On Fenchel and Bézout type inequalities for the Lebesgue and the Gaussian measures.

Matthieu Fradelizi

Laboratoire d'Analyse et de Mathématiques Appliquées
Université Gustave Eiffel
Recent work in collaboration with
Dylan Langharst, Mokshay Madiman, Mathieu Meyer and Artem Zvavitch:
F.-Madiman-Zvavitch: Sumset estimates in convex geometry. arXiv:2206.01565.
FMMZ: On the volume of the Minkowski sum of zonoids. arXiv:2206.02123.
Dylan Langharst, Mokshay Madiman and Artem Zvavitch:
Weighted Brunn-Minkowski Theory I: On Weighted Surface Area Measures
Weighted Brunn-Minkowski Theory II: On Inequalities for Mixed Measures

61 Probability Encounters, In honour of Sergey Bobkov Université de Toulouse, 2023-06-1

Contents

History

Prehistory: Brunn-Minkowski, Minkowski and Fenchel Betke-Weil's conjecture for mixed volumes

Contents

History

Prehistory: Brunn-Minkowski, Minkowski and Fenchel Betke-Weil's conjecture for mixed volumes

Bézout type inequalities

Bézout type inequality for mixed volumes Bézout type inequality for Minkowski sums Bézout inequality for sums with constant one Courtade's conjecture

Contents

History

Prehistory: Brunn-Minkowski, Minkowski and Fenchel Betke-Weil's conjecture for mixed volumes

Bézout type inequalities

Bézout type inequality for mixed volumes Bézout type inequality for Minkowski sums Bézout inequality for sums with constant one Courtade's conjecture

Generalization to measures

Minkowski and Fenchel's inequalities Bézout for rotation invariant measures

Plan

History

Prehistory: Brunn-Minkowski, Minkowski and Fenchel

Betke-Weil's conjecture for mixed volumes

Bézout type inequalities

Bézout type inequality for mixed volumes Bézout type inequality for Minkowski sums Bézout inequality for sums with constant one Courtade's conjecture

Generalization to measures

Minkowski and Fenchel's inequalities Bézout for rotation invariant measures

Brunn-Minkowski's inequality (19th century). Let A and B be two compact convex sets in \mathbb{R}^n . Then

$$\operatorname{vol}_n(A+B)^{\frac{1}{n}} \ge \operatorname{vol}_n(A)^{\frac{1}{n}} + \operatorname{vol}_n(B)^{\frac{1}{n}}.$$

Brunn-Minkowski's inequality (19th century). Let A and B be two compact convex sets in \mathbb{R}^n . Then

$$\operatorname{vol}_n(A+B)^{\frac{1}{n}} \ge \operatorname{vol}_n(A)^{\frac{1}{n}} + \operatorname{vol}_n(B)^{\frac{1}{n}}.$$

Brunn-Minkowski's inequality (19th century). Let A and B be two compact convex sets in \mathbb{R}^n . Then

$$\operatorname{vol}_n(A+B)^{\frac{1}{n}} \ge \operatorname{vol}_n(A)^{\frac{1}{n}} + \operatorname{vol}_n(B)^{\frac{1}{n}}.$$

Minkowski's first and second inequalities (1903). Let A, B be compact convex sets. Let $f(\lambda) = \operatorname{vol}_n ((1 - \lambda)A + \lambda B))^{\frac{1}{n}} - (1 - \lambda)\operatorname{vol}_n(A)^{\frac{1}{n}} - \lambda \operatorname{vol}_n(B)^{\frac{1}{n}}$.

Brunn-Minkowski's inequality (19th century). Let A and B be two compact convex sets in \mathbb{R}^n . Then

$$\operatorname{vol}_n(A+B)^{\frac{1}{n}} \ge \operatorname{vol}_n(A)^{\frac{1}{n}} + \operatorname{vol}_n(B)^{\frac{1}{n}}.$$

Minkowski's first and second inequalities (1903). Let A,B be compact convex sets. Let $f(\lambda) = \operatorname{vol}_n ((1-\lambda)A + \lambda B))^{\frac{1}{n}} - (1-\lambda)\operatorname{vol}_n(A)^{\frac{1}{n}} - \lambda \operatorname{vol}_n(B)^{\frac{1}{n}}$. Then $f'(0) \geq 0$ and $f''(0) \leq 0$:

$$V(A[n-1],B) \ge \operatorname{vol}(A)^{\frac{n-1}{n}} \operatorname{vol}(B)^{\frac{1}{n}} \quad \text{and} \quad \operatorname{vol}(A) V(A[n-2],B[2]) \le V(A[n-1],B)^2.$$

Brunn-Minkowski's inequality (19th century). Let A and B be two compact convex sets in \mathbb{R}^n . Then

$$\operatorname{vol}_n(A+B)^{\frac{1}{n}} \ge \operatorname{vol}_n(A)^{\frac{1}{n}} + \operatorname{vol}_n(B)^{\frac{1}{n}}.$$

Minkowski's first and second inequalities (1903). Let A,B be compact convex sets. Let $f(\lambda) = \operatorname{vol}_n ((1-\lambda)A + \lambda B))^{\frac{1}{n}} - (1-\lambda)\operatorname{vol}_n(A)^{\frac{1}{n}} - \lambda \operatorname{vol}_n(B)^{\frac{1}{n}}$. Then $f'(0) \geq 0$ and $f''(0) \leq 0$:

$$V(A[n-1],B) \ge \operatorname{vol}(A)^{\frac{n-1}{n}} \operatorname{vol}(B)^{\frac{1}{n}} \quad \text{and} \quad \operatorname{vol}(A)V(A[n-2],B[2]) \le V(A[n-1],B)^2.$$

Minkowski's quadratic inequality. Let A, B, C be compact convex sets. Then

$$V(A[n-2], B[2])V(A[n-2]C[2]) \le V(A[n-2], B, C)^{2}.$$

Brunn-Minkowski's inequality (19th century). Let A and B be two compact convex sets in \mathbb{R}^n . Then

$$\operatorname{vol}_n(A+B)^{\frac{1}{n}} \ge \operatorname{vol}_n(A)^{\frac{1}{n}} + \operatorname{vol}_n(B)^{\frac{1}{n}}.$$

Minkowski's first and second inequalities (1903). Let A, B be compact convex sets. Let $f(\lambda) = \operatorname{vol}_n((1-\lambda)A + \lambda B))^{\frac{1}{n}} - (1-\lambda)\operatorname{vol}_n(A)^{\frac{1}{n}} - \lambda\operatorname{vol}_n(B)^{\frac{1}{n}}$. Then $f'(0) \geq 0$ and $f''(0) \leq 0$:

$$V(A[n-1],B) \ge \operatorname{vol}(A)^{\frac{n-1}{n}} \operatorname{vol}(B)^{\frac{1}{n}} \quad \text{and} \quad \operatorname{vol}(A)V(A[n-2],B[2]) \le V(A[n-1],B)^2.$$

Minkowski's quadratic inequality. Let A, B, C be compact convex sets. Then

$$V(A[n-2], B[2])V(A[n-2]C[2]) \le V(A[n-2], B, C)^{2}.$$

Fenchel's inequality (1936). Since $f(s,t) = \operatorname{vol}(A + sB + tC)^{\frac{1}{n}}$ is concave, one has $\frac{\partial^2 f}{\partial s \partial t}(0,0)^2 \leq \frac{\partial^2 f}{\partial s^2}(0,0) \frac{\partial^2 f}{\partial t^2}(0,0)$. If one denotes V(B,C) = V(A[n-2],B,C), this gives

$$(V(A,A)V(B,C) - V(A,B)V(A,C))^2 \le (V(A,B)^2 - V(A,A)V(B,B))(V(A,C)^2 - V(A,A)V(C,C))$$

Brunn-Minkowski's inequality (19th century). Let A and B be two compact convex sets in \mathbb{R}^n . Then

$$\operatorname{vol}_n(A+B)^{\frac{1}{n}} \ge \operatorname{vol}_n(A)^{\frac{1}{n}} + \operatorname{vol}_n(B)^{\frac{1}{n}}.$$

Minkowski's first and second inequalities (1903). Let A, B be compact convex sets. Let $f(\lambda) = \operatorname{vol}_n((1-\lambda)A + \lambda B))^{\frac{1}{n}} - (1-\lambda)\operatorname{vol}_n(A)^{\frac{1}{n}} - \lambda\operatorname{vol}_n(B)^{\frac{1}{n}}$. Then $f'(0) \geq 0$ and $f''(0) \leq 0$:

$$V(A[n-1],B) \ge \operatorname{vol}(A)^{\frac{n-1}{n}} \operatorname{vol}(B)^{\frac{1}{n}}$$
 and $\operatorname{vol}(A)V(A[n-2],B[2]) \le V(A[n-1],B)^2$.

