\frac{1}{n}} \geq \operatorname{vol}_{n}(A)^{\frac{1}{n}}+\operatorname{vol}_{n}(B)^{\frac{1}{n}}
$$

Prehistory: Brunn-Minkowski, Minkowski and Fenchel

Brunn-Minkowski's inequality (19th century). Let A and B be two compact convex sets in \mathbb{R}^{n}. Then

$$
\operatorname{vol}_{n}(A+B)^{\frac{1}{n}} \geq \operatorname{vol}_{n}(A)^{\frac{1}{n}}+\operatorname{vol}_{n}(B)^{\frac{1}{n}}
$$

Prehistory: Brunn-Minkowski, Minkowski and Fenchel

Brunn-Minkowski's inequality (19th century). Let A and B be two compact convex sets in \mathbb{R}^{n}. Then

$$
\operatorname{vol}_{n}(A+B)^{\frac{1}{n}} \geq \operatorname{vol}_{n}(A)^{\frac{1}{n}}+\operatorname{vol}_{n}(B)^{\frac{1}{n}}
$$

Minkowski's first and second inequalities (1903). Let A, B be compact convex sets. Let $\left.f(\lambda)=\operatorname{vol}_{n}((1-\lambda) A+\lambda B)\right)^{\frac{1}{n}}-(1-\lambda) \operatorname{vol}_{n}(A)^{\frac{1}{n}}-\lambda \operatorname{vol}_{n}(B)^{\frac{1}{n}}$.

Prehistory: Brunn-Minkowski, Minkowski and Fenchel

Brunn-Minkowski's inequality (19th century). Let A and B be two compact convex sets in \mathbb{R}^{n}. Then

$$
\operatorname{vol}_{n}(A+B)^{\frac{1}{n}} \geq \operatorname{vol}_{n}(A)^{\frac{1}{n}}+\operatorname{vol}_{n}(B)^{\frac{1}{n}}
$$

Minkowski's first and second inequalities (1903). Let A, B be compact convex sets. Let $\left.f(\lambda)=\operatorname{vol}_{n}((1-\lambda) A+\lambda B)\right)^{\frac{1}{n}}-(1-\lambda) \operatorname{vol}_{n}(A)^{\frac{1}{n}}-\lambda \operatorname{vol}_{n}(B)^{\frac{1}{n}}$. Then $f^{\prime}(0) \geq 0$ and
$f^{\prime \prime}(0) \leq 0$: $f^{\prime \prime}(0) \leq 0$:

$$
V(A[n-1], B) \geq \operatorname{vol}(A)^{\frac{n-1}{n}} \operatorname{vol}(B)^{\frac{1}{n}} \quad \text { and } \quad \operatorname{vol}(A) V(A[n-2], B[2]) \leq V(A[n-1], B)^{2} .
$$

Prehistory: Brunn-Minkowski, Minkowski and Fenchel

Brunn-Minkowski's inequality (19th century). Let A and B be two compact convex sets in \mathbb{R}^{n}. Then

$$
\operatorname{vol}_{n}(A+B)^{\frac{1}{n}} \geq \operatorname{vol}_{n}(A)^{\frac{1}{n}}+\operatorname{vol}_{n}(B)^{\frac{1}{n}}
$$

Minkowski's first and second inequalities (1903). Let A, B be compact convex sets. Let

$$
\begin{aligned}
& \left.f(\lambda)=\operatorname{vol}_{n}((1-\lambda) A+\lambda B)\right)^{\frac{1}{n}}-(1-\lambda) \operatorname{vol}_{n}(A)^{\frac{1}{n}}-\lambda \operatorname{vol}_{n}(B)^{\frac{1}{n}} . \text { Then } f^{\prime}(0) \geq 0 \text { and } \\
& f^{\prime \prime}(0) \leq 0 \text { : }
\end{aligned}
$$

$$
V(A[n-1], B) \geq \operatorname{vol}(A)^{\frac{n-1}{n}} \operatorname{vol}(B)^{\frac{1}{n}} \quad \text { and } \quad \operatorname{vol}(A) V(A[n-2], B[2]) \leq V(A[n-1], B)^{2} .
$$

Minkowski's quadratic inequality. Let A, B, C be compact convex sets. Then

$$
V(A[n-2], B[2]) V(A[n-2] C[2]) \leq V(A[n-2], B, C)^{2} .
$$

Prehistory: Brunn-Minkowski, Minkowski and Fenchel

Brunn-Minkowski's inequality (19th century). Let A and B be two compact convex sets in \mathbb{R}^{n}. Then

$$
\operatorname{vol}_{n}(A+B)^{\frac{1}{n}} \geq \operatorname{vol}_{n}(A)^{\frac{1}{n}}+\operatorname{vol}_{n}(B)^{\frac{1}{n}}
$$

Minkowski's first and second inequalities (1903). Let A, B be compact convex sets. Let $\left.f(\lambda)=\operatorname{vol}_{n}((1-\lambda) A+\lambda B)\right)^{\frac{1}{n}}-(1-\lambda) \operatorname{vol}_{n}(A)^{\frac{1}{n}}-\lambda \operatorname{vol}_{n}(B)^{\frac{1}{n}}$. Then $f^{\prime}(0) \geq 0$ and
$f^{\prime \prime}(0) \leq 0:$ $f^{\prime \prime}(0) \leq 0$:

$$
V(A[n-1], B) \geq \operatorname{vol}(A)^{\frac{n-1}{n}} \operatorname{vol}(B)^{\frac{1}{n}} \quad \text { and } \quad \operatorname{vol}(A) V(A[n-2], B[2]) \leq V(A[n-1], B)^{2} .
$$

Minkowski's quadratic inequality. Let A, B, C be compact convex sets. Then

$$
V(A[n-2], B[2]) V(A[n-2] C[2]) \leq V(A[n-2], B, C)^{2} .
$$

Fenchel's inequality (1936). Since $f(s, t)=\operatorname{vol}(A+s B+t C)^{\frac{1}{n}}$ is concave, one has $\frac{\partial^{2} f}{\partial s \partial t}(0,0)^{2} \leq \frac{\partial^{2} f}{\partial s^{2}}(0,0) \frac{\partial^{2} f}{\partial t^{2}}(0,0)$. If one denotes $V(B, C)=V(A[n-2], B, C)$, this gives
$(V(A, A) V(B, C)-V(A, B) V(A, C))^{2} \leq\left(V(A, B)^{2}-V(A, A) V(B, B)\right)\left(V(A, C)^{2}-V(A, A) V(C, C)\right)$

Prehistory: Brunn-Minkowski, Minkowski and Fenchel

Brunn-Minkowski's inequality (19th century). Let A and B be two compact convex sets in \mathbb{R}^{n}. Then

$$
\operatorname{vol}_{n}(A+B)^{\frac{1}{n}} \geq \operatorname{vol}_{n}(A)^{\frac{1}{n}}+\operatorname{vol}_{n}(B)^{\frac{1}{n}}
$$

Minkowski's first and second inequalities (1903). Let A, B be compact convex sets. Let

$$
\begin{aligned}
& \left.f(\lambda)=\operatorname{vol}_{n}((1-\lambda) A+\lambda B)\right)^{\frac{1}{n}}-(1-\lambda) \operatorname{vol}_{n}(A)^{\frac{1}{n}}-\lambda \operatorname{vol}_{n}(B)^{\frac{1}{n}} . \text { Then } f^{\prime}(0) \geq 0 \text { and } \\
& f^{\prime \prime}(0) \leq 0 \text { : }
\end{aligned}
$$

$$
V(A[n-1], B) \geq \operatorname{vol}(A)^{\frac{n-1}{n}} \operatorname{vol}(B)^{\frac{1}{n}} \quad \text { and } \quad \operatorname{vol}(A) V(A[n-2], B[2]) \leq V(A[n-1], B)^{2} .
$$

Minkowski's quadratic inequality. Let A, B, C be compact convex sets. Then

$$
V(A[n-2], B[2]) V(A[n-2] C[2]) \leq V(A[n-2], B, C)^{2} .
$$

Fenchel's inequality (1936). Since $f(s, t)=\operatorname{vol}(A+s B+t C)^{\frac{1}{n}}$ is concave, one has $\frac{\partial^{2} f}{\partial s \partial t}(0,0)^{2} \leq \frac{\partial^{2} f}{\partial s^{2}}(0,0) \frac{\partial^{2} f}{\partial t^{2}}(0,0)$. If one denotes $V(B, C)=V(A[n-2], B, C)$, this gives

$$
(V(A, A) V(B, C)-V(A, B) V(A, C))^{2} \leq\left(V(A, B)^{2}-V(A, A) V(B, B)\right)\left(V(A, C)^{2}-V(A, A) V(C, C)\right)
$$

From the arithmetic-geometric inequality, we deduce

$$
\operatorname{vol}(A) V(A[n-2], B, C) \leq 2 V(A[n-1], B) V(A[n-1], C)
$$

Plan

History
Prehistory: Brunn-Minkowski, Minkowski and Fenchel
Betke-Weil's conjecture for mixed volumes

Bézout type inequalities
 Bézout type inequality for mixed volumes
 Bézout type inequality for Minkowski sums
 Bézout inequality for sums with constant one
 Courtade's conjecture

Generalization to measures
Minkowski and Fenchel's inequalities
Bézout for rotation invariant measures

Betke-Weil's conjecture for mixed volumes

Betke-Weil's conjecture for mixed volumes

Betke-Weil (1991): Let K_{1}, \ldots, K_{m} be convex compact sets in \mathbb{R}^{n}. Then do we have:

$$
\binom{n}{\alpha_{1}, \ldots, \alpha_{m}} V\left(K_{1}\left[\alpha_{1}\right], \ldots, K_{m}\left[\alpha_{m}\right]\right) \leq \prod_{i=1}^{m} \frac{\binom{n}{\alpha_{i}}}{v_{n-\alpha_{i}}} V\left(K_{i}\left[\alpha_{i}\right], B_{2}^{n}\left[n-\alpha_{i}\right]\right), \quad(B W)
$$

with equality iff $\operatorname{dim}\left(K_{i}\right)=\alpha_{i}$ and the affine hulls of K_{i} are pairwise orthogonal?

