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Bézout type inequalities
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Bézout inequality for sums with constant one
Courtade’s conjecture

Generalization to measures
Minkowski and Fenchel’s inequalities
Bézout for rotation invariant measures



Plan

History
Prehistory: Brunn-Minkowski, Minkowski and Fenchel
Betke-Weil’s conjecture for mixed volumes

Bézout type inequalities
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Prehistory: Brunn-Minkowski, Minkowski and Fenchel

Brunn-Minkowski’s inequality (19th century). Let A and B be two compact convex sets
in Rn. Then

voln(A + B)
1
n ≥ voln(A)

1
n + voln(B)

1
n .

Minkowski’s first and second inequalities (1903). Let A,B be compact convex sets. Let
f (λ) = voln ((1− λ)A + λB))

1
n − (1− λ)voln(A)

1
n − λvoln(B)

1
n . Then f ′(0) ≥ 0 and

f ′′(0) ≤ 0:

V(A[n− 1],B) ≥ vol(A)
n−1

n vol(B)
1
n and vol(A)V(A[n− 2],B[2]) ≤ V(A[n− 1],B)2.

Minkowski’s quadratic inequality. Let A,B,C be compact convex sets. Then

V(A[n− 2],B[2])V(A[n− 2]C[2]) ≤ V(A[n− 2],B,C)2.

Fenchel’s inequality (1936). Since f (s, t) = vol(A + sB + tC)
1
n is concave, one has

∂2f
∂s∂t (0, 0)2 ≤ ∂2f

∂s2 (0, 0) ∂
2f
∂t2

(0, 0). If one denotes V(B,C) = V(A[n− 2],B,C), this gives

(V(A,A)V(B,C)−V(A,B)V(A,C))2 ≤ (V(A,B)2−V(A,A)V(B,B))(V(A,C)2−V(A,A)V(C,C))

From the arithmetic-geometric inequality, we deduce

vol(A)V(A[n− 2],B,C) ≤ 2V(A[n− 1],B)V(A[n− 1],C).
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Betke-Weil’s conjecture for mixed volumes

Betke-Weil (1991): Let K1, . . . ,Km be convex compact sets in Rn. Then do we have:

( n
α1, . . . , αm

)
V(K1[α1], . . . ,Km[αm]) ≤

m∏
i=1

( n
αi

)
vn−αi

V(Ki[αi],Bn
2[n− αi]), (BW)

with equality iff dim(Ki) = αi and the affine hulls of Ki are pairwise orthogonal?
It’s true if n = 2: V(B,C) ≤ 1

2 V(B,B2
2)V(C,B2

2) = 1
8 |∂B||∂C|.

Hug-Schneider (2011) conjectured for any convex bodies and proved for zonoids:

V(K1, . . . ,Km,Bn
2[n− m]) ≤

(n− m)!

n!
vn−m

(
n

vn−1

)m m∏
i=1

V(Ki,Bn
2[n− 1]), (HS)

with equality iff the affine hulls of Ki are pairwise orthogonal.
Artstein-Florentin-Ostrover (2014) proved (HS) for m = 2 and K2 zonoid.
Böröczky-Hug (2020, 2021) proved (BW) for α1 = 1 and K3, . . . ,Km zonoids and
conjectured for any convex bodies and proved for K2, . . . ,Km zonoids:

( n
α1, . . . , αm+1

)
V(K1[α1], . . . ,Km[αm],Bn

2[αm+1]) ≤ vαm+1

m∏
i=1

( n
αi

)
vn−αi

V(Ki[αi],Bn
2[n−αi]),

with equality iff the affine hulls of Ki are pairwise orthogonal.



Betke-Weil’s conjecture for mixed volumes

Betke-Weil (1991): Let K1, . . . ,Km be convex compact sets in Rn. Then do we have:

( n
α1, . . . , αm

)
V(K1[α1], . . . ,Km[αm]) ≤

m∏
i=1

( n
αi

)
vn−αi

V(Ki[αi],Bn
2[n− αi]), (BW)

with equality iff dim(Ki) = αi and the affine hulls of Ki are pairwise orthogonal?