Minkowski's quadratic inequality. Let A, B, C be compact convex sets. Then

$$V(A[n-2], B[2])V(A[n-2]C[2]) \le V(A[n-2], B, C)^{2}.$$

Fenchel's inequality (1936). Since $f(s,t) = \operatorname{vol}(A + sB + tC)^{\frac{1}{n}}$ is concave, one has $\frac{\partial^2 f}{\partial s \partial t}(0,0)^2 \leq \frac{\partial^2 f}{\partial s^2}(0,0) \frac{\partial^2 f}{\partial t^2}(0,0)$. If one denotes V(B,C) = V(A[n-2],B,C), this gives

$$(V(A,A)V(B,C) - V(A,B)V(A,C))^2 \le (V(A,B)^2 - V(A,A)V(B,B))(V(A,C)^2 - V(A,A)V(C,C))$$

From the arithmetic-geometric inequality, we deduce

$$vol(A)V(A[n-2], B, C) \le 2V(A[n-1], B)V(A[n-1], C).$$

Plan

History

Prehistory: Brunn-Minkowski, Minkowski and Fenchel Betke-Weil's conjecture for mixed volumes

Bézout type inequalities

Bézout type inequality for mixed volumes Bézout type inequality for Minkowski sums Bézout inequality for sums with constant one Courtade's conjecture

Generalization to measures

Minkowski and Fenchel's inequalities Bézout for rotation invariant measures

Betke-Weil (1991): Let K_1, \ldots, K_m be convex compact sets in \mathbb{R}^n . Then do we have:

$$\binom{n}{\alpha_1,\ldots,\alpha_m}V(K_1[\alpha_1],\ldots,K_m[\alpha_m]) \leq \prod_{i=1}^m \frac{\binom{n}{\alpha_i}}{\nu_{n-\alpha_i}}V(K_i[\alpha_i],B_2^n[n-\alpha_i]), \quad (BW)$$

with equality iff $\dim(K_i) = \alpha_i$ and the affine hulls of K_i are pairwise orthogonal?

Betke-Weil (1991): Let K_1, \ldots, K_m be convex compact sets in \mathbb{R}^n . Then do we have:

$$\binom{n}{\alpha_1,\ldots,\alpha_m}V(K_1[\alpha_1],\ldots,K_m[\alpha_m]) \leq \prod_{i=1}^m \frac{\binom{n}{\alpha_i}}{\nu_{n-\alpha_i}}V(K_i[\alpha_i],B_2^n[n-\alpha_i]), \quad (BW)$$

with equality iff $\dim(K_i) = \alpha_i$ and the affine hulls of K_i are pairwise orthogonal? It's true if n = 2: $V(B, C) \leq \frac{1}{2}V(B, B_2^2)V(C, B_2^2) = \frac{1}{8}|\partial B||\partial C|$.

Betke-Weil (1991): Let K_1, \ldots, K_m be convex compact sets in \mathbb{R}^n . Then do we have:

$$\binom{n}{\alpha_1,\ldots,\alpha_m}V(K_1[\alpha_1],\ldots,K_m[\alpha_m]) \leq \prod_{i=1}^m \frac{\binom{n}{\alpha_i}}{\nu_{n-\alpha_i}}V(K_i[\alpha_i],B_2^n[n-\alpha_i]), \quad (BW)$$

with equality iff $\dim(K_i) = \alpha_i$ and the affine hulls of K_i are pairwise orthogonal? It's true if n = 2: $V(B, C) \leq \frac{1}{2}V(B, B_2^2)V(C, B_2^2) = \frac{1}{8}\frac{|\partial B|}{|\partial C|}$. Hug-Schneider (2011) conjectured for any convex bodies and proved for zonoids:

$$V(K_1,\ldots,K_m,B_2^n[n-m]) \leq \frac{(n-m)!}{n!} v_{n-m} \left(\frac{n}{v_{n-1}}\right)^m \prod_{i=1}^m V(K_i,B_2^n[n-1]), \quad (HS)$$

with equality iff the affine hulls of K_i are pairwise orthogonal.

Betke-Weil (1991): Let K_1, \ldots, K_m be convex compact sets in \mathbb{R}^n . Then do we have:

$$\binom{n}{\alpha_1,\ldots,\alpha_m}V(K_1[\alpha_1],\ldots,K_m[\alpha_m]) \leq \prod_{i=1}^m \frac{\binom{n}{\alpha_i}}{\nu_{n-\alpha_i}}V(K_i[\alpha_i],B_2^n[n-\alpha_i]), \quad (BW)$$

with equality iff $\dim(K_i) = \alpha_i$ and the affine hulls of K_i are pairwise orthogonal? It's true if n = 2: $V(B, C) \leq \frac{1}{2}V(B, B_2^2)V(C, B_2^2) = \frac{1}{8} |\partial B| |\partial C|$. Hug-Schneider (2011) conjectured for any convex bodies and proved for zonoids:

$$V(K_1,\ldots,K_m,B_2^n[n-m]) \leq \frac{(n-m)!}{n!} v_{n-m} \left(\frac{n}{v_{n-1}}\right)^m \prod_{i=1}^m V(K_i,B_2^n[n-1]), \quad (HS)$$

with equality iff the affine hulls of K_i are pairwise orthogonal. Artstein-Florentin-Ostrover (2014) proved (HS) for m=2 and K_2 zonoid.

Betke-Weil (1991): Let K_1, \ldots, K_m be convex compact sets in \mathbb{R}^n . Then do we have:

$$\binom{n}{\alpha_1,\ldots,\alpha_m}V(K_1[\alpha_1],\ldots,K_m[\alpha_m]) \leq \prod_{i=1}^m \frac{\binom{n}{\alpha_i}}{\nu_{n-\alpha_i}}V(K_i[\alpha_i],B_2^n[n-\alpha_i]), \quad (BW)$$

with equality iff $\dim(K_i) = \alpha_i$ and the affine hulls of K_i are pairwise orthogonal? It's true if n = 2: $V(B, C) \leq \frac{1}{2}V(B, B_2^2)V(C, B_2^2) = \frac{1}{8}|\partial B||\partial C|$. Hug-Schneider (2011) conjectured for any convex bodies and proved for zonoids:

$$V(K_1,\ldots,K_m,B_2^n[n-m]) \leq \frac{(n-m)!}{n!} v_{n-m} \left(\frac{n}{v_{n-1}}\right)^m \prod_{i=1}^m V(K_i,B_2^n[n-1]), \quad (HS)$$

with equality iff the affine hulls of K_i are pairwise orthogonal. Artstein-Florentin-Ostrover (2014) proved (HS) for m=2 and K_2 zonoid. Böröczky-Hug (2020, 2021) proved (BW) for $\alpha_1=1$ and K_3,\ldots,K_m zonoids

Betke-Weil (1991): Let K_1, \ldots, K_m be convex compact sets in \mathbb{R}^n . Then do we have:

$$\binom{n}{\alpha_1,\ldots,\alpha_m}V(K_1[\alpha_1],\ldots,K_m[\alpha_m]) \leq \prod_{i=1}^m \frac{\binom{n}{\alpha_i}}{\nu_{n-\alpha_i}}V(K_i[\alpha_i],B_2^n[n-\alpha_i]), \quad (BW)$$

with equality iff $\dim(K_i) = \alpha_i$ and the affine hulls of K_i are pairwise orthogonal? It's true if n = 2: $V(B, C) \leq \frac{1}{2}V(B, B_2^2)V(C, B_2^2) = \frac{1}{8} |\partial B| |\partial C|$. Hug-Schneider (2011) conjectured for any convex bodies and proved for zonoids:

$$V(K_1,\ldots,K_m,B_2^n[n-m]) \leq \frac{(n-m)!}{n!} v_{n-m} \left(\frac{n}{v_{n-1}}\right)^m \prod_{i=1}^m V(K_i,B_2^n[n-1]), \quad (HS)$$

with equality iff the affine hulls of K_i are pairwise orthogonal. Artstein-Florentin-Ostrover (2014) proved (HS) for m=2 and K_2 zonoid. Böröczky-Hug (2020, 2021) proved (BW) for $\alpha_1=1$ and K_3,\ldots,K_m zonoids and conjectured for any convex bodies and proved for K_2,\ldots,K_m zonoids:

$$\binom{n}{\alpha_1,\ldots,\alpha_{m+1}}V(K_1[\alpha_1],\ldots,K_m[\alpha_m],B_2^n[\alpha_{m+1}]) \leq \nu_{\alpha_{m+1}}\prod_{i=1}^m \frac{\binom{n}{\alpha_i}}{\nu_{n-\alpha_i}}V(K_i[\alpha_i],B_2^n[n-\alpha_i]),$$

with equality iff the affine hulls of K_i are pairwise orthogonal.