Betke-Weil's conjecture for mixed volumes

Betke-Weil (1991): Let K_{1}, \ldots, K_{m} be convex compact sets in \mathbb{R}^{n}. Then do we have:

$$
\binom{n}{\alpha_{1}, \ldots, \alpha_{m}} V\left(K_{1}\left[\alpha_{1}\right], \ldots, K_{m}\left[\alpha_{m}\right]\right) \leq \prod_{i=1}^{m} \frac{\binom{n}{\alpha_{i}}}{v_{n-\alpha_{i}}} V\left(K_{i}\left[\alpha_{i}\right], B_{2}^{n}\left[n-\alpha_{i}\right]\right), \quad(B W)
$$

with equality iff $\operatorname{dim}\left(K_{i}\right)=\alpha_{i}$ and the affine hulls of K_{i} are pairwise orthogonal? It's true if $n=2: V(B, C) \leq \frac{1}{2} V\left(B, B_{2}^{2}\right) V\left(C, B_{2}^{2}\right)=\frac{1}{8}|\partial B \| \partial C|$.

Betke-Weil's conjecture for mixed volumes

Betke-Weil (1991): Let K_{1}, \ldots, K_{m} be convex compact sets in \mathbb{R}^{n}. Then do we have:

$$
\begin{equation*}
\binom{n}{\alpha_{1}, \ldots, \alpha_{m}} V\left(K_{1}\left[\alpha_{1}\right], \ldots, K_{m}\left[\alpha_{m}\right]\right) \leq \prod_{i=1}^{m} \frac{\binom{n}{\alpha_{i}}}{v_{n-\alpha_{i}}} V\left(K_{i}\left[\alpha_{i}\right], B_{2}^{n}\left[n-\alpha_{i}\right]\right) \tag{BW}
\end{equation*}
$$

with equality iff $\operatorname{dim}\left(K_{i}\right)=\alpha_{i}$ and the affine hulls of K_{i} are pairwise orthogonal?
It's true if $n=2: V(B, C) \leq \frac{1}{2} V\left(B, B_{2}^{2}\right) V\left(C, B_{2}^{2}\right)=\frac{1}{8}|\partial B \| \partial C|$.
Hug-Schneider (2011) conjectured for any convex bodies and proved for zonoids:

$$
\begin{equation*}
V\left(K_{1}, \ldots, K_{m}, B_{2}^{n}[n-m]\right) \leq \frac{(n-m)!}{n!} v_{n-m}\left(\frac{n}{v_{n-1}}\right)^{m} \prod_{i=1}^{m} V\left(K_{i}, B_{2}^{n}[n-1]\right), \tag{HS}
\end{equation*}
$$

with equality iff the affine hulls of K_{i} are pairwise orthogonal.

Betke-Weil's conjecture for mixed volumes

Betke-Weil (1991): Let K_{1}, \ldots, K_{m} be convex compact sets in \mathbb{R}^{n}. Then do we have:

$$
\begin{equation*}
\binom{n}{\alpha_{1}, \ldots, \alpha_{m}} V\left(K_{1}\left[\alpha_{1}\right], \ldots, K_{m}\left[\alpha_{m}\right]\right) \leq \prod_{i=1}^{m} \frac{\binom{n}{\alpha_{i}}}{v_{n-\alpha_{i}}} V\left(K_{i}\left[\alpha_{i}\right], B_{2}^{n}\left[n-\alpha_{i}\right]\right) \tag{BW}
\end{equation*}
$$

with equality iff $\operatorname{dim}\left(K_{i}\right)=\alpha_{i}$ and the affine hulls of K_{i} are pairwise orthogonal?
It's true if $n=2$: $V(B, C) \leq \frac{1}{2} V\left(B, B_{2}^{2}\right) V\left(C, B_{2}^{2}\right)=\frac{1}{8}|\partial B||\partial C|$.
Hug-Schneider (2011) conjectured for any convex bodies and proved for zonoids:

$$
\begin{equation*}
V\left(K_{1}, \ldots, K_{m}, B_{2}^{n}[n-m]\right) \leq \frac{(n-m)!}{n!} v_{n-m}\left(\frac{n}{v_{n-1}}\right)^{m} \prod_{i=1}^{m} V\left(K_{i}, B_{2}^{n}[n-1]\right), \tag{HS}
\end{equation*}
$$

with equality iff the affine hulls of K_{i} are pairwise orthogonal.
Artstein-Florentin-Ostrover (2014) proved (HS) for $m=2$ and K_{2} zonoid.

Betke-Weil's conjecture for mixed volumes

Betke-Weil (1991): Let K_{1}, \ldots, K_{m} be convex compact sets in \mathbb{R}^{n}. Then do we have:

$$
\begin{equation*}
\binom{n}{\alpha_{1}, \ldots, \alpha_{m}} V\left(K_{1}\left[\alpha_{1}\right], \ldots, K_{m}\left[\alpha_{m}\right]\right) \leq \prod_{i=1}^{m} \frac{\binom{n}{\alpha_{i}}}{v_{n-\alpha_{i}}} V\left(K_{i}\left[\alpha_{i}\right], B_{2}^{n}\left[n-\alpha_{i}\right]\right) \tag{BW}
\end{equation*}
$$

with equality iff $\operatorname{dim}\left(K_{i}\right)=\alpha_{i}$ and the affine hulls of K_{i} are pairwise orthogonal?
It's true if $n=2: V(B, C) \leq \frac{1}{2} V\left(B, B_{2}^{2}\right) V\left(C, B_{2}^{2}\right)=\frac{1}{8}|\partial B||\partial C|$.
Hug-Schneider (2011) conjectured for any convex bodies and proved for zonoids:

$$
\begin{equation*}
V\left(K_{1}, \ldots, K_{m}, B_{2}^{n}[n-m]\right) \leq \frac{(n-m)!}{n!} v_{n-m}\left(\frac{n}{v_{n-1}}\right)^{m} \prod_{i=1}^{m} V\left(K_{i}, B_{2}^{n}[n-1]\right), \tag{HS}
\end{equation*}
$$

with equality iff the affine hulls of K_{i} are pairwise orthogonal.
Artstein-Florentin-Ostrover (2014) proved (HS) for $m=2$ and K_{2} zonoid. Böröczky-Hug $(2020,2021)$ proved (BW) for $\alpha_{1}=1$ and K_{3}, \ldots, K_{m} zonoids

Betke-Weil's conjecture for mixed volumes

Betke-Weil (1991): Let K_{1}, \ldots, K_{m} be convex compact sets in \mathbb{R}^{n}. Then do we have:

$$
\begin{equation*}
\binom{n}{\alpha_{1}, \ldots, \alpha_{m}} V\left(K_{1}\left[\alpha_{1}\right], \ldots, K_{m}\left[\alpha_{m}\right]\right) \leq \prod_{i=1}^{m} \frac{\binom{n}{\alpha_{i}}}{v_{n-\alpha_{i}}} V\left(K_{i}\left[\alpha_{i}\right], B_{2}^{n}\left[n-\alpha_{i}\right]\right) \tag{BW}
\end{equation*}
$$

with equality iff $\operatorname{dim}\left(K_{i}\right)=\alpha_{i}$ and the affine hulls of K_{i} are pairwise orthogonal?
It's true if $n=2: V(B, C) \leq \frac{1}{2} V\left(B, B_{2}^{2}\right) V\left(C, B_{2}^{2}\right)=\frac{1}{8}|\partial B||\partial C|$.
Hug-Schneider (2011) conjectured for any convex bodies and proved for zonoids:

$$
\begin{equation*}
V\left(K_{1}, \ldots, K_{m}, B_{2}^{n}[n-m]\right) \leq \frac{(n-m)!}{n!} v_{n-m}\left(\frac{n}{v_{n-1}}\right)^{m} \prod_{i=1}^{m} V\left(K_{i}, B_{2}^{n}[n-1]\right), \tag{HS}
\end{equation*}
$$

with equality iff the affine hulls of K_{i} are pairwise orthogonal.
Artstein-Florentin-Ostrover (2014) proved (HS) for $m=2$ and K_{2} zonoid. Böröczky-Hug $(2020,2021)$ proved (BW) for $\alpha_{1}=1$ and K_{3}, \ldots, K_{m} zonoids and conjectured for any convex bodies and proved for K_{2}, \ldots, K_{m} zonoids:
$\binom{n}{\alpha_{1}, \ldots, \alpha_{m+1}} V\left(K_{1}\left[\alpha_{1}\right], \ldots, K_{m}\left[\alpha_{m}\right], B_{2}^{n}\left[\alpha_{m+1}\right]\right) \leq v_{\alpha_{m+1}} \prod_{i=1}^{m} \frac{\binom{n}{\alpha_{i}}}{v_{n-\alpha_{i}}} V\left(K_{i}\left[\alpha_{i}\right], B_{2}^{n}\left[n-\alpha_{i}\right]\right)$,
with equality iff the affine hulls of K_{i} are pairwise orthogonal.