It’s true if n = 2: V(B,C) ≤ 1
2 V(B,B2

2)V(C,B2
2) = 1

8 |∂B||∂C|.
Hug-Schneider (2011) conjectured for any convex bodies and proved for zonoids:

V(K1, . . . ,Km,Bn
2[n− m]) ≤

(n− m)!

n!
vn−m

(
n

vn−1

)m m∏
i=1

V(Ki,Bn
2[n− 1]), (HS)

with equality iff the affine hulls of Ki are pairwise orthogonal.
Artstein-Florentin-Ostrover (2014) proved (HS) for m = 2 and K2 zonoid.
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Bézout type inequality for mixed volumes

Let us recall the definitions from Maud’s talk: for a class C of convex bodies, bCm(A) is
the smallest constant such that for any K1, . . . ,Km ∈ C

vol(A)m−1V(K1, . . . ,Km,A[n− m]) ≤ bCm(A)
m∏

i=1

V(Ki,A[n− 1]),

and bCm = supA∈C bCm(A). Moreover, bm(A) = bKm (A) and bm = bKm where K is the class
of all convex bodies. Let Z be the class of zonoids.
Hug-Schneider conjecture that bZm (Bn

2) = bm(Bn
2) and prove that

bZm (Bn
2) = vm−1

n
(n− m)!

n!
vn−m

(
n

vn−1

)m

, bZ2 (Bn
2) =

n
n− 1

vnvn−2

v2
n−1

.

Fenchel’s result implies that b2 = 2. Soprunov-Zvavitch (2015): bZm (A) ≤ mm−1

(m−1)! .

Brazitikos-Giannopoulos-Liakopoulos (2016): bm ≤ 22m−1−1.
Xiao (2019): bm ≤ nm−1 and
vol(A)V(B[j],C[k],A[n− j− k]) ≤ min(

(n
j

)
,
(n

k

)
)V(B[j],A[n− j])V(C[k],A[n− k]).

Ndiaye (2023+): bm ≤ min1≤k≤m 2
k(k−1)

2 nm−k

(m−k)! and more generalizations of Xiao.

Question: for any convex body A: bm(A) = bZm (A)? It would imply that bm = mm−1

(m−1)! .
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Bézout type inequality for mixed volumes

Let us recall the definitions from Maud’s talk: for a class C of convex bodies, bCm(A) is
the smallest constant such that for any K1, . . . ,Km ∈ C

vol(A)m−1V(K1, . . . ,Km,A[n− m]) ≤ bCm(A)
m∏

i=1

V(Ki,A[n− 1]),

and bCm = supA∈C bCm(A). Moreover, bm(A) = bKm (A) and bm = bKm where K is the class
of all convex bodies. Let Z be the class of zonoids.
Hug-Schneider conjecture that bZm (Bn

2) = bm(Bn
2) and prove that

bZm (Bn
2) = vm−1

n
(n− m)!

n!
vn−m

(
n

vn−1

)m

, bZ2 (Bn
2) =

n
n− 1

vnvn−2

v2
n−1

.

Fenchel’s result implies that b2 = 2. Soprunov-Zvavitch (2015): bZm (A) ≤ mm−1

(m−1)! .

Brazitikos-Giannopoulos-Liakopoulos (2016): bm ≤ 22m−1−1.
Xiao (2019): bm ≤ nm−1 and
vol(A)V(B[j],C[k],A[n− j− k]) ≤ min(

(n
j

)
,
(n

k

)
)V(B[j],A[n− j])V(C[k],A[n− k]).

Ndiaye (2023+): bm ≤ min1≤k≤m 2
k(k−1)

2 nm−k

(m−k)! and more generalizations of Xiao.

Question: for any convex body A: bm(A) = bZm (A)? It would imply that bm = mm−1

(m−1)! .



Plan

History
Prehistory: Brunn-Minkowski, Minkowski and Fenchel
Betke-Weil’s conjecture for mixed volumes
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Bézout type inequality for Minkowski sums

For a class C of convex bodies, cCn,m(A) is the smallest constant such that for any
K1, . . . ,Km ∈ C

vol(A)m−1vol(A + K1 + . . . ,Km) ≤ cCn,m(A)
m∏

i=1

vol(A + Ki),

and cCn,m = supA∈C cCn,m(A). Moreover, cn,m(A) = cKn,m(A) and cn,m = cKn,m where K is
the class of all convex bodies. For m = 2, we get that cCn,2(A) satisfies for any B,C ∈ C

vol(A)vol(A + B + C) ≤ cCn,2(A)vol(A + B)vol(A + C).

BOBKOV-Madiman (2012) proved that cn,m ≤ (m + 1)n. In particular cn,2 ≤ 3n.

F.-Madiman-Zvavitch (2023!) c2,2 = 1, c3,2 = 4/3 and let ϕ = 1+
√

5
2 be the golden ratio.

Then, for n ≥ 3
(4/3)n ≤ cn,2 ≤ ϕn.