Plan

History

Prehistory: Brunn-Minkowski, Minkowski and Fenchel Betke-Weil's conjecture for mixed volumes

Bézout type inequalities

Bézout type inequality for mixed volumes

Bézout type inequality for Minkowski sums Bézout inequality for sums with constant one Courtade's conjecture

Generalization to measures

Minkowski and Fenchel's inequalities Bézout for rotation invariant measures

Let us recall the definitions from Maud's talk: for a class $\mathcal C$ of convex bodies, $b_m^{\mathcal C}(A)$ is the smallest constant such that for any $K_1,\ldots,K_m\in\mathcal C$

$$\operatorname{vol}(A)^{m-1}V(K_1,\ldots,K_m,A[n-m]) \leq b_m^{\mathcal{C}}(A) \prod_{i=1}^m V(K_i,A[n-1]),$$

and
$$b_m^{\mathcal{C}} = \sup_{A \in \mathcal{C}} b_m^{\mathcal{C}}(A)$$
.

Let us recall the definitions from Maud's talk: for a class $\mathcal C$ of convex bodies, $b_m^{\mathcal C}(A)$ is the smallest constant such that for any $K_1,\ldots,K_m\in\mathcal C$

$$\operatorname{vol}(A)^{m-1}V(K_1,\ldots,K_m,A[n-m]) \leq b_m^{\mathcal{C}}(A) \prod_{i=1}^m V(K_i,A[n-1]),$$

and $b_m^{\mathcal{C}} = \sup_{A \in \mathcal{C}} b_m^{\mathcal{C}}(A)$. Moreover, $b_m(A) = b_m^{\mathcal{K}}(A)$ and $b_m = b_m^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies.

Let us recall the definitions from Maud's talk: for a class $\mathcal C$ of convex bodies, $b_m^{\mathcal C}(A)$ is the smallest constant such that for any $K_1,\ldots,K_m\in\mathcal C$

$$\operatorname{vol}(A)^{m-1}V(K_1,\ldots,K_m,A[n-m]) \leq b_m^{\mathcal{C}}(A) \prod_{i=1}^m V(K_i,A[n-1]),$$

and $b_m^{\mathcal{C}} = \sup_{A \in \mathcal{C}} b_m^{\mathcal{C}}(A)$. Moreover, $b_m(A) = b_m^{\mathcal{K}}(A)$ and $b_m = b_m^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. Let \mathcal{Z} be the class of zonoids.

Hug-Schneider conjecture that $b_m^{\mathbb{Z}}(B_2^n) = b_m(B_2^n)$ and prove that

$$b_m^{\mathcal{Z}}(B_2^n) = v_n^{m-1} \frac{(n-m)!}{n!} v_{n-m} \left(\frac{n}{v_{n-1}}\right)^m, \quad b_2^{\mathcal{Z}}(B_2^n) = \frac{n}{n-1} \frac{v_n v_{n-2}}{v_{n-1}^2}.$$

Let us recall the definitions from Maud's talk: for a class $\mathcal C$ of convex bodies, $b_m^{\mathcal C}(A)$ is the smallest constant such that for any $K_1,\ldots,K_m\in\mathcal C$

$$\operatorname{vol}(A)^{m-1}V(K_1,\ldots,K_m,A[n-m]) \leq b_m^{\mathcal{C}}(A) \prod_{i=1}^m V(K_i,A[n-1]),$$

and $b_m^{\mathcal{C}} = \sup_{A \in \mathcal{C}} b_m^{\mathcal{C}}(A)$. Moreover, $b_m(A) = b_m^{\mathcal{K}}(A)$ and $b_m = b_m^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. Let \mathcal{Z} be the class of zonoids.

Hug-Schneider conjecture that $b_m^{\mathbb{Z}}(B_2^n) = b_m(B_2^n)$ and prove that

$$b_m^{\mathcal{Z}}(B_2^n) = v_n^{m-1} \frac{(n-m)!}{n!} v_{n-m} \left(\frac{n}{v_{n-1}}\right)^m, \quad b_2^{\mathcal{Z}}(B_2^n) = \frac{n}{n-1} \frac{v_n v_{n-2}}{v_{n-1}^2}.$$

Fenchel's result implies that $b_2 = 2$.

Let us recall the definitions from Maud's talk: for a class $\mathcal C$ of convex bodies, $b_m^{\mathcal C}(A)$ is the smallest constant such that for any $K_1,\ldots,K_m\in\mathcal C$

$$vol(A)^{m-1}V(K_1,\ldots,K_m,A[n-m]) \leq b_m^{\mathcal{C}}(A) \prod_{i=1}^m V(K_i,A[n-1]),$$

and $b_m^{\mathcal{C}} = \sup_{A \in \mathcal{C}} b_m^{\mathcal{C}}(A)$. Moreover, $b_m(A) = b_m^{\mathcal{K}}(A)$ and $b_m = b_m^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. Let \mathcal{Z} be the class of zonoids.

Hug-Schneider conjecture that $b_m^{\mathbb{Z}}(B_2^n) = b_m(B_2^n)$ and prove that

$$b_m^{\mathcal{Z}}(B_2^n) = v_n^{m-1} \frac{(n-m)!}{n!} v_{n-m} \left(\frac{n}{v_{n-1}}\right)^m, \quad b_2^{\mathcal{Z}}(B_2^n) = \frac{n}{n-1} \frac{v_n v_{n-2}}{v_{n-1}^2}.$$

Fenchel's result implies that $b_2 = 2$. Soprunov-Zvavitch (2015): $b_m^{\mathbb{Z}}(A) \leq \frac{m^{m-1}}{(m-1)!}$.

Let us recall the definitions from Maud's talk: for a class $\mathcal C$ of convex bodies, $b_m^{\mathcal C}(A)$ is the smallest constant such that for any $K_1,\ldots,K_m\in\mathcal C$

$$\operatorname{vol}(A)^{m-1}V(K_1,\ldots,K_m,A[n-m]) \leq b_m^{\mathcal{C}}(A) \prod_{i=1}^m V(K_i,A[n-1]),$$

and $b_m^{\mathcal{C}} = \sup_{A \in \mathcal{C}} b_m^{\mathcal{C}}(A)$. Moreover, $b_m(A) = b_m^{\mathcal{K}}(A)$ and $b_m = b_m^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. Let \mathcal{Z} be the class of zonoids.

Hug-Schneider conjecture that $b_m^{\mathcal{Z}}(B_2^n) = b_m(B_2^n)$ and prove that

$$b_m^{\mathcal{Z}}(B_2^n) = v_n^{m-1} \frac{(n-m)!}{n!} v_{n-m} \left(\frac{n}{v_{n-1}}\right)^m, \quad b_2^{\mathcal{Z}}(B_2^n) = \frac{n}{n-1} \frac{v_n v_{n-2}}{v_{n-1}^2}.$$

Fenchel's result implies that $b_2=2$. Soprunov-Zvavitch (2015): $b_m^{\mathbb{Z}}(A) \leq \frac{m^{m-1}}{(m-1)!}$. Brazitikos-Giannopoulos-Liakopoulos (2016): $b_m \leq 2^{2^{m-1}-1}$.

Let us recall the definitions from Maud's talk: for a class $\mathcal C$ of convex bodies, $b_m^{\mathcal C}(A)$ is the smallest constant such that for any $K_1,\ldots,K_m\in\mathcal C$

$$vol(A)^{m-1}V(K_1,\ldots,K_m,A[n-m]) \le b_m^{\mathcal{C}}(A) \prod_{i=1}^m V(K_i,A[n-1]),$$

and $b_m^{\mathcal{C}} = \sup_{A \in \mathcal{C}} b_m^{\mathcal{C}}(A)$. Moreover, $b_m(A) = b_m^{\mathcal{K}}(A)$ and $b_m = b_m^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. Let \mathcal{Z} be the class of zonoids.