Plan

History
Prehistory: Brunn-Minkowski, Minkowski and Fenchel Betke-Weil's conjecture for mixed volumes

Bézout type inequalities
Bézout type inequality for mixed volumes
Bézout type inequality for Minkowski sums
Bézout inequality for sums with constant one
Courtade's conjecture

Generalization to measures
Minkowski and Fenchel's inequalities
Bézout for rotation invariant measures

Bézout type inequality for mixed volumes

Bézout type inequality for mixed volumes

Let us recall the definitions from Maud's talk: for a class \mathcal{C} of convex bodies, $b_{m}^{\mathcal{C}}(A)$ is the smallest constant such that for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\operatorname{vol}(A)^{m-1} V\left(K_{1}, \ldots, K_{m}, A[n-m]\right) \leq b_{m}^{\mathcal{C}}(A) \prod_{i=1}^{m} V\left(K_{i}, A[n-1]\right)
$$

and $b_{m}^{\mathcal{C}}=\sup _{A \in \mathcal{C}} b_{m}^{\mathcal{C}}(A)$.

Bézout type inequality for mixed volumes

Let us recall the definitions from Maud's talk: for a class \mathcal{C} of convex bodies, $b_{m}^{\mathcal{C}}(A)$ is the smallest constant such that for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\operatorname{vol}(A)^{m-1} V\left(K_{1}, \ldots, K_{m}, A[n-m]\right) \leq b_{m}^{\mathcal{C}}(A) \prod_{i=1}^{m} V\left(K_{i}, A[n-1]\right),
$$

and $b_{m}^{\mathcal{C}}=\sup _{A \in \mathcal{C}} b_{m}^{\mathcal{C}}(A)$. Moreover, $b_{m}(A)=b_{m}^{\mathcal{K}}(A)$ and $b_{m}=b_{m}^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies.

Bézout type inequality for mixed volumes

Let us recall the definitions from Maud's talk: for a class \mathcal{C} of convex bodies, $b_{m}^{\mathcal{C}}(A)$ is the smallest constant such that for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\operatorname{vol}(A)^{m-1} V\left(K_{1}, \ldots, K_{m}, A[n-m]\right) \leq b_{m}^{\mathcal{C}}(A) \prod_{i=1}^{m} V\left(K_{i}, A[n-1]\right),
$$

and $b_{m}^{\mathcal{C}}=\sup _{A \in \mathcal{C}} b_{m}^{\mathcal{C}}(A)$. Moreover, $b_{m}(A)=b_{m}^{\mathcal{K}}(A)$ and $b_{m}=b_{m}^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. Let \mathcal{Z} be the class of zonoids. Hug-Schneider conjecture that $b_{m}^{\mathcal{Z}}\left(B_{2}^{n}\right)=b_{m}\left(B_{2}^{n}\right)$ and prove that

$$
b_{m}^{\mathcal{Z}}\left(B_{2}^{n}\right)=v_{n}^{m-1} \frac{(n-m)!}{n!} v_{n-m}\left(\frac{n}{v_{n-1}}\right)^{m}, \quad b_{2}^{\mathcal{Z}}\left(B_{2}^{n}\right)=\frac{n}{n-1} \frac{v_{n} v_{n-2}}{v_{n-1}^{2}} .
$$

Bézout type inequality for mixed volumes

Let us recall the definitions from Maud's talk: for a class \mathcal{C} of convex bodies, $b_{m}^{\mathcal{C}}(A)$ is the smallest constant such that for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\operatorname{vol}(A)^{m-1} V\left(K_{1}, \ldots, K_{m}, A[n-m]\right) \leq b_{m}^{\mathcal{C}}(A) \prod_{i=1}^{m} V\left(K_{i}, A[n-1]\right),
$$

and $b_{m}^{\mathcal{C}}=\sup _{A \in \mathcal{C}} b_{m}^{\mathcal{C}}(A)$. Moreover, $b_{m}(A)=b_{m}^{\mathcal{K}}(A)$ and $b_{m}=b_{m}^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. Let \mathcal{Z} be the class of zonoids. Hug-Schneider conjecture that $b_{m}^{\mathcal{Z}}\left(B_{2}^{n}\right)=b_{m}\left(B_{2}^{n}\right)$ and prove that

$$
b_{m}^{\mathcal{Z}}\left(B_{2}^{n}\right)=v_{n}^{m-1} \frac{(n-m)!}{n!} v_{n-m}\left(\frac{n}{v_{n-1}}\right)^{m}, \quad b_{2}^{\mathcal{Z}}\left(B_{2}^{n}\right)=\frac{n}{n-1} \frac{v_{n} v_{n-2}}{v_{n-1}^{2}} .
$$

Fenchel's result implies that $b_{2}=2$.

Bézout type inequality for mixed volumes

Let us recall the definitions from Maud's talk: for a class \mathcal{C} of convex bodies, $b_{m}^{\mathcal{C}}(A)$ is the smallest constant such that for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\operatorname{vol}(A)^{m-1} V\left(K_{1}, \ldots, K_{m}, A[n-m]\right) \leq b_{m}^{\mathcal{C}}(A) \prod_{i=1}^{m} V\left(K_{i}, A[n-1]\right),
$$

and $b_{m}^{\mathcal{C}}=\sup _{A \in \mathcal{C}} b_{m}^{\mathcal{C}}(A)$. Moreover, $b_{m}(A)=b_{m}^{\mathcal{K}}(A)$ and $b_{m}=b_{m}^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. Let \mathcal{Z} be the class of zonoids. Hug-Schneider conjecture that $b_{m}^{\mathcal{Z}}\left(B_{2}^{n}\right)=b_{m}\left(B_{2}^{n}\right)$ and prove that

$$
b_{m}^{\mathcal{Z}}\left(B_{2}^{n}\right)=v_{n}^{m-1} \frac{(n-m)!}{n!} v_{n-m}\left(\frac{n}{v_{n-1}}\right)^{m}, \quad b_{2}^{\mathcal{Z}}\left(B_{2}^{n}\right)=\frac{n}{n-1} \frac{v_{n} v_{n-2}}{v_{n-1}^{2}} .
$$

Fenchel's result implies that $b_{2}=2$. Soprunov-Zvavitch (2015): $b_{m}^{\mathcal{Z}}(A) \leq \frac{m^{m-1}}{(m-1)!}$.

Bézout type inequality for mixed volumes

Let us recall the definitions from Maud's talk: for a class \mathcal{C} of convex bodies, $b_{m}^{\mathcal{C}}(A)$ is the smallest constant such that for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\operatorname{vol}(A)^{m-1} V\left(K_{1}, \ldots, K_{m}, A[n-m]\right) \leq b_{m}^{\mathcal{C}}(A) \prod_{i=1}^{m} V\left(K_{i}, A[n-1]\right),
$$

and $b_{m}^{\mathcal{C}}=\sup _{A \in \mathcal{C}} b_{m}^{\mathcal{C}}(A)$. Moreover, $b_{m}(A)=b_{m}^{\mathcal{K}}(A)$ and $b_{m}=b_{m}^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. Let \mathcal{Z} be the class of zonoids. Hug-Schneider conjecture that $b_{m}^{\mathcal{Z}}\left(B_{2}^{n}\right)=b_{m}\left(B_{2}^{n}\right)$ and prove that

$$
b_{m}^{\mathcal{Z}}\left(B_{2}^{n}\right)=v_{n}^{m-1} \frac{(n-m)!}{n!} v_{n-m}\left(\frac{n}{v_{n-1}}\right)^{m}, \quad b_{2}^{\mathcal{Z}}\left(B_{2}^{n}\right)=\frac{n}{n-1} \frac{v_{n} v_{n-2}}{v_{n-1}^{2}} .
$$

Fenchel's result implies that $b_{2}=2$. Soprunov-Zvavitch (2015): $b_{m}^{\mathcal{Z}}(A) \leq \frac{m^{m-1}}{(m-1)!}$.
Brazitikos-Giannopoulos-Liakopoulos (2016): $b_{m} \leq 2^{2^{m-1}-1}$.

Bézout type inequality for mixed volumes

Let us recall the definitions from Maud's talk: for a class \mathcal{C} of convex bodies, $b_{m}^{\mathcal{C}}(A)$ is the smallest constant such that for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\operatorname{vol}(A)^{m-1} V\left(K_{1}, \ldots, K_{m}, A[n-m]\right) \leq b_{m}^{\mathcal{C}}(A) \prod_{i=1}^{m} V\left(K_{i}, A[n-1]\right),
$$

and $b_{m}^{\mathcal{C}}=\sup _{A \in \mathcal{C}} b_{m}^{\mathcal{C}}(A)$. Moreover, $b_{m}(A)=b_{m}^{\mathcal{K}}(A)$ and $b_{m}=b_{m}^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. Let \mathcal{Z} be the class of zonoids. Hug-Schneider conjecture that $b_{m}^{\mathcal{Z}}\left(B_{2}^{n}\right)=b_{m}\left(B_{2}^{n}\right)$ and prove that

$$
b_{m}^{\mathcal{Z}}\left(B_{2}^{n}\right)=v_{n}^{m-1} \frac{(n-m)!}{n!} v_{n-m}\left(\frac{n}{v_{n-1}}\right)^{m}, \quad b_{2}^{\mathcal{Z}}\left(B_{2}^{n}\right)=\frac{n}{n-1} \frac{v_{n} v_{n-2}}{v_{n-1}^{2}} .
$$

Fenchel's result implies that $b_{2}=2$. Soprunov-Zvavitch (2015): $b_{m}^{\mathcal{Z}}(A) \leq \frac{m^{m-1}}{(m-1)!}$.
Brazitikos-Giannopoulos-Liakopoulos (2016): $b_{m} \leq 2^{2^{m-1}-1}$.
Xiao (2019): $b_{m} \leq n^{m-1}$ and
$\operatorname{vol}(A) V(B[j], C[k], A[n-j-k]) \leq \min \left(\binom{n}{j},\binom{n}{k}\right) V(B[j], A[n-j]) V(C[k], A[n-k])$.