Methods: Upper bound: we develop the volume of the sum with mixed volumes, use
the Bézout type inequalities of Xiao ’19 and optimize.
Ndiaye (2023+) used his new Bézout inequalities for mixed volumes to prove:

cn,2 ≤ cn,m ≤
( n
b n

2 c

)
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Bézout type inequality for Minkowski sums

For a class C of convex bodies, cCn,m(A) is the smallest constant such that for any
K1, . . . ,Km ∈ C

vol(A)m−1vol(A + K1 + . . . ,Km) ≤ cCn,m(A)
m∏

i=1

vol(A + Ki),

and cCn,m = supA∈C cCn,m(A). Moreover, cn,m(A) = cKn,m(A) and cn,m = cKn,m where K is
the class of all convex bodies. For m = 2, we get that cCn,2(A) satisfies for any B,C ∈ C

vol(A)vol(A + B + C) ≤ cCn,2(A)vol(A + B)vol(A + C).

BOBKOV-Madiman (2012) proved that cn,m ≤ (m + 1)n. In particular cn,2 ≤ 3n.

F.-Madiman-Zvavitch (2023!) c2,2 = 1, c3,2 = 4/3 and let ϕ = 1+
√

5
2 be the golden ratio.

Then, for n ≥ 3
(4/3)n ≤ cn,2 ≤ ϕn.

Methods: Upper bound: we develop the volume of the sum with mixed volumes, use
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Bézout inequality for sums with constant one

We look for which A and which class C of convex bodies, cCn,m(A) = 1: for any
K1, . . . ,Km ∈ C

vol(A)m−1vol(A + K1 + · · ·+ Km) ≤
m∏

i=1

vol(A + Ki), (BS)

By induction, if C is stable by sums, this is equivalent to cCn,2(A) = 1: for any B,C ∈ C

vol(A)vol(A + B + C) ≤ vol(A + B)vol(A + C), (3B)

F.-Madiman-Meyer-Zvavitch (2023!):
1) For any A ∈ C, cCn,2(A) = 1 iff for any A ∈ C, bC2 (A) ≤ n

n−1 : for any A,B,C ∈ C,

vol(A)V(A[n− 2],B,C) ≤
n

n− 1
V(A[n− 1],B)V(A[n− 1],C).

2) We conjecture that (3B) hold for any A,B,C zonoids and we proved it in R3.
3) We conjecture that (3B) holds for A = Bn

2 and B,C be any compact convex sets. We
proved it if B is a zonoid.
4) From Böröczky-Hug’s inequalities, (BS) holds for A = Bn

2 and K2, . . . ,Km zonoids. In
the same way, the generalized Betke-Weil conjecture implies (BS) for A = Bn

2.
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Courtade’s conjecture (2018)

1) Statement of the conjecture. Let B,C be compact convex sets in Rn. Is it true that

(|B||C|)1/n + (|Bn
2||B

n
2 + B + C|)1/n ≤ (|Bn

2 + B||Bn
2 + C|)1/n? (CC)

2) n = 2: More is true: (CC) holds for any convex set A instead of Bn
2!

Theorem (F.-Madiman-Meyer-Zvavitch 2022+)
Let A,B,C be convex compact sets in R2. Then√

|B||C|+
√
|A||A + B + C| ≤

√
|A + B||A + C|.

The main tool is Fenchel’s inequality:

(|A|V(B,C)− V(A,B)V(A,C))2 ≤
(

V(A,B)2 − |A||B|
)(

V(A,C)2 − |A||C|
)
.
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F-concavity

Definition
A Borel measure µ is F-concave on a class C of compact Borel subsets of Rn if there
exists a continuous, strictly monotone function F : (0, µ(Rn))→ (−∞,∞) such that,
for every pair K, L ∈ C and every λ ∈ [0, 1], one has

µ((1− λ)K + λL) ≥ F−1 ((1− λ)F(µ(K)) + λF(µ(L))) . (1)

When F(x) = xs, s > 0 this can be written as

µ((1− λ)K + λL)s ≥ (1− λ)µ(K)s + λµ(L)s,

and we say µ is s-concave. In the limit as s→ 0, we obtain the case of log-concavity:

µ((1− λ)K + λL) ≥ µ(K)1−λµ(L)λ.

The Gaussian Measure on Rn is given by dγn(x) := (2π)−n/2e−|x|
2/2dx.

Concavity of the Gaussian Measure
• log-concave over compact Borel subsets of Rn

• Let Φ(x) = γ1((−∞, x)). Then, γn is Φ−1 concave on the set of compact Borel
subsets of Rn (Ehrhard, Borell)

• 1/n concave over the set of symmetric convex bodies (Gardner and Zvavitch,
Kolesnikov and Livshyts, Eskenazis and Moschidis)
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When F(x) = xs, s > 0 this can be written as

µ((1− λ)K + λL)s ≥ (1− λ)µ(K)s + λµ(L)s,

and we say µ is s-concave. In the limit as s→ 0, we obtain the case of log-concavity:

µ((1− λ)K + λL) ≥ µ(K)1−λµ(L)λ.