Hug-Schneider conjecture that $b_m^{\mathcal{Z}}(B_2^n) = b_m(B_2^n)$ and prove that

$$b_m^{\mathcal{Z}}(B_2^n) = v_n^{m-1} \frac{(n-m)!}{n!} v_{n-m} \left(\frac{n}{v_{n-1}}\right)^m, \quad b_2^{\mathcal{Z}}(B_2^n) = \frac{n}{n-1} \frac{v_n v_{n-2}}{v_{n-1}^2}.$$

Fenchel's result implies that $b_2 = 2$. Soprunov-Zvavitch (2015): $b_m^{\mathbb{Z}}(A) \leq \frac{m^{m-1}}{(m-1)!}$.

Brazitikos-Giannopoulos-Liakopoulos (2016): $b_m \le 2^{2^{m-1}-1}$. Xiao (2019): $b_m < n^{m-1}$ and

 $vol(A)V(B[j], C[k], A[n-j-k]) \le \min(\binom{n}{j}, \binom{n}{k})V(B[j], A[n-j])V(C[k], A[n-k]).$

Let us recall the definitions from Maud's talk: for a class $\mathcal C$ of convex bodies, $b_m^{\mathcal C}(A)$ is the smallest constant such that for any $K_1,\ldots,K_m\in\mathcal C$

$$\operatorname{vol}(A)^{m-1}V(K_1,\ldots,K_m,A[n-m]) \leq b_m^{\mathcal{C}}(A) \prod_{i=1}^m V(K_i,A[n-1]),$$

and $b_m^{\mathcal{C}} = \sup_{A \in \mathcal{C}} b_m^{\mathcal{C}}(A)$. Moreover, $b_m(A) = b_m^{\mathcal{K}}(A)$ and $b_m = b_m^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. Let \mathcal{Z} be the class of zonoids.

Hug-Schneider conjecture that $b_m^{\mathcal{Z}}(B_2^n) = b_m(B_2^n)$ and prove that

$$b_m^{\mathcal{Z}}(B_2^n) = v_n^{m-1} \frac{(n-m)!}{n!} v_{n-m} \left(\frac{n}{v_{n-1}}\right)^m, \quad b_2^{\mathcal{Z}}(B_2^n) = \frac{n}{n-1} \frac{v_n v_{n-2}}{v_{n-1}^2}.$$

Fenchel's result implies that $b_2 = 2$. Soprunov-Zvavitch (2015): $b_m^{\mathbb{Z}}(A) \leq \frac{m^{m-1}}{(m-1)!}$.

Brazitikos-Giannopoulos-Liakopoulos (2016): $b_m \le 2^{2^{m-1}-1}$. Xiao (2019): $b_m \le n^{m-1}$ and

 $\operatorname{vol}(A)V(B[j], C[k], A[n-j-k]) \le \min(\binom{n}{j}, \binom{n}{k})V(B[j], A[n-j])V(C[k], A[n-k]).$

Ndiaye (2023+): $b_m \leq \min_{1\leq k\leq m} 2^{\frac{k(k-1)}{2}} \frac{n^{m-k}}{(m-k)!}$ and more generalizations of Xiao.

Let us recall the definitions from Maud's talk: for a class $\mathcal C$ of convex bodies, $b_m^{\mathcal C}(A)$ is the smallest constant such that for any $K_1,\ldots,K_m\in\mathcal C$

$$vol(A)^{m-1}V(K_1,\ldots,K_m,A[n-m]) \le b_m^{\mathcal{C}}(A) \prod_{i=1}^m V(K_i,A[n-1]),$$

and $b_m^{\mathcal{C}} = \sup_{A \in \mathcal{C}} b_m^{\mathcal{C}}(A)$. Moreover, $b_m(A) = b_m^{\mathcal{K}}(A)$ and $b_m = b_m^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. Let \mathcal{Z} be the class of zonoids.

Hug-Schneider conjecture that $b_m^{\mathcal{Z}}(B_2^n) = b_m(B_2^n)$ and prove that

$$b_m^{\mathcal{Z}}(B_2^n) = v_n^{m-1} \frac{(n-m)!}{n!} v_{n-m} \left(\frac{n}{v_{n-1}}\right)^m, \quad b_2^{\mathcal{Z}}(B_2^n) = \frac{n}{n-1} \frac{v_n v_{n-2}}{v_{n-1}^2}.$$

Fenchel's result implies that $b_2 = 2$. Soprunov-Zvavitch (2015): $b_m^{\mathbb{Z}}(A) \leq \frac{m^{m-1}}{(m-1)!}$.

Brazitikos-Giannopoulos-Liakopoulos (2016): $b_m \le 2^{2^{m-1}-1}$. Xiao (2019): $b_m \le n^{m-1}$ and

 $vol(A)V(B[j], C[k], A[n-j-k]) \le \min(\binom{n}{j}, \binom{n}{k})V(B[j], A[n-j])V(C[k], A[n-k]).$

Ndiaye (2023+): $b_m \leq \min_{1 \leq k \leq m} 2^{\frac{k(k-1)}{2}} \frac{n^{m-k}}{(m-k)!}$ and more generalizations of Xiao.

Question: for any convex body A: $b_m(A) = b_m^{\mathbb{Z}}(A)$? It would imply that $b_m = \frac{m^{m-1}}{(m-1)!}$.

Plan

History

Prehistory: Brunn-Minkowski, Minkowski and Fenchel Betke-Weil's conjecture for mixed volumes

Bézout type inequalities

Bézout type inequality for mixed volumes

Bézout type inequality for Minkowski sums

Bézout inequality for sums with constant one Courtade's conjecture

Generalization to measures

Minkowski and Fenchel's inequalities Bézout for rotation invariant measures

Bézout type inequality for Minkowski sums

Bézout type inequality for Minkowski sums

For a class $\mathcal C$ of convex bodies, $c_{n,m}^{\mathcal C}(A)$ is the smallest constant such that for any $K_1,\ldots,K_m\in\mathcal C$

$$\operatorname{vol}(A)^{m-1}\operatorname{vol}(A+K_1+\ldots,K_m)\leq c_{n,m}^{\mathcal{C}}(A)\prod_{i=1}^{m}\operatorname{vol}(A+K_i),$$

and
$$c_{n,m}^{\mathcal{C}} = \sup_{A \in \mathcal{C}} c_{n,m}^{\mathcal{C}}(A)$$
.

Bézout type inequality for Minkowski sums

For a class $\mathcal C$ of convex bodies, $c_{n,m}^{\mathcal C}(A)$ is the smallest constant such that for any $K_1,\ldots,K_m\in\mathcal C$

$$\operatorname{vol}(A)^{m-1}\operatorname{vol}(A+K_1+\ldots,K_m)\leq c_{n,m}^{\mathcal{C}}(A)\prod_{i=1}^{m}\operatorname{vol}(A+K_i),$$

and $c_{n,m}^{\mathcal{C}} = \sup_{A \in \mathcal{C}} c_{n,m}^{\mathcal{C}}(A)$. Moreover, $c_{n,m}(A) = c_{n,m}^{\mathcal{K}}(A)$ and $c_{n,m} = c_{n,m}^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies.