Bézout type inequality for mixed volumes

Let us recall the definitions from Maud's talk: for a class \mathcal{C} of convex bodies, $b_{m}^{\mathcal{C}}(A)$ is the smallest constant such that for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\operatorname{vol}(A)^{m-1} V\left(K_{1}, \ldots, K_{m}, A[n-m]\right) \leq b_{m}^{\mathcal{C}}(A) \prod_{i=1}^{m} V\left(K_{i}, A[n-1]\right),
$$

and $b_{m}^{\mathcal{C}}=\sup _{A \in \mathcal{C}} b_{m}^{\mathcal{C}}(A)$. Moreover, $b_{m}(A)=b_{m}^{\mathcal{K}}(A)$ and $b_{m}=b_{m}^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. Let \mathcal{Z} be the class of zonoids. Hug-Schneider conjecture that $b_{m}^{\mathcal{Z}}\left(B_{2}^{n}\right)=b_{m}\left(B_{2}^{n}\right)$ and prove that

$$
b_{m}^{\mathcal{Z}}\left(B_{2}^{n}\right)=v_{n}^{m-1} \frac{(n-m)!}{n!} v_{n-m}\left(\frac{n}{v_{n-1}}\right)^{m}, \quad b_{2}^{\mathcal{Z}}\left(B_{2}^{n}\right)=\frac{n}{n-1} \frac{v_{n} v_{n-2}}{v_{n-1}^{2}} .
$$

Fenchel's result implies that $b_{2}=2$. Soprunov-Zvavitch (2015): $b_{m}^{\mathcal{Z}}(A) \leq \frac{m^{m-1}}{(m-1)!}$.
Brazitikos-Giannopoulos-Liakopoulos (2016): $b_{m} \leq 2^{2^{m-1}-1}$.
Xiao (2019): $b_{m} \leq n^{m-1}$ and
$\operatorname{vol}(A) V(B[j], C[k], A[n-j-k]) \leq \min \left(\binom{n}{j},\binom{n}{k}\right) V(B[j], A[n-j]) V(C[k], A[n-k])$.
Ndiaye (2023+): $b_{m} \leq \min _{1 \leq k \leq m} 2^{\frac{k(k-1)}{2}} \frac{n^{m-k}}{(m-k)!}$ and more generalizations of Xiao.

Bézout type inequality for mixed volumes

Let us recall the definitions from Maud's talk: for a class \mathcal{C} of convex bodies, $b_{m}^{\mathcal{C}}(A)$ is the smallest constant such that for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\operatorname{vol}(A)^{m-1} V\left(K_{1}, \ldots, K_{m}, A[n-m]\right) \leq b_{m}^{\mathcal{C}}(A) \prod_{i=1}^{m} V\left(K_{i}, A[n-1]\right),
$$

and $b_{m}^{\mathcal{C}}=\sup _{A \in \mathcal{C}} b_{m}^{\mathcal{C}}(A)$. Moreover, $b_{m}(A)=b_{m}^{\mathcal{K}}(A)$ and $b_{m}=b_{m}^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. Let \mathcal{Z} be the class of zonoids. Hug-Schneider conjecture that $b_{m}^{\mathcal{Z}}\left(B_{2}^{n}\right)=b_{m}\left(B_{2}^{n}\right)$ and prove that

$$
b_{m}^{\mathcal{Z}}\left(B_{2}^{n}\right)=v_{n}^{m-1} \frac{(n-m)!}{n!} v_{n-m}\left(\frac{n}{v_{n-1}}\right)^{m}, \quad b_{2}^{\mathcal{Z}}\left(B_{2}^{n}\right)=\frac{n}{n-1} \frac{v_{n} v_{n-2}}{v_{n-1}^{2}} .
$$

Fenchel's result implies that $b_{2}=2$. Soprunov-Zvavitch (2015): $b_{m}^{\mathcal{Z}}(A) \leq \frac{m^{m-1}}{(m-1)!}$.
Brazitikos-Giannopoulos-Liakopoulos (2016): $b_{m} \leq 2^{2^{m-1}-1}$.
Xiao (2019): $b_{m} \leq n^{m-1}$ and
$\operatorname{vol}(A) V(B[j], C[k], A[n-j-k]) \leq \min \left(\binom{n}{j},\binom{n}{k}\right) V(B[j], A[n-j]) V(C[k], A[n-k])$.
Ndiaye (2023+): $b_{m} \leq \min _{1 \leq k \leq m} 2^{\frac{k(k-1)}{2}} \frac{n^{m-k}}{(m-k)!}$ and more generalizations of Xiao.
Question: for any convex body $A: b_{m}(A)=b_{m}^{\mathcal{Z}}(A)$? It would imply that $b_{m}=\frac{m^{m-1}}{(m-1)!}$.

Plan

History
 Prehistory: Brunn-Minkowski, Minkowski and Fenchel Betke-Weil's conjecture for mixed volumes

Bézout type inequalities
Bézout type inequality for mixed volumes
Bézout type inequality for Minkowski sums
Bézout inequality for sums with constant one
Courtade's conjecture

Generalization to measures
Minkowski and Fenchel's inequalities
Bézout for rotation invariant measures

Bézout type inequality for Minkowski sums

Bézout type inequality for Minkowski sums

For a class \mathcal{C} of convex bodies, $c_{n, m}^{\mathcal{C}}(A)$ is the smallest constant such that for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\operatorname{vol}(A)^{m-1} \operatorname{vol}\left(A+K_{1}+\ldots, K_{m}\right) \leq c_{n, m}^{\mathcal{C}}(A) \prod_{i=1}^{m} \operatorname{vol}\left(A+K_{i}\right)
$$

and $c_{n, m}^{\mathcal{C}}=\sup _{A \in \mathcal{C}} c_{n, m}^{\mathcal{C}}(A)$.

Bézout type inequality for Minkowski sums

For a class \mathcal{C} of convex bodies, $c_{n, m}^{\mathcal{C}}(A)$ is the smallest constant such that for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\operatorname{vol}(A)^{m-1} \operatorname{vol}\left(A+K_{1}+\ldots, K_{m}\right) \leq c_{n, m}^{\mathcal{C}}(A) \prod_{i=1}^{m} \operatorname{vol}\left(A+K_{i}\right)
$$

and $c_{n, m}^{\mathcal{C}}=\sup _{A \in \mathcal{C}} c_{n, m}^{\mathcal{C}}(A)$. Moreover, $c_{n, m}(A)=c_{n, m}^{\mathcal{K}}(A)$ and $c_{n, m}=c_{n, m}^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies.

Bézout type inequality for Minkowski sums

For a class \mathcal{C} of convex bodies, $c_{n, m}^{\mathcal{C}}(A)$ is the smallest constant such that for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\operatorname{vol}(A)^{m-1} \operatorname{vol}\left(A+K_{1}+\ldots, K_{m}\right) \leq c_{n, m}^{\mathcal{C}}(A) \prod_{i=1}^{m} \operatorname{vol}\left(A+K_{i}\right)
$$

and $c_{n, m}^{\mathcal{C}}=\sup _{A \in \mathcal{C}} c_{n, m}^{\mathcal{C}}(A)$. Moreover, $c_{n, m}(A)=c_{n, m}^{\mathcal{K}}(A)$ and $c_{n, m}=c_{n, m}^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. For $m=2$, we get that $c_{n, 2}^{\mathcal{C}}(A)$ satisfies for any $B, C \in \mathcal{C}$

$$
\operatorname{vol}(A) \operatorname{vol}(A+B+C) \leq c_{n, 2}^{\mathcal{C}}(A) \operatorname{vol}(A+B) \operatorname{vol}(A+C)
$$

Bézout type inequality for Minkowski sums

For a class \mathcal{C} of convex bodies, $c_{n, m}^{\mathcal{C}}(A)$ is the smallest constant such that for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\operatorname{vol}(A)^{m-1} \operatorname{vol}\left(A+K_{1}+\ldots, K_{m}\right) \leq c_{n, m}^{\mathcal{C}}(A) \prod_{i=1}^{m} \operatorname{vol}\left(A+K_{i}\right)
$$

and $c_{n, m}^{\mathcal{C}}=\sup _{A \in \mathcal{C}} c_{n, m}^{\mathcal{C}}(A)$. Moreover, $c_{n, m}(A)=c_{n, m}^{\mathcal{K}}(A)$ and $c_{n, m}=c_{n, m}^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. For $m=2$, we get that $c_{n, 2}^{\mathcal{C}}(A)$ satisfies for any $B, C \in \mathcal{C}$

$$
\operatorname{vol}(A) \operatorname{vol}(A+B+C) \leq c_{n, 2}^{\mathcal{C}}(A) \operatorname{vol}(A+B) \operatorname{vol}(A+C)
$$

BOBKOV-Madiman (2012) proved that $c_{n, m} \leq(m+1)^{n}$. In particular $c_{n, 2} \leq 3^{n}$.