For a class C of convex bodies, $c_{n,m}^C(A)$ is the smallest constant such that for any $K_1, \ldots, K_m \in C$

$$\operatorname{vol}(A)^{m-1}\operatorname{vol}(A+K_1+\ldots,K_m)\leq c_{n,m}^{\mathcal{C}}(A)\prod_{i=1}^{m}\operatorname{vol}(A+K_i),$$

and $c_{n,m}^{\mathcal{C}} = \sup_{A \in \mathcal{C}} c_{n,m}^{\mathcal{C}}(A)$. Moreover, $c_{n,m}(A) = c_{n,m}^{\mathcal{K}}(A)$ and $c_{n,m} = c_{n,m}^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. For m = 2, we get that $c_{n,2}^{\mathcal{C}}(A)$ satisfies for any $B, C \in \mathcal{C}$

$$\operatorname{vol}(A)\operatorname{vol}(A+B+C) \le c_{n,2}^{\mathcal{C}}(A)\operatorname{vol}(A+B)\operatorname{vol}(A+C).$$

For a class C of convex bodies, $c_{n,m}^C(A)$ is the smallest constant such that for any $K_1, \ldots, K_m \in C$

$$\operatorname{vol}(A)^{m-1}\operatorname{vol}(A+K_1+\ldots,K_m)\leq c_{n,m}^{\mathcal{C}}(A)\prod_{i=1}^{m}\operatorname{vol}(A+K_i),$$

and $c_{n,m}^{\mathcal{C}} = \sup_{A \in \mathcal{C}} c_{n,m}^{\mathcal{C}}(A)$. Moreover, $c_{n,m}(A) = c_{n,m}^{\mathcal{K}}(A)$ and $c_{n,m} = c_{n,m}^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. For m = 2, we get that $c_{n,2}^{\mathcal{C}}(A)$ satisfies for any $B, C \in \mathcal{C}$

$$\operatorname{vol}(A)\operatorname{vol}(A+B+C) \le c_{n,2}^{\mathcal{C}}(A)\operatorname{vol}(A+B)\operatorname{vol}(A+C).$$

BOBKOV-Madiman (2012) proved that $c_{n,m} \leq (m+1)^n$. In particular $c_{n,2} \leq 3^n$.

For a class $\mathcal C$ of convex bodies, $c_{n,m}^{\mathcal C}(A)$ is the smallest constant such that for any $K_1,\ldots,K_m\in\mathcal C$

$$\operatorname{vol}(A)^{m-1}\operatorname{vol}(A+K_1+\ldots,K_m)\leq c_{n,m}^{\mathcal{C}}(A)\prod_{i=1}^{m}\operatorname{vol}(A+K_i),$$

and $c_{n,m}^{\mathcal{C}} = \sup_{A \in \mathcal{C}} c_{n,m}^{\mathcal{C}}(A)$. Moreover, $c_{n,m}(A) = c_{n,m}^{\mathcal{K}}(A)$ and $c_{n,m} = c_{n,m}^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. For m = 2, we get that $c_{n,2}^{\mathcal{C}}(A)$ satisfies for any $B, C \in \mathcal{C}$

$$\operatorname{vol}(A)\operatorname{vol}(A+B+C) \le c_{n,2}^{\mathcal{C}}(A)\operatorname{vol}(A+B)\operatorname{vol}(A+C).$$

BOBKOV-Madiman (2012) proved that $c_{n,m} \leq (m+1)^n$. In particular $c_{n,2} \leq 3^n$.

F.-Madiman-Zvavitch (2023!) $c_{2,2}=1, c_{3,2}=4/3$ and let $\varphi=\frac{1+\sqrt{5}}{2}$ be the golden ratio. Then, for n>3

$$(4/3)^n \le c_{n,2} \le \varphi^n.$$

For a class C of convex bodies, $c_{n,m}^C(A)$ is the smallest constant such that for any $K_1, \ldots, K_m \in C$

$$\operatorname{vol}(A)^{m-1}\operatorname{vol}(A+K_1+\ldots,K_m)\leq c_{n,m}^{\mathcal{C}}(A)\prod_{i=1}^{m}\operatorname{vol}(A+K_i),$$

and $c_{n,m}^{\mathcal{C}} = \sup_{A \in \mathcal{C}} c_{n,m}^{\mathcal{C}}(A)$. Moreover, $c_{n,m}(A) = c_{n,m}^{\mathcal{K}}(A)$ and $c_{n,m} = c_{n,m}^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. For m = 2, we get that $c_{n,2}^{\mathcal{C}}(A)$ satisfies for any $B, C \in \mathcal{C}$

$$\operatorname{vol}(A)\operatorname{vol}(A+B+C) \le c_{n,2}^{\mathcal{C}}(A)\operatorname{vol}(A+B)\operatorname{vol}(A+C).$$

BOBKOV-Madiman (2012) proved that $c_{n,m} \leq (m+1)^n$. In particular $c_{n,2} \leq 3^n$. F.-Madiman-Zvavitch (2023!) $c_{2,2}=1$, $c_{3,2}=4/3$ and let $\varphi=\frac{1+\sqrt{5}}{2}$ be the golden ratio. Then, for n>3

$$(4/3)^n \le c_{n,2} \le \varphi^n.$$

Methods: Upper bound: we develop the volume of the sum with mixed volumes, use the Bézout type inequalities of Xiao '19 and optimize.

For a class $\mathcal C$ of convex bodies, $c_{n,m}^{\mathcal C}(A)$ is the smallest constant such that for any $K_1,\ldots,K_m\in\mathcal C$

$$\operatorname{vol}(A)^{m-1}\operatorname{vol}(A+K_1+\ldots,K_m)\leq c_{n,m}^{\mathcal{C}}(A)\prod_{i=1}^{m}\operatorname{vol}(A+K_i),$$

and $c_{n,m}^{\mathcal{C}} = \sup_{A \in \mathcal{C}} c_{n,m}^{\mathcal{C}}(A)$. Moreover, $c_{n,m}(A) = c_{n,m}^{\mathcal{K}}(A)$ and $c_{n,m} = c_{n,m}^{\mathcal{K}}$ where \mathcal{K} is the class of all convex bodies. For m = 2, we get that $c_{n,2}^{\mathcal{C}}(A)$ satisfies for any $B, C \in \mathcal{C}$

$$\operatorname{vol}(A)\operatorname{vol}(A+B+C) \le c_{n,2}^{\mathcal{C}}(A)\operatorname{vol}(A+B)\operatorname{vol}(A+C).$$

BOBKOV-Madiman (2012) proved that $c_{n,m} \leq (m+1)^n$. In particular $c_{n,2} \leq 3^n$.

F.-Madiman-Zvavitch (2023!) $c_{2,2}=1, c_{3,2}=4/3$ and let $\varphi=\frac{1+\sqrt{5}}{2}$ be the golden ratio. Then, for n>3

$$(4/3)^n \le c_{n,2} \le \varphi^n.$$

Methods: Upper bound: we develop the volume of the sum with mixed volumes, use the Bézout type inequalities of Xiao '19 and optimize.

Ndiaye (2023+) used his new Bézout inequalities for mixed volumes to prove:

$$c_{n,2} \le c_{n,m} \le \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$$

Plan

History

Prehistory: Brunn-Minkowski, Minkowski and Fenchel Betke-Weil's conjecture for mixed volumes

Bézout type inequalities

Bézout type inequality for mixed volumes Bézout type inequality for Minkowski sums Bézout inequality for sums with constant one

Courtade's conjecture

Generalization to measures

Minkowski and Fenchel's inequalities Bézout for rotation invariant measures

We look for which A and which class C of convex bodies, $c_{n,m}^C(A)=1$: for any $K_1,\ldots,K_m\in C$

$$\operatorname{vol}(A)^{m-1}\operatorname{vol}(A+K_1+\cdots+K_m)\leq \prod_{i=1}^m\operatorname{vol}(A+K_i),\quad (BS)$$

We look for which A and which class C of convex bodies, $c_{n,m}^C(A)=1$: for any $K_1,\ldots,K_m\in C$

$$vol(A)^{m-1}vol(A + K_1 + \dots + K_m) \le \prod_{i=1}^{m} vol(A + K_i),$$
 (BS)

By induction, if $\mathcal C$ is stable by sums, this is equivalent to $c_{n,2}^{\mathcal C}(A)=1$: for any $B,C\in\mathcal C$

$$vol(A)vol(A + B + C) \le vol(A + B)vol(A + C),$$
 (3B)

We look for which A and which class C of convex bodies, $c_{n,m}^C(A)=1$: for any $K_1,\ldots,K_m\in C$

$$\operatorname{vol}(A)^{m-1}\operatorname{vol}(A+K_1+\cdots+K_m) \leq \prod_{i=1}^m \operatorname{vol}(A+K_i), \quad (BS)$$

By induction, if $\mathcal C$ is stable by sums, this is equivalent to $c_{n,2}^{\mathcal C}(A)=1$: for any $B,C\in\mathcal C$

$$vol(A)vol(A + B + C) \le vol(A + B)vol(A + C),$$
 (3B)

F.-Madiman-Meyer-Zvavitch (2023!):

1) For any $A \in \mathcal{C}$, $c_{n,2}^{\mathcal{C}}(A) = 1$ iff for any $A \in \mathcal{C}$, $b_2^{\mathcal{C}}(A) \leq \frac{n}{n-1}$: for any $A, B, C \in \mathcal{C}$,

$$vol(A)V(A[n-2], B, C) \le \frac{n}{n-1}V(A[n-1], B)V(A[n-1], C).$$

We look for which A and which class C of convex bodies, $c_{n,m}^C(A)=1$: for any $K_1,\ldots,K_m\in C$

$$\operatorname{vol}(A)^{m-1}\operatorname{vol}(A+K_1+\cdots+K_m) \leq \prod_{i=1}^m \operatorname{vol}(A+K_i), \quad (BS)$$

By induction, if $\mathcal C$ is stable by sums, this is equivalent to $c_{n,2}^{\mathcal C}(A)=1$: for any $B,C\in\mathcal C$

$$vol(A)vol(A + B + C) \le vol(A + B)vol(A + C),$$
 (3B)

F.-Madiman-Meyer-Zvavitch (2023!):

1) For any $A \in \mathcal{C}$, $c_{n,2}^{\mathcal{C}}(A) = 1$ iff for any $A \in \mathcal{C}$, $b_2^{\mathcal{C}}(A) \leq \frac{n}{n-1}$: for any $A, B, C \in \mathcal{C}$,

$$vol(A)V(A[n-2], B, C) \le \frac{n}{n-1}V(A[n-1], B)V(A[n-1], C).$$

2) We conjecture that (3B) hold for any A, B, C zonoids and we proved it in \mathbb{R}^3 .

We look for which A and which class C of convex bodies, $c_{n,m}^C(A)=1$: for any $K_1,\ldots,K_m\in C$

$$\operatorname{vol}(A)^{m-1}\operatorname{vol}(A+K_1+\cdots+K_m) \leq \prod_{i=1}^m \operatorname{vol}(A+K_i), \quad (BS)$$

By induction, if $\mathcal C$ is stable by sums, this is equivalent to $c_{n,2}^{\mathcal C}(A)=1$: for any $B,C\in\mathcal C$

$$vol(A)vol(A + B + C) \le vol(A + B)vol(A + C),$$
 (3B)

F.-Madiman-Meyer-Zvavitch (2023!):

1) For any $A \in \mathcal{C}$, $c_{n,2}^{\mathcal{C}}(A) = 1$ iff for any $A \in \mathcal{C}$, $b_2^{\mathcal{C}}(A) \leq \frac{n}{n-1}$: for any $A, B, C \in \mathcal{C}$,

$$vol(A)V(A[n-2], B, C) \le \frac{n}{n-1}V(A[n-1], B)V(A[n-1], C).$$

- 2) We conjecture that (3B) hold for any A, B, C zonoids and we proved it in \mathbb{R}^3 .
- 3) We conjecture that (3B) holds for $A=B_2^n$ and B,C be any compact convex sets. We proved it if B is a zonoid.

We look for which A and which class C of convex bodies, $c_{n,m}^C(A)=1$: for any $K_1,\ldots,K_m\in C$

$$\operatorname{vol}(A)^{m-1}\operatorname{vol}(A+K_1+\cdots+K_m) \leq \prod_{i=1}^m \operatorname{vol}(A+K_i), \quad (BS)$$

By induction, if $\mathcal C$ is stable by sums, this is equivalent to $c_{n,2}^{\mathcal C}(A)=1$: for any $B,C\in\mathcal C$

$$vol(A)vol(A + B + C) \le vol(A + B)vol(A + C), \quad (3B)$$

F.-Madiman-Meyer-Zvavitch (2023!):

1) For any $A \in \mathcal{C}$, $c_{n,2}^{\mathcal{C}}(A) = 1$ iff for any $A \in \mathcal{C}$, $b_2^{\mathcal{C}}(A) \leq \frac{n}{n-1}$: for any $A, B, C \in \mathcal{C}$,

$$vol(A)V(A[n-2], B, C) \le \frac{n}{n-1}V(A[n-1], B)V(A[n-1], C).$$

- 2) We conjecture that (3B) hold for any A, B, C zonoids and we proved it in \mathbb{R}^3 .
- 3) We conjecture that (3B) holds for $A = B_2^n$ and B, C be any compact convex sets. We proved it if B is a zonoid.
- 4) From Böröczky-Hug's inequalities, (BS) holds for $A = B_2^n$ and K_2, \ldots, K_m zonoids. In the same way, the generalized Betke-Weil conjecture implies (BS) for $A = B_2^n$.

Plan

History

Prehistory: Brunn-Minkowski, Minkowski and Fenchel Betke-Weil's conjecture for mixed volumes

Bézout type inequalities

Bézout type inequality for mixed volumes Bézout type inequality for Minkowski sums Bézout inequality for sums with constant one Courtade's conjecture

Generalization to measures

Minkowski and Fenchel's inequalities Bézout for rotation invariant measures

1) Statement of the conjecture. Let B, C be compact convex sets in \mathbb{R}^n . Is it true that

$$(|B||C|)^{1/n} + (|B_2^n||B_2^n + B + C|)^{1/n} \le (|B_2^n + B||B_2^n + C|)^{1/n}?$$
 (CC)

1) Statement of the conjecture. Let B, C be compact convex sets in \mathbb{R}^n . Is it true that

$$(|B||C|)^{1/n} + (|B_2^n||B_2^n + B + C|)^{1/n} \le (|B_2^n + B||B_2^n + C|)^{1/n}? \quad (CC)$$

2) $\underline{n=2}$: More is true: (CC) holds for any convex set A instead of B_2^n !

1) Statement of the conjecture. Let B, C be compact convex sets in \mathbb{R}^n . Is it true that

$$(|B||C|)^{1/n} + (|B_2^n||B_2^n + B + C|)^{1/n} \le (|B_2^n + B||B_2^n + C|)^{1/n}? \quad (CC)$$

2) $\underline{n=2}$: More is true: (CC) holds for any convex set A instead of B_2^n !

Theorem (F.-Madiman-Meyer-Zvavitch 2022+)

Let A, B, C be convex compact sets in \mathbb{R}^2 . Then

$$\sqrt{|B||C|} + \sqrt{|A||A+B+C|} \le \sqrt{|A+B||A+C|}.$$

1) Statement of the conjecture. Let B, C be compact convex sets in \mathbb{R}^n . Is it true that

$$(|B||C|)^{1/n} + (|B_2^n||B_2^n + B + C|)^{1/n} \le (|B_2^n + B||B_2^n + C|)^{1/n}? \quad (CC)$$

2) $\underline{n=2}$: More is true: (CC) holds for any convex set A instead of B_2^n !

Theorem (F.-Madiman-Meyer-Zvavitch 2022+)

Let A, B, C be convex compact sets in \mathbb{R}^2 . Then

$$\sqrt{|B||C|} + \sqrt{|A||A+B+C|} \le \sqrt{|A+B||A+C|}.$$

The main tool is Fenchel's inequality:

$$(|A|V(B,C) - V(A,B)V(A,C))^2 \le (V(A,B)^2 - |A||B|) (V(A,C)^2 - |A||C|).$$

Plan

History

Prehistory: Brunn-Minkowski, Minkowski and Fenchel Betke-Weil's conjecture for mixed volumes

Bézout type inequalities

Bézout type inequality for mixed volumes Bézout type inequality for Minkowski sums Bézout inequality for sums with constant one Courtade's conjecture

Generalization to measures

Minkowski and Fenchel's inequalities

Bézout for rotation invariant measures

Definition

A Borel measure μ is F-concave on a class $\mathcal C$ of compact Borel subsets of $\mathbb R^n$ if there exists a continuous, strictly monotone function $F:(0,\mu(\mathbb R^n))\to (-\infty,\infty)$ such that, for every pair $K,L\in\mathcal C$ and every $\lambda\in[0,1]$, one has

$$\mu((1-\lambda)K + \lambda L) \ge F^{-1}((1-\lambda)F(\mu(K)) + \lambda F(\mu(L))).$$
 (1)

Definition

A Borel measure μ is F-concave on a class $\mathcal C$ of compact Borel subsets of $\mathbb R^n$ if there exists a continuous, strictly monotone function $F:(0,\mu(\mathbb R^n))\to(-\infty,\infty)$ such that, for every pair $K,L\in\mathcal C$ and every $\lambda\in[0,1]$, one has

$$\mu((1-\lambda)K+\lambda L) \ge F^{-1}\left((1-\lambda)F(\mu(K)) + \lambda F(\mu(L))\right). \tag{1}$$

When $F(x) = x^s, s > 0$ this can be written as

$$\mu((1-\lambda)K + \lambda L)^s \ge (1-\lambda)\mu(K)^s + \lambda\mu(L)^s,$$

and we say μ is s-concave.