Bézout type inequality for Minkowski sums

For a class \mathcal{C} of convex bodies, $c_{n, m}^{\mathcal{C}}(A)$ is the smallest constant such that for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\operatorname{vol}(A)^{m-1} \operatorname{vol}\left(A+K_{1}+\ldots, K_{m}\right) \leq c_{n, m}^{\mathcal{C}}(A) \prod_{i=1}^{m} \operatorname{vol}\left(A+K_{i}\right)
$$

and $c_{n, m}^{\mathcal{C}}=\sup _{A \in \mathcal{C}} c_{n, m}^{\mathcal{C}}(A)$. Moreover, $c_{n, m}(A)=c_{n, m}^{\mathcal{K}}(A)$ and $c_{n, m}=c_{n, m}^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. For $m=2$, we get that $c_{n, 2}^{\mathcal{C}}(A)$ satisfies for any $B, C \in \mathcal{C}$

$$
\operatorname{vol}(A) \operatorname{vol}(A+B+C) \leq c_{n, 2}^{\mathcal{C}}(A) \operatorname{vol}(A+B) \operatorname{vol}(A+C)
$$

BOBKOV-Madiman (2012) proved that $c_{n, m} \leq(m+1)^{n}$. In particular $c_{n, 2} \leq 3^{n}$. F.-Madiman-Zvavitch (2023!) $c_{2,2}=1, c_{3,2}=4 / 3$ and let $\varphi=\frac{1+\sqrt{5}}{2}$ be the golden ratio. Then, for $n \geq 3$

$$
(4 / 3)^{n} \leq c_{n, 2} \leq \varphi^{n}
$$

Bézout type inequality for Minkowski sums

For a class \mathcal{C} of convex bodies, $c_{n, m}^{\mathcal{C}}(A)$ is the smallest constant such that for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\operatorname{vol}(A)^{m-1} \operatorname{vol}\left(A+K_{1}+\ldots, K_{m}\right) \leq c_{n, m}^{\mathcal{C}}(A) \prod_{i=1}^{m} \operatorname{vol}\left(A+K_{i}\right)
$$

and $c_{n, m}^{\mathcal{C}}=\sup _{A \in \mathcal{C}} c_{n, m}^{\mathcal{C}}(A)$. Moreover, $c_{n, m}(A)=c_{n, m}^{\mathcal{K}}(A)$ and $c_{n, m}=c_{n, m}^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. For $m=2$, we get that $c_{n, 2}^{\mathcal{C}}(A)$ satisfies for any $B, C \in \mathcal{C}$

$$
\operatorname{vol}(A) \operatorname{vol}(A+B+C) \leq c_{n, 2}^{\mathcal{C}}(A) \operatorname{vol}(A+B) \operatorname{vol}(A+C)
$$

BOBKOV-Madiman (2012) proved that $c_{n, m} \leq(m+1)^{n}$. In particular $c_{n, 2} \leq 3^{n}$. F.-Madiman-Zvavitch (2023!) $c_{2,2}=1, c_{3,2}=4 / 3$ and let $\varphi=\frac{1+\sqrt{5}}{2}$ be the golden ratio. Then, for $n \geq 3$

$$
(4 / 3)^{n} \leq c_{n, 2} \leq \varphi^{n} .
$$

Methods: Upper bound: we develop the volume of the sum with mixed volumes, use the Bézout type inequalities of Xiao '19 and optimize.

Bézout type inequality for Minkowski sums

For a class \mathcal{C} of convex bodies, $c_{n, m}^{\mathcal{C}}(A)$ is the smallest constant such that for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\operatorname{vol}(A)^{m-1} \operatorname{vol}\left(A+K_{1}+\ldots, K_{m}\right) \leq c_{n, m}^{\mathcal{C}}(A) \prod_{i=1}^{m} \operatorname{vol}\left(A+K_{i}\right)
$$

and $c_{n, m}^{\mathcal{C}}=\sup _{A \in \mathcal{C}} c_{n, m}^{\mathcal{C}}(A)$. Moreover, $c_{n, m}(A)=c_{n, m}^{\mathcal{K}}(A)$ and $c_{n, m}=c_{n, m}^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. For $m=2$, we get that $c_{n, 2}^{\mathcal{C}}(A)$ satisfies for any $B, C \in \mathcal{C}$

$$
\operatorname{vol}(A) \operatorname{vol}(A+B+C) \leq c_{n, 2}^{\mathcal{C}}(A) \operatorname{vol}(A+B) \operatorname{vol}(A+C)
$$

BOBKOV-Madiman (2012) proved that $c_{n, m} \leq(m+1)^{n}$. In particular $c_{n, 2} \leq 3^{n}$.
F.-Madiman-Zvavitch (2023!) $c_{2,2}=1, c_{3,2}=4 / 3$ and let $\varphi=\frac{1+\sqrt{5}}{2}$ be the golden ratio.

Then, for $n \geq 3$

$$
(4 / 3)^{n} \leq c_{n, 2} \leq \varphi^{n}
$$

Methods: Upper bound: we develop the volume of the sum with mixed volumes, use the Bézout type inequalities of Xiao '19 and optimize. Ndiaye (2023+) used his new Bézout inequalities for mixed volumes to prove:

$$
c_{n, 2} \leq c_{n, m} \leq\binom{ n}{\left\lfloor\frac{n}{2}\right\rfloor}
$$

Plan

History
 Prehistory: Brunn-Minkowski, Minkowski and Fenchel Betke-Weil's conjecture for mixed volumes

Bézout type inequalities
Bézout type inequality for mixed volumes
Bézout type inequality for Minkowski sums
Bézout inequality for sums with constant one
Courtade's conjecture

Generalization to measures
Minkowski and Fenchel's inequalities
Bézout for rotation invariant measures

Bézout inequality for sums with constant one

Bézout inequality for sums with constant one

We look for which A and which class \mathcal{C} of convex bodies, $c_{n, m}^{\mathcal{C}}(A)=1$: for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\begin{equation*}
\operatorname{vol}(A)^{m-1} \operatorname{vol}\left(A+K_{1}+\cdots+K_{m}\right) \leq \prod_{i=1}^{m} \operatorname{vol}\left(A+K_{i}\right) \tag{BS}
\end{equation*}
$$

Bézout inequality for sums with constant one

We look for which A and which class \mathcal{C} of convex bodies, $c_{n, m}^{\mathcal{C}}(A)=1$: for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\begin{equation*}
\operatorname{vol}(A)^{m-1} \operatorname{vol}\left(A+K_{1}+\cdots+K_{m}\right) \leq \prod_{i=1}^{m} \operatorname{vol}\left(A+K_{i}\right) \tag{BS}
\end{equation*}
$$

By induction, if \mathcal{C} is stable by sums, this is equivalent to $c_{n, 2}^{\mathcal{C}}(A)=1$: for any $B, C \in \mathcal{C}$

$$
\begin{equation*}
\operatorname{vol}(A) \operatorname{vol}(A+B+C) \leq \operatorname{vol}(A+B) \operatorname{vol}(A+C) \tag{3B}
\end{equation*}
$$

Bézout inequality for sums with constant one

We look for which A and which class \mathcal{C} of convex bodies, $c_{n, m}^{\mathcal{C}}(A)=1$: for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\begin{equation*}
\operatorname{vol}(A)^{m-1} \operatorname{vol}\left(A+K_{1}+\cdots+K_{m}\right) \leq \prod_{i=1}^{m} \operatorname{vol}\left(A+K_{i}\right) \tag{BS}
\end{equation*}
$$

By induction, if \mathcal{C} is stable by sums, this is equivalent to $c_{n, 2}^{\mathcal{C}}(A)=1$: for any $B, C \in \mathcal{C}$

$$
\begin{equation*}
\operatorname{vol}(A) \operatorname{vol}(A+B+C) \leq \operatorname{vol}(A+B) \operatorname{vol}(A+C) \tag{3B}
\end{equation*}
$$

F.-Madiman-Meyer-Zvavitch (2023!):

1) For any $A \in \mathcal{C}, c_{n, 2}^{\mathcal{C}}(A)=1$ iff for any $A \in \mathcal{C}, b_{2}^{\mathcal{C}}(A) \leq \frac{n}{n-1}$: for any $A, B, C \in \mathcal{C}$,

$$
\operatorname{vol}(A) V(A[n-2], B, C) \leq \frac{n}{n-1} V(A[n-1], B) V(A[n-1], C)
$$

Bézout inequality for sums with constant one

We look for which A and which class \mathcal{C} of convex bodies, $c_{n, m}^{\mathcal{C}}(A)=1$: for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\begin{equation*}
\operatorname{vol}(A)^{m-1} \operatorname{vol}\left(A+K_{1}+\cdots+K_{m}\right) \leq \prod_{i=1}^{m} \operatorname{vol}\left(A+K_{i}\right) \tag{BS}
\end{equation*}
$$

By induction, if \mathcal{C} is stable by sums, this is equivalent to $c_{n, 2}^{\mathcal{C}}(A)=1$: for any $B, C \in \mathcal{C}$

$$
\begin{equation*}
\operatorname{vol}(A) \operatorname{vol}(A+B+C) \leq \operatorname{vol}(A+B) \operatorname{vol}(A+C) \tag{3B}
\end{equation*}
$$

F.-Madiman-Meyer-Zvavitch (2023!):

1) For any $A \in \mathcal{C}, c_{n, 2}^{\mathcal{C}}(A)=1$ iff for any $A \in \mathcal{C}, b_{2}^{\mathcal{C}}(A) \leq \frac{n}{n-1}$: for any $A, B, C \in \mathcal{C}$,

$$
\operatorname{vol}(A) V(A[n-2], B, C) \leq \frac{n}{n-1} V(A[n-1], B) V(A[n-1], C)
$$

2) We conjecture that (3B) hold for any A, B, C zonoids and we proved it in \mathbb{R}^{3}.