Definition

A Borel measure μ is F-concave on a class $\mathcal C$ of compact Borel subsets of $\mathbb R^n$ if there exists a continuous, strictly monotone function $F:(0,\mu(\mathbb R^n))\to(-\infty,\infty)$ such that, for every pair $K,L\in\mathcal C$ and every $\lambda\in[0,1]$, one has

$$\mu((1-\lambda)K+\lambda L) \ge F^{-1}\left((1-\lambda)F(\mu(K)) + \lambda F(\mu(L))\right). \tag{1}$$

When $F(x) = x^s, s > 0$ this can be written as

$$\mu((1-\lambda)K + \lambda L)^s \ge (1-\lambda)\mu(K)^s + \lambda\mu(L)^s$$

and we say μ is s-concave. In the limit as $s \to 0$, we obtain the case of log-concavity:

$$\mu((1-\lambda)K + \lambda L) \ge \mu(K)^{1-\lambda}\mu(L)^{\lambda}.$$

The Gaussian Measure on \mathbb{R}^n is given by $d\gamma_n(x):=(2\pi)^{-n/2}e^{-|x|^2/2}dx$.

Definition

A Borel measure μ is F-concave on a class $\mathcal C$ of compact Borel subsets of $\mathbb R^n$ if there exists a continuous, strictly monotone function $F:(0,\mu(\mathbb R^n))\to(-\infty,\infty)$ such that, for every pair $K,L\in\mathcal C$ and every $\lambda\in[0,1]$, one has

$$\mu((1-\lambda)K+\lambda L) \ge F^{-1}\left((1-\lambda)F(\mu(K)) + \lambda F(\mu(L))\right). \tag{1}$$

When $F(x) = x^s, s > 0$ this can be written as

$$\mu((1-\lambda)K + \lambda L)^s \ge (1-\lambda)\mu(K)^s + \lambda\mu(L)^s$$

and we say μ is s-concave. In the limit as $s \to 0$, we obtain the case of log-concavity:

$$\mu((1-\lambda)K + \lambda L) \ge \mu(K)^{1-\lambda}\mu(L)^{\lambda}.$$

The Gaussian Measure on \mathbb{R}^n is given by $d\gamma_n(x) := (2\pi)^{-n/2} e^{-|x|^2/2} dx$.

Concavity of the Gaussian Measure

log-concave over compact Borel subsets of Rⁿ

Definition

A Borel measure μ is F-concave on a class $\mathcal C$ of compact Borel subsets of $\mathbb R^n$ if there exists a continuous, strictly monotone function $F:(0,\mu(\mathbb R^n))\to(-\infty,\infty)$ such that, for every pair $K,L\in\mathcal C$ and every $\lambda\in[0,1]$, one has

$$\mu((1-\lambda)K + \lambda L) \ge F^{-1}\left((1-\lambda)F(\mu(K)) + \lambda F(\mu(L))\right). \tag{1}$$

When $F(x) = x^s, s > 0$ this can be written as

$$\mu((1-\lambda)K + \lambda L)^s \ge (1-\lambda)\mu(K)^s + \lambda\mu(L)^s$$

and we say μ is s-concave. In the limit as $s \to 0$, we obtain the case of log-concavity:

$$\mu((1-\lambda)K + \lambda L) \ge \mu(K)^{1-\lambda}\mu(L)^{\lambda}.$$

The Gaussian Measure on \mathbb{R}^n is given by $d\gamma_n(x) := (2\pi)^{-n/2} e^{-|x|^2/2} dx$.

Concavity of the Gaussian Measure

- log-concave over compact Borel subsets of \mathbb{R}^n
- Let $\Phi(x)=\gamma_1((-\infty,x))$. Then, γ_n is Φ^{-1} concave on the set of compact Borel subsets of \mathbb{R}^n (Ehrhard, Borell)

Definition

A Borel measure μ is F-concave on a class $\mathcal C$ of compact Borel subsets of $\mathbb R^n$ if there exists a continuous, strictly monotone function $F:(0,\mu(\mathbb R^n))\to (-\infty,\infty)$ such that, for every pair $K,L\in\mathcal C$ and every $\lambda\in[0,1]$, one has

$$\mu((1-\lambda)K+\lambda L) \ge F^{-1}\left((1-\lambda)F(\mu(K)) + \lambda F(\mu(L))\right). \tag{1}$$

When $F(x) = x^s, s > 0$ this can be written as

$$\mu((1-\lambda)K + \lambda L)^s \ge (1-\lambda)\mu(K)^s + \lambda\mu(L)^s$$
,

and we say μ is s-concave. In the limit as $s \to 0$, we obtain the case of log-concavity:

$$\mu((1-\lambda)K + \lambda L) \ge \mu(K)^{1-\lambda}\mu(L)^{\lambda}.$$

The Gaussian Measure on \mathbb{R}^n is given by $d\gamma_n(x) := (2\pi)^{-n/2} e^{-|x|^2/2} dx$.

Concavity of the Gaussian Measure

- log-concave over compact Borel subsets of \mathbb{R}^n
- Let $\Phi(x) = \gamma_1((-\infty, x))$. Then, γ_n is Φ^{-1} concave on the set of compact Borel subsets of \mathbb{R}^n (Ehrhard, Borell)
- 1/n concave over the set of symmetric convex bodies (Gardner and Zvavitch, Kolesnikov and Livshyts, Eskenazis and Moschidis)

Mixed measures of Bodies

Definitions of mixed measures Let μ be a Borel measure on \mathbb{R}^n supported on a class $\mathcal C$ of compact Borel sets with non-empty interior closed under Minkowski addition. Then, for $A,B,C\in\mathcal C$:

-the mixed measure of (n-1) copies of A, one copy of B is

$$\mu(A;B) = \frac{\partial}{\partial t}\mu(A+tB)(0).$$

- the mixed measure of (n-2) copies of A, one copy of B and one copy of C is given by

$$\mu(A; B, C) = \frac{\partial^2}{\partial s \partial t} \mu(A + sB + tC)(0, 0).$$

Mixed measures of Bodies

Definitions of mixed measures Let μ be a Borel measure on \mathbb{R}^n supported on a class $\mathcal C$ of compact Borel sets with non-empty interior closed under Minkowski addition. Then, for $A,B,C\in\mathcal C$:

-the mixed measure of (n-1) copies of A, one copy of B is

$$\mu(A;B) = \frac{\partial}{\partial t}\mu(A+tB)(0).$$

- the mixed measure of (n-2) copies of A, one copy of B and one copy of C is given by

$$\mu(A; B, C) = \frac{\partial^2}{\partial s \partial t} \mu(A + sB + tC)(0, 0).$$

Theorem (Integral representation of mixed measure)

Let μ be a Borel measure on a class $\mathcal C$ of compacts sets closed under Minkowski addition. Suppose μ has differentiable density ϕ . For $A,B,C\in\mathcal C$ with A being C_+^2 , then one has

$$\begin{split} \mu(A;B,C) &:= (n-1) \int_{\mathbb{S}^{n-1}} \phi(n_A^{-1}(u)) h_C(u) dS_{A[n-2],B[1]}(u) \\ &+ \int_{\mathbb{S}^{n-1}} \langle \nabla \phi(n_A^{-1}(u)), \nabla h_B(u) \rangle h_C(u) dS_A(u). \end{split}$$

Gaussian Measure

• Denote by $\varphi(x) = \frac{e^{-|x|^2/2}}{(2\pi)^{n/2}}$ the density of the standard Gaussian measure.

$$\begin{split} \gamma_n(A;B,C) &= (n-1) \int_{\mathbb{S}^{n-1}} \varphi(|\nabla h_A(u)|) h_C(u) dS_{A[n-2],B[1]}(u) \\ &- \int_{\mathbb{S}^{n-1}} \langle \nabla h_A(u), \nabla h_B(u) \rangle h_C(u) \varphi(|\nabla h_A(u)|) dS_A(u) du. \end{split}$$

Gaussian Measure

• Denote by $\varphi(x)=rac{e^{-|x|^2/2}}{(2\pi)^{n/2}}$ the density of the standard Gaussian measure.

$$\gamma_n(A;B,C) = (n-1) \int_{\mathbb{S}^{n-1}} \varphi(|\nabla h_A(u)|) h_C(u) dS_{A[n-2],B[1]}(u)$$
$$- \int_{\mathbb{S}^{n-1}} \langle \nabla h_A(u), \nabla h_B(u) \rangle h_C(u) \varphi(|\nabla h_A(u)|) dS_A(u) du.$$

• **Example:** Let $B = [-\xi, \xi]$ for some $\xi \in \mathbb{S}^{n-1}$. Then, V(A[n-2], B, B) = 0. But,

$$\gamma_n(A; [-\xi, \xi], [-\xi, \xi]) = \int_{\mathbb{S}^{n-1}} \langle \nabla h_A(u), \xi \rangle \langle u, \xi \rangle \varphi(|\nabla h_A(u)|) dS_A(u) du.$$

Minkowski's First, Second and Quadratic Inequalities

Minkowski's First and Second Inequalities for *F*-concave measures:

Livshyts: Let μ be F-concave on a class of compact Borel sets $\mathcal C$. Assume that F increases. Then, for $K,L\in\mathcal C$, the function

$$f(\lambda)=F\left(\mu\left((1-\lambda)K+\lambda L\right)\right))-(1-\lambda)F(\mu(K))-\lambda F(\mu(L))$$
 is concave, non-negative and $f(0)=f(1)=0$ so $f'(0)\geq 0$ and $f''(0)\leq 0.$

$$\mu(K, L) \ge \mu(K, K) + \frac{F(\mu(L)) - F(\mu(K))}{F'(\mu(K))}.$$

(FLMZ): Furthermore, if μ also has differentiable density, then

$$-\frac{F''(\mu(K))}{F'(\mu(K))}\mu(K;L)^2 \ge \mu(K;L,L)$$

Minkowski's First, Second and Quadratic Inequalities

Minkowski's First and Second Inequalities for *F*-concave measures:

Livshyts: Let μ be F-concave on a class of compact Borel sets $\mathcal C$. Assume that F increases. Then, for $K,L\in\mathcal C$, the function

 $\begin{array}{l} f(\lambda) = F\left(\mu\left((1-\lambda)K + \lambda L\right)\right) - (1-\lambda)F(\mu(K)) - \lambda F(\mu(L)) \text{ is concave, non-negative and } f(0) = f(1) = 0 \text{ so } f'(0) \geq 0 \text{ and } f''(0) \leq 0. \end{array}$

$$\mu(K,L) \ge \mu(K,K) + \frac{F(\mu(L)) - F(\mu(K))}{F'(\mu(K))}.$$

(FLMZ): Furthermore, if μ also has differentiable density, then

$$-\frac{F''(\mu(K))}{F'(\mu(K))}\mu(K;L)^2 \ge \mu(K;L,L)$$

Fenchel inequality for mixed measures, FLMZ Let $f(s,t) = F(\mu(A+sB+tC))$. Then, if F increases, f is concave and so

$$\left(\frac{\partial^2 f}{\partial s \partial t}(0,0)\right)^2 \le \frac{\partial^2 f}{\partial s^2}(0,0)\frac{\partial^2 f}{\partial t^2}(0,0). \tag{2}$$

One has

$$\frac{\partial^{2} f}{\partial x^{2}}(0,0) = F''(\mu(A)) \mu(A;B)^{2} + F'(\mu(A)) \mu(A;B,B),$$

and similarly for $\frac{\partial^2 f}{\partial s^2}(0,0)$. But also, from the definition of $\mu(A;B,C)$, one has

$$\frac{\partial^2 f}{\partial s \partial t}(0,0)) = F^{\prime\prime}\left(\mu(A)\right) \mu(A;B) \mu(A;C) + F^{\prime}\left(\mu(A)\right) \mu(A;B,C).$$

Plan

History

Prehistory: Brunn-Minkowski, Minkowski and Fenchel Betke-Weil's conjecture for mixed volumes

Bézout type inequalities

Bézout type inequality for mixed volumes Bézout type inequality for Minkowski sums Bézout inequality for sums with constant one Courtade's conjecture

Generalization to measures

Minkowski and Fenchel's inequalities

Bézout for rotation invariant measures

Bézout for Measures

Generalization of Arstein-Avidan-Florentin-Ostrover's inequality:

Theorem

Let μ be a rotationally invariant log-concave measure with density $e^{-\varphi(|x|)}$. Then, for every R>0, $Z\in\mathcal{Z}^n$ and C, one has

$$\mu(RB_2^n; Z)\mu(RB_2^n; C) \ge A_{\mu, R} \frac{\kappa_{n-1}^2}{\kappa_{n-2}\kappa_n} \mu(RB_2^n) \mu(RB_2^n; Z, C),$$

where

$$A_{\mu,R} := \frac{n}{n+1} \left(1 + \frac{1}{n-\varphi'(R)R} \right) \ge 1; \quad \lim_{R \to 0} A_{\mu,R} = 1.$$

Bézout for Measures

Generalization of Arstein-Avidan-Florentin-Ostrover's inequality:

Theorem

Let μ be a rotationally invariant log-concave measure with density $e^{-\varphi(|x|)}$. Then, for every R>0, $Z\in\mathcal{Z}^n$ and C, one has

$$\mu(RB_2^n; Z)\mu(RB_2^n; C) \ge A_{\mu,R} \frac{\kappa_{n-1}^2}{\kappa_{n-2}\kappa_n} \mu(RB_2^n) \mu(RB_2^n; Z, C),$$

where

$$A_{\mu,R}:=\frac{n}{n+1}\left(1+\frac{1}{n-\varphi'(R)R}\right)\geq 1;\quad \lim_{R\to 0}A_{\mu,R}=1.$$

Gaussian Measure and R = 1

Fix $n \ge 2$. Let $Z \in \mathbb{Z}^n$, and $C \ni 0$. Then, one has

$$\gamma_n(B_2^n; Z)\gamma_n(B_2^n; C) \ge e^{-\frac{(2n+1)}{2(n+1)^2}} \frac{n}{n-1} \frac{\kappa_{n-1}^2}{\kappa_{n-2}\kappa_n} \gamma_n(B_2^n; Z, C).$$

Furthermore, this is sharper than in the above.

1) Hug-Schneider's conjecture: for any convex bodies:

$$V(K_1,\ldots,K_m,B_2^n[n-m]) \leq \frac{(n-m)!}{n!} v_{n-m} \left(\frac{n}{v_{n-1}}\right)^m \prod_{i=1}^m V(K_i,B_2^n[n-1]), \quad (HS)$$

with equality iff the affine hulls of K_i are pairwise orthogonal.

1) Hug-Schneider's conjecture: for any convex bodies:

$$V(K_1,\ldots,K_m,B_2^n[n-m]) \leq \frac{(n-m)!}{n!} v_{n-m} \left(\frac{n}{v_{n-1}}\right)^m \prod_{i=1}^m V(K_i,B_2^n[n-1]), \quad (HS)$$

with equality iff the affine hulls of K_i are pairwise orthogonal.

2) Courtade's conjecture: Let $n \ge 3$ and B, C be convex compact sets in \mathbb{R}^n . Then

$$(|B||C|)^{1/n} + (|B_2^n||B_2^n + B + C|)^{1/n} \le (|B_2^n + B||B_2^n + C|)^{1/n}$$
? (CC)

1) Hug-Schneider's conjecture: for any convex bodies:

$$V(K_1,\ldots,K_m,B_2^n[n-m]) \leq \frac{(n-m)!}{n!} v_{n-m} \left(\frac{n}{v_{n-1}}\right)^m \prod_{i=1}^m V(K_i,B_2^n[n-1]), \quad (HS)$$

with equality iff the affine hulls of K_i are pairwise orthogonal.

2) Courtade's conjecture: Let $n \ge 3$ and B, C be convex compact sets in \mathbb{R}^n . Then

$$(|B||C|)^{1/n} + (|B_2^n||B_2^n + B + C|)^{1/n} \le (|B_2^n + B||B_2^n + C|)^{1/n}$$
? (CC)

3) 3 zonoids' conjecture: Let $n \ge 4$. For any zonoids A, B, C in \mathbb{R}^n do we have

$$|A + B + C||A| \le |A + B||A + C|$$
? (3B)

4) Strong 3 zonoids' conjecture: Let $n \ge 3$. For any zonoids A, B, C in \mathbb{R}^n do we have

$$(|B||C|)^{1/n} + (|A||A + B + C|)^{1/n} \le (|A + B||A + C|)^{1/n}$$
?

End

Thank you!