Bézout inequality for sums with constant one

We look for which A and which class \mathcal{C} of convex bodies, $c_{n, m}^{\mathcal{C}}(A)=1$: for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\begin{equation*}
\operatorname{vol}(A)^{m-1} \operatorname{vol}\left(A+K_{1}+\cdots+K_{m}\right) \leq \prod_{i=1}^{m} \operatorname{vol}\left(A+K_{i}\right) \tag{BS}
\end{equation*}
$$

By induction, if \mathcal{C} is stable by sums, this is equivalent to $c_{n, 2}^{\mathcal{C}}(A)=1$: for any $B, C \in \mathcal{C}$

$$
\begin{equation*}
\operatorname{vol}(A) \operatorname{vol}(A+B+C) \leq \operatorname{vol}(A+B) \operatorname{vol}(A+C) \tag{3B}
\end{equation*}
$$

F.-Madiman-Meyer-Zvavitch (2023!):

1) For any $A \in \mathcal{C}, c_{n, 2}^{\mathcal{C}}(A)=1$ iff for any $A \in \mathcal{C}, b_{2}^{\mathcal{C}}(A) \leq \frac{n}{n-1}$: for any $A, B, C \in \mathcal{C}$,

$$
\operatorname{vol}(A) V(A[n-2], B, C) \leq \frac{n}{n-1} V(A[n-1], B) V(A[n-1], C)
$$

2) We conjecture that (3B) hold for any A, B, C zonoids and we proved it in \mathbb{R}^{3}.
3) We conjecture that (3B) holds for $A=B_{2}^{n}$ and B, C be any compact convex sets. We proved it if B is a zonoid.

Bézout inequality for sums with constant one

We look for which A and which class \mathcal{C} of convex bodies, $c_{n, m}^{\mathcal{C}}(A)=1$: for any $K_{1}, \ldots, K_{m} \in \mathcal{C}$

$$
\begin{equation*}
\operatorname{vol}(A)^{m-1} \operatorname{vol}\left(A+K_{1}+\cdots+K_{m}\right) \leq \prod_{i=1}^{m} \operatorname{vol}\left(A+K_{i}\right) \tag{BS}
\end{equation*}
$$

By induction, if \mathcal{C} is stable by sums, this is equivalent to $c_{n, 2}^{\mathcal{C}}(A)=1$: for any $B, C \in \mathcal{C}$

$$
\begin{equation*}
\operatorname{vol}(A) \operatorname{vol}(A+B+C) \leq \operatorname{vol}(A+B) \operatorname{vol}(A+C) \tag{3B}
\end{equation*}
$$

F.-Madiman-Meyer-Zvavitch (2023!):

1) For any $A \in \mathcal{C}, c_{n, 2}^{\mathcal{C}}(A)=1$ iff for any $A \in \mathcal{C}, b_{2}^{\mathcal{C}}(A) \leq \frac{n}{n-1}$: for any $A, B, C \in \mathcal{C}$,

$$
\operatorname{vol}(A) V(A[n-2], B, C) \leq \frac{n}{n-1} V(A[n-1], B) V(A[n-1], C)
$$

2) We conjecture that (3B) hold for any A, B, C zonoids and we proved it in \mathbb{R}^{3}.
3) We conjecture that (3B) holds for $A=B_{2}^{n}$ and B, C be any compact convex sets. We proved it if B is a zonoid.
4) From Böröczky-Hug's inequalities, (BS) holds for $A=B_{2}^{n}$ and K_{2}, \ldots, K_{m} zonoids. In the same way, the generalized Betke-Weil conjecture implies (BS) for $A=B_{2}^{n}$.

Plan

History
 Prehistory: Brunn-Minkowski, Minkowski and Fenchel Betke-Weil's conjecture for mixed volumes

Bézout type inequalities
Bézout type inequality for mixed volumes
Bézout type inequality for Minkowski sums
Bézout inequality for sums with constant one
Courtade's conjecture

Generalization to measures
Minkowski and Fenchel's inequalities
Bézout for rotation invariant measures

Courtade's conjecture (2018)

Courtade's conjecture (2018)

1) Statement of the conjecture. Let B, C be compact convex sets in \mathbb{R}^{n}. Is it true that

$$
(|B||C|)^{1 / n}+\left(\left|B_{2}^{n}\right|\left|B_{2}^{n}+B+C\right|\right)^{1 / n} \leq\left(\left|B_{2}^{n}+B \| B_{2}^{n}+C\right|\right)^{1 / n} ? \quad(C C)
$$

Courtade's conjecture (2018)

1) Statement of the conjecture. Let B, C be compact convex sets in \mathbb{R}^{n}. Is it true that

$$
\begin{equation*}
(|B||C|)^{1 / n}+\left(\left|B_{2}^{n}\right|\left|B_{2}^{n}+B+C\right|\right)^{1 / n} \leq\left(\left|B_{2}^{n}+B\right|\left|B_{2}^{n}+C\right|\right)^{1 / n} ? \tag{CC}
\end{equation*}
$$

2) $\underline{n=2}$: More is true: (CC) holds for any convex set A instead of B_{2}^{n} !

Courtade's conjecture (2018)

1) Statement of the conjecture. Let B, C be compact convex sets in \mathbb{R}^{n}. Is it true that

$$
\begin{equation*}
(|B||C|)^{1 / n}+\left(\left|B_{2}^{n}\right|\left|B_{2}^{n}+B+C\right|\right)^{1 / n} \leq\left(\left|B_{2}^{n}+B\right|\left|B_{2}^{n}+C\right|\right)^{1 / n} ? \tag{CC}
\end{equation*}
$$

2) $n=2$: More is true: (CC) holds for any convex set A instead of B_{2}^{n} !

Theorem (F.-Madiman-Meyer-Zvavitch 2022+)
Let A, B, C be convex compact sets in \mathbb{R}^{2}. Then

$$
\sqrt{|B||C|}+\sqrt{|A||A+B+C|} \leq \sqrt{|A+B||A+C|}
$$

Courtade's conjecture (2018)

1) Statement of the conjecture. Let B, C be compact convex sets in \mathbb{R}^{n}. Is it true that

$$
\begin{equation*}
(|B||C|)^{1 / n}+\left(\left|B_{2}^{n}\right|\left|B_{2}^{n}+B+C\right|\right)^{1 / n} \leq\left(\left|B_{2}^{n}+B\right|\left|B_{2}^{n}+C\right|\right)^{1 / n} ? \tag{CC}
\end{equation*}
$$

2) $n=2$: More is true: (CC) holds for any convex set A instead of B_{2}^{n} !

Theorem (F.-Madiman-Meyer-Zvavitch 2022+)
Let A, B, C be convex compact sets in \mathbb{R}^{2}. Then

$$
\sqrt{|B||C|}+\sqrt{|A||A+B+C|} \leq \sqrt{|A+B||A+C|}
$$

The main tool is Fenchel's inequality:

$$
(|A| V(B, C)-V(A, B) V(A, C))^{2} \leq\left(V(A, B)^{2}-|A||B|\right)\left(V(A, C)^{2}-|A||C|\right)
$$

Plan

History
 Prehistory: Brunn-Minkowski, Minkowski and Fenchel Betke-Weil's conjecture for mixed volumes
 Bézout type inequalities
 Bézout type inequality for mixed volumes
 Bézout type inequality for Minkowski sums
 Bézout inequality for sums with constant one Courtade's conjecture

Generalization to measures
Minkowski and Fenchel's inequalities
Bézout for rotation invariant measures

F-concavity

Definition

A Borel measure μ is F-concave on a class \mathcal{C} of compact Borel subsets of \mathbb{R}^{n} if there exists a continuous, strictly monotone function $F:\left(0, \mu\left(\mathbb{R}^{n}\right)\right) \rightarrow(-\infty, \infty)$ such that, for every pair $K, L \in \mathcal{C}$ and every $\lambda \in[0,1]$, one has

$$
\begin{equation*}
\mu((1-\lambda) K+\lambda L) \geq F^{-1}((1-\lambda) F(\mu(K))+\lambda F(\mu(L))) . \tag{1}
\end{equation*}
$$

F-concavity

Definition

A Borel measure μ is F-concave on a class \mathcal{C} of compact Borel subsets of \mathbb{R}^{n} if there exists a continuous, strictly monotone function $F:\left(0, \mu\left(\mathbb{R}^{n}\right)\right) \rightarrow(-\infty, \infty)$ such that, for every pair $K, L \in \mathcal{C}$ and every $\lambda \in[0,1]$, one has

$$
\begin{equation*}
\mu((1-\lambda) K+\lambda L) \geq F^{-1}((1-\lambda) F(\mu(K))+\lambda F(\mu(L))) . \tag{1}
\end{equation*}
$$

When $F(x)=x^{s}, s>0$ this can be written as

$$
\mu((1-\lambda) K+\lambda L)^{s} \geq(1-\lambda) \mu(K)^{s}+\lambda \mu(L)^{s},
$$

and we say μ is s-concave.

F-concavity

Definition

A Borel measure μ is F-concave on a class \mathcal{C} of compact Borel subsets of \mathbb{R}^{n} if there exists a continuous, strictly monotone function $F:\left(0, \mu\left(\mathbb{R}^{n}\right)\right) \rightarrow(-\infty, \infty)$ such that, for every pair $K, L \in \mathcal{C}$ and every $\lambda \in[0,1]$, one has

$$
\begin{equation*}
\mu((1-\lambda) K+\lambda L) \geq F^{-1}((1-\lambda) F(\mu(K))+\lambda F(\mu(L))) . \tag{1}
\end{equation*}
$$

When $F(x)=x^{s}, s>0$ this can be written as

$$
\mu((1-\lambda) K+\lambda L)^{s} \geq(1-\lambda) \mu(K)^{s}+\lambda \mu(L)^{s}
$$

and we say μ is s-concave. In the limit as $s \rightarrow 0$, we obtain the case of log-concavity:

$$
\mu((1-\lambda) K+\lambda L) \geq \mu(K)^{1-\lambda} \mu(L)^{\lambda}
$$

The Gaussian Measure on \mathbb{R}^{n} is given by $d \gamma_{n}(x):=(2 \pi)^{-n / 2} e^{-|x|^{2} / 2} d x$.

F-concavity

Definition

A Borel measure μ is F-concave on a class \mathcal{C} of compact Borel subsets of \mathbb{R}^{n} if there exists a continuous, strictly monotone function $F:\left(0, \mu\left(\mathbb{R}^{n}\right)\right) \rightarrow(-\infty, \infty)$ such that, for every pair $K, L \in \mathcal{C}$ and every $\lambda \in[0,1]$, one has

$$
\begin{equation*}
\mu((1-\lambda) K+\lambda L) \geq F^{-1}((1-\lambda) F(\mu(K))+\lambda F(\mu(L))) . \tag{1}
\end{equation*}
$$

When $F(x)=x^{s}, s>0$ this can be written as

$$
\mu((1-\lambda) K+\lambda L)^{s} \geq(1-\lambda) \mu(K)^{s}+\lambda \mu(L)^{s}
$$

and we say μ is s-concave. In the limit as $s \rightarrow 0$, we obtain the case of log-concavity:

$$
\mu((1-\lambda) K+\lambda L) \geq \mu(K)^{1-\lambda} \mu(L)^{\lambda}
$$

The Gaussian Measure on \mathbb{R}^{n} is given by $d \gamma_{n}(x):=(2 \pi)^{-n / 2} e^{-|x|^{2} / 2} d x$.

Concavity of the Gaussian Measure

- log-concave over compact Borel subsets of \mathbb{R}^{n}

F-concavity

Definition

A Borel measure μ is F-concave on a class \mathcal{C} of compact Borel subsets of \mathbb{R}^{n} if there exists a continuous, strictly monotone function $F:\left(0, \mu\left(\mathbb{R}^{n}\right)\right) \rightarrow(-\infty, \infty)$ such that, for every pair $K, L \in \mathcal{C}$ and every $\lambda \in[0,1]$, one has

$$
\begin{equation*}
\mu((1-\lambda) K+\lambda L) \geq F^{-1}((1-\lambda) F(\mu(K))+\lambda F(\mu(L))) . \tag{1}
\end{equation*}
$$

When $F(x)=x^{s}, s>0$ this can be written as

$$
\mu((1-\lambda) K+\lambda L)^{s} \geq(1-\lambda) \mu(K)^{s}+\lambda \mu(L)^{s}
$$

and we say μ is s-concave. In the limit as $s \rightarrow 0$, we obtain the case of log-concavity:

$$
\mu((1-\lambda) K+\lambda L) \geq \mu(K)^{1-\lambda} \mu(L)^{\lambda} .
$$

The Gaussian Measure on \mathbb{R}^{n} is given by $d \gamma_{n}(x):=(2 \pi)^{-n / 2} e^{-|x|^{2} / 2} d x$.

Concavity of the Gaussian Measure

- log-concave over compact Borel subsets of \mathbb{R}^{n}
- Let $\Phi(x)=\gamma_{1}((-\infty, x))$. Then, γ_{n} is Φ^{-1} concave on the set of compact Borel subsets of \mathbb{R}^{n} (Ehrhard, Borell)

F-concavity

Definition

A Borel measure μ is F-concave on a class \mathcal{C} of compact Borel subsets of \mathbb{R}^{n} if there exists a continuous, strictly monotone function $F:\left(0, \mu\left(\mathbb{R}^{n}\right)\right) \rightarrow(-\infty, \infty)$ such that, for every pair $K, L \in \mathcal{C}$ and every $\lambda \in[0,1]$, one has

$$
\begin{equation*}
\mu((1-\lambda) K+\lambda L) \geq F^{-1}((1-\lambda) F(\mu(K))+\lambda F(\mu(L))) . \tag{1}
\end{equation*}
$$

When $F(x)=x^{s}, s>0$ this can be written as

$$
\mu((1-\lambda) K+\lambda L)^{s} \geq(1-\lambda) \mu(K)^{s}+\lambda \mu(L)^{s}
$$

and we say μ is s-concave. In the limit as $s \rightarrow 0$, we obtain the case of log-concavity:

$$
\mu((1-\lambda) K+\lambda L) \geq \mu(K)^{1-\lambda} \mu(L)^{\lambda} .
$$

The Gaussian Measure on \mathbb{R}^{n} is given by $d \gamma_{n}(x):=(2 \pi)^{-n / 2} e^{-|x|^{2} / 2} d x$.

Concavity of the Gaussian Measure

- log-concave over compact Borel subsets of \mathbb{R}^{n}
- Let $\Phi(x)=\gamma_{1}((-\infty, x))$. Then, γ_{n} is Φ^{-1} concave on the set of compact Borel subsets of \mathbb{R}^{n} (Ehrhard, Borell)
- $1 / n$ concave over the set of symmetric convex bodies (Gardner and Zvavitch, Kolesnikov and Livshyts, Eskenazis and Moschidis)

Mixed measures of Bodies

Definitions of mixed measures Let μ be a Borel measure on \mathbb{R}^{n} supported on a class \mathcal{C} of compact Borel sets with non-empty interior closed under Minkowski addition. Then, for $A, B, C \in \mathcal{C}$:
-the mixed measure of $(n-1)$ copies of A, one copy of B is

$$
\mu(A ; B)=\frac{\partial}{\partial t} \mu(A+t B)(0) .
$$

- the mixed measure of $(n-2)$ copies of A, one copy of B and one copy of C is given by

$$
\mu(A ; B, C)=\frac{\partial^{2}}{\partial s \partial t} \mu(A+s B+t C)(0,0)
$$

Mixed measures of Bodies

Definitions of mixed measures Let μ be a Borel measure on \mathbb{R}^{n} supported on a class \mathcal{C} of compact Borel sets with non-empty interior closed under Minkowski addition. Then, for $A, B, C \in \mathcal{C}$:
-the mixed measure of $(n-1)$ copies of A, one copy of B is

$$
\mu(A ; B)=\frac{\partial}{\partial t} \mu(A+t B)(0)
$$

- the mixed measure of $(n-2)$ copies of A, one copy of B and one copy of C is given by

$$
\mu(A ; B, C)=\frac{\partial^{2}}{\partial s \partial t} \mu(A+s B+t C)(0,0)
$$

Theorem (Integral representation of mixed measure)

Let μ be a Borel measure on a class \mathcal{C} of compacts sets closed under Minkowski addition. Suppose μ has differentiable density ϕ. For $A, B, C \in \mathcal{C}$ with A being C_{+}^{2}, then one has

$$
\begin{aligned}
& \mu(A ; B, C):=(n-1) \int_{\mathbb{S}^{n-1}} \phi\left(n_{A}^{-1}(u)\right) h_{C}(u) d S_{A[n-2], B[1]}(u) \\
& \quad+\int_{\mathbb{S}^{n}-1}\left\langle\nabla \phi\left(n_{A}^{-1}(u)\right), \nabla h_{B}(u)\right\rangle h_{C}(u) d S_{A}(u) .
\end{aligned}
$$

Gaussian Measure

- Denote by $\varphi(x)=\frac{e^{-|x|^{2} / 2}}{(2 \pi)^{n / 2}}$ the density of the standard Gaussian measure.

$$
\begin{aligned}
\gamma_{n}(A ; B, C) & =(n-1) \int_{\mathbb{S}^{n}-1} \varphi\left(\left|\nabla h_{A}(u)\right|\right) h_{C}(u) d S_{A[n-2], B[1]}(u) \\
& -\int_{\mathbb{S}^{n-1}}\left\langle\nabla h_{A}(u), \nabla h_{B}(u)\right\rangle h_{C}(u) \varphi\left(\left|\nabla h_{A}(u)\right|\right) d S_{A}(u) d u .
\end{aligned}
$$

Gaussian Measure

- Denote by $\varphi(x)=\frac{e^{-|x|^{2} / 2}}{(2 \pi)^{n / 2}}$ the density of the standard Gaussian measure.

$$
\begin{aligned}
\gamma_{n}(A ; B, C) & =(n-1) \int_{\mathbb{S}^{n-1}} \varphi\left(\left|\nabla h_{A}(u)\right|\right) h_{C}(u) d S_{A[n-2], B[1]}(u) \\
& -\int_{\mathbb{S}^{n-1}}\left\langle\nabla h_{A}(u), \nabla h_{B}(u)\right\rangle h_{C}(u) \varphi\left(\left|\nabla h_{A}(u)\right|\right) d S_{A}(u) d u .
\end{aligned}
$$

- Example: Let $B=[-\xi, \xi]$ for some $\xi \in \mathbb{S}^{n-1}$. Then, $V(A[n-2], B, B)=0$. But,

$$
\gamma_{n}(A ;[-\xi, \xi],[-\xi, \xi])=\int_{\mathbb{S}^{n}-1}\left\langle\nabla h_{A}(u), \xi\right\rangle\langle u, \xi\rangle \varphi\left(\left|\nabla h_{A}(u)\right|\right) d S_{A}(u) d u
$$

Minkowski's First, Second and Quadratic Inequalities

Minkowski's First and Second Inequalities for F-concave measures:
Livshyts: Let μ be F-concave on a class of compact Borel sets \mathcal{C}. Assume that F increases. Then, for $K, L \in \mathcal{C}$, the function
$f(\lambda)=F(\mu((1-\lambda) K+\lambda L)))-(1-\lambda) F(\mu(K))-\lambda F(\mu(L))$ is concave, non-negative and $f(0)=f(1)=0$ so $f^{\prime}(0) \geq 0$ and $f^{\prime \prime}(0) \leq 0$.

$$
\mu(K, L) \geq \mu(K, K)+\frac{F(\mu(L))-F(\mu(K))}{F^{\prime}(\mu(K))}
$$

(FLMZ): Furthermore, if μ also has differentiable density, then

$$
-\frac{F^{\prime \prime}(\mu(K))}{F^{\prime}(\mu(K))} \mu(K ; L)^{2} \geq \mu(K ; L, L)
$$

Minkowski's First, Second and Quadratic Inequalities

Minkowski's First and Second Inequalities for F-concave measures:
Livshyts: Let μ be F-concave on a class of compact Borel sets \mathcal{C}. Assume that F increases. Then, for $K, L \in \mathcal{C}$, the function
$f(\lambda)=F(\mu((1-\lambda) K+\lambda L)))-(1-\lambda) F(\mu(K))-\lambda F(\mu(L))$ is concave, non-negative and $f(0)=f(1)=0$ so $f^{\prime}(0) \geq 0$ and $f^{\prime \prime}(0) \leq 0$.

$$
\mu(K, L) \geq \mu(K, K)+\frac{F(\mu(L))-F(\mu(K))}{F^{\prime}(\mu(K))} .
$$

(FLMZ): Furthermore, if μ also has differentiable density, then

$$
-\frac{F^{\prime \prime}(\mu(K))}{F^{\prime}(\mu(K))} \mu(K ; L)^{2} \geq \mu(K ; L, L)
$$

Fenchel inequality for mixed measures, FLMZ Let $f(s, t)=F(\mu(A+s B+t C))$. Then, if F increases, f is concave and so

$$
\begin{equation*}
\left.\left(\frac{\partial^{2} f}{\partial s \partial t}(0,0)\right)\right)^{2} \leq \frac{\partial^{2} f}{\partial s^{2}}(0,0) \frac{\partial^{2} f}{\partial t^{2}}(0,0) \tag{2}
\end{equation*}
$$

One has

$$
\frac{\partial^{2} f}{\partial s^{2}}(0,0)=F^{\prime \prime}(\mu(A)) \mu(A ; B)^{2}+F^{\prime}(\mu(A)) \mu(A ; B, B)
$$

and similarly for $\frac{\partial^{2} f}{\partial s^{2}}(0,0)$. But also, from the definition of $\mu(A ; B, C)$, one has

$$
\left.\frac{\partial^{2} f}{\partial s \partial t}(0,0)\right)=F^{\prime \prime}(\mu(A)) \mu(A ; B) \mu(A ; C)+F^{\prime}(\mu(A)) \mu(A ; B, C)
$$

Plan

```
History
    Prehistory: Brunn-Minkowski, Minkowski and Fenchel
    Betke-Weil's conjecture for mixed volumes
Bézout type inequalities
    Bézout type inequality for mixed volumes
    Bézout type inequality for Minkowski sums
    Bézout inequality for sums with constant one
    Courtade's conjecture
```

Generalization to measures
Minkowski and Fenchel's inequalities
Bézout for rotation invariant measures

Bézout for Measures

Generalization of Arstein-Avidan-Florentin-Ostrover's inequality:

Theorem

Let μ be a rotationally invariant log-concave measure with density $e^{-\varphi(|x|)}$. Then, for every $R>0, Z \in \mathcal{Z}^{n}$ and C, one has

$$
\mu\left(R B_{2}^{n} ; Z\right) \mu\left(R B_{2}^{n} ; C\right) \geq A_{\mu, R} \frac{\kappa_{n-1}^{2}}{\kappa_{n-2} \kappa_{n}} \mu\left(R B_{2}^{n}\right) \mu\left(R B_{2}^{n} ; Z, C\right)
$$

where

$$
A_{\mu, R}:=\frac{n}{n+1}\left(1+\frac{1}{n-\varphi^{\prime}(R) R}\right) \geq 1 ; \quad \lim _{R \rightarrow 0} A_{\mu, R}=1
$$

Bézout for Measures

Generalization of Arstein-Avidan-Florentin-Ostrover's inequality:

Theorem

Let μ be a rotationally invariant log-concave measure with density $e^{-\varphi(|x|)}$. Then, for every $R>0, Z \in \mathcal{Z}^{n}$ and C, one has

$$
\mu\left(R B_{2}^{n} ; Z\right) \mu\left(R B_{2}^{n} ; C\right) \geq A_{\mu, R} \frac{\kappa_{n-1}^{2}}{\kappa_{n-2} \kappa_{n}} \mu\left(R B_{2}^{n}\right) \mu\left(R B_{2}^{n} ; Z, C\right)
$$

where

$$
A_{\mu, R}:=\frac{n}{n+1}\left(1+\frac{1}{n-\varphi^{\prime}(R) R}\right) \geq 1 ; \quad \lim _{R \rightarrow 0} A_{\mu, R}=1
$$

Gaussian Measure and $R=1$

Fix $n \geq 2$. Let $Z \in \mathcal{Z}^{n}$, and $C \ni 0$. Then, one has

$$
\gamma_{n}\left(B_{2}^{n} ; Z\right) \gamma_{n}\left(B_{2}^{n} ; C\right) \geq e^{-\frac{(2 n+1)}{2(n+1)^{2}}} \frac{n}{n-1} \frac{\kappa_{n-1}^{2}}{\kappa_{n-2} \kappa_{n}} \gamma_{n}\left(B_{2}^{n}\right) \gamma_{n}\left(B_{2}^{n} ; Z, C\right) .
$$

Furthermore, this is sharper than in the above.

Open questions

Open questions

1) Hug-Schneider's conjecture: for any convex bodies:

$$
\begin{equation*}
V\left(K_{1}, \ldots, K_{m}, B_{2}^{n}[n-m]\right) \leq \frac{(n-m)!}{n!} v_{n-m}\left(\frac{n}{v_{n-1}}\right)^{m} \prod_{i=1}^{m} V\left(K_{i}, B_{2}^{n}[n-1]\right), \tag{HS}
\end{equation*}
$$

with equality iff the affine hulls of K_{i} are pairwise orthogonal.

Open questions

1) Hug-Schneider's conjecture: for any convex bodies:

$$
\begin{equation*}
V\left(K_{1}, \ldots, K_{m}, B_{2}^{n}[n-m]\right) \leq \frac{(n-m)!}{n!} v_{n-m}\left(\frac{n}{v_{n-1}}\right)^{m} \prod_{i=1}^{m} V\left(K_{i}, B_{2}^{n}[n-1]\right), \tag{HS}
\end{equation*}
$$

with equality iff the affine hulls of K_{i} are pairwise orthogonal.
2) Courtade's conjecture: Let $n \geq 3$ and B, C be convex compact sets in \mathbb{R}^{n}. Then

$$
\begin{equation*}
(|B||C|)^{1 / n}+\left(\left|B_{2}^{n}\right|\left|B_{2}^{n}+B+C\right|\right)^{1 / n} \leq\left(\left|B_{2}^{n}+B\right|\left|B_{2}^{n}+C\right|\right)^{1 / n} ? \tag{CC}
\end{equation*}
$$

Open questions

1) Hug-Schneider's conjecture: for any convex bodies:

$$
\begin{equation*}
V\left(K_{1}, \ldots, K_{m}, B_{2}^{n}[n-m]\right) \leq \frac{(n-m)!}{n!} v_{n-m}\left(\frac{n}{v_{n-1}}\right)^{m} \prod_{i=1}^{m} V\left(K_{i}, B_{2}^{n}[n-1]\right), \tag{HS}
\end{equation*}
$$

with equality iff the affine hulls of K_{i} are pairwise orthogonal.
2) Courtade's conjecture: Let $n \geq 3$ and B, C be convex compact sets in \mathbb{R}^{n}. Then

$$
\begin{equation*}
(|B||C|)^{1 / n}+\left(\left|B_{2}^{n}\right|\left|B_{2}^{n}+B+C\right|\right)^{1 / n} \leq\left(\left|B_{2}^{n}+B\right|\left|B_{2}^{n}+C\right|\right)^{1 / n} ? \tag{CC}
\end{equation*}
$$

3) 3 zonoids' conjecture: Let $n \geq 4$. For any zonoids A, B, C in \mathbb{R}^{n} do we have

$$
|A+B+C||A| \leq|A+B||A+C| ? \quad \text { (3B) }
$$

4) Strong 3 zonoids' conjecture: Let $n \geq 3$. For any zonoids A, B, C in \mathbb{R}^{n} do we have

$$
(|B||C|)^{1 / n}+(|A||A+B+C|)^{1 / n} \leq(|A+B||A+C|)^{1 / n} ?
$$

End

Thank you!