The Gaussian Measure on Rn is given by dγn(x) := (2π)−n/2e−|x|
2/2dx.

Concavity of the Gaussian Measure
• log-concave over compact Borel subsets of Rn

• Let Φ(x) = γ1((−∞, x)). Then, γn is Φ−1 concave on the set of compact Borel
subsets of Rn (Ehrhard, Borell)

• 1/n concave over the set of symmetric convex bodies (Gardner and Zvavitch,
Kolesnikov and Livshyts, Eskenazis and Moschidis)
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Mixed measures of Bodies
Definitions of mixed measures Let µ be a Borel measure on Rn supported on a class C
of compact Borel sets with non-empty interior closed under Minkowski addition. Then,
for A,B,C ∈ C:
-the mixed measure of (n− 1) copies of A, one copy of B is

µ(A; B) =
∂

∂t
µ(A + tB)(0).

- the mixed measure of (n− 2) copies of A, one copy of B and one copy of C is given by

µ(A; B,C) =
∂2

∂s∂t
µ(A + sB + tC)(0, 0).

Theorem (Integral representation of mixed measure)
Let µ be a Borel measure on a class C of compacts sets closed under Minkowski
addition. Suppose µ has differentiable density φ. For A,B,C ∈ C with A being C2

+, then
one has

µ(A; B,C) := (n− 1)

∫
Sn−1

φ(n−1
A (u))hC(u)dSA[n−2],B[1](u)

+

∫
Sn−1
〈∇φ(n−1

A (u)),∇hB(u)〉hC(u)dSA(u).
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Gaussian Measure

• Denote by ϕ(x) = e−|x|
2/2

(2π)n/2 the density of the standard Gaussian measure.

γn(A; B,C) = (n− 1)

∫
Sn−1

ϕ(|∇hA(u)|)hC(u)dSA[n−2],B[1](u)

−
∫
Sn−1
〈∇hA(u),∇hB(u)〉hC(u)ϕ(|∇hA(u)|)dSA(u)du.

• Example: Let B = [−ξ, ξ] for some ξ ∈ Sn−1. Then, V(A[n− 2],B,B) = 0. But,

γn(A; [−ξ, ξ], [−ξ, ξ]) =

∫
Sn−1
〈∇hA(u), ξ〉〈u, ξ〉ϕ(|∇hA(u)|)dSA(u)du.
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Minkowski’s First, Second and Quadratic Inequalities
Minkowski’s First and Second Inequalities for F-concave measures:
Livshyts: Let µ be F-concave on a class of compact Borel sets C. Assume that F
increases. Then, for K, L ∈ C, the function
f (λ) = F (µ ((1− λ)K + λL)))− (1− λ)F(µ(K))− λF(µ(L)) is concave, non-negative
and f (0) = f (1) = 0 so f ′(0) ≥ 0 and f ′′(0) ≤ 0.

µ(K, L) ≥ µ(K,K) +
F(µ(L))− F(µ(K))

F′(µ(K))
.

(FLMZ): Furthermore, if µ also has differentiable density, then

−
F′′(µ(K))

F′(µ(K))
µ(K; L)2 ≥ µ(K; L, L)

Fenchel inequality for mixed measures, FLMZ Let f (s, t) = F(µ(A + sB + tC)). Then, if
F increases, f is concave and so(

∂2f
∂s∂t

(0, 0))

)2

≤
∂2f
∂s2

(0, 0)
∂2f
∂t2

(0, 0). (2)

One has
∂2f
∂s2

(0, 0) = F′′ (µ(A))µ(A; B)2 + F′ (µ(A))µ(A; B,B),

and similarly for ∂
2f
∂s2 (0, 0). But also, from the definition of µ(A; B,C), one has

∂2f
∂s∂t

(0, 0)) = F′′ (µ(A))µ(A; B)µ(A; C) + F′ (µ(A))µ(A; B,C).
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Plan

History
Prehistory: Brunn-Minkowski, Minkowski and Fenchel
Betke-Weil’s conjecture for mixed volumes

Bézout type inequalities
Bézout type inequality for mixed volumes
Bézout type inequality for Minkowski sums
Bézout inequality for sums with constant one
Courtade’s conjecture

Generalization to measures
Minkowski and Fenchel’s inequalities
Bézout for rotation invariant measures



Bézout for Measures
Generalization of Arstein-Avidan-Florentin-Ostrover’s inequality:

Theorem
Let µ be a rotationally invariant log-concave measure with density e−ϕ(|x|). Then, for
every R > 0, Z ∈ Zn and C, one has

µ(RBn
2; Z)µ(RBn

2; C) ≥ Aµ,R
κ2

n−1

κn−2κn
µ(RBn

2)µ(RBn
2; Z,C),

where

Aµ,R :=
n

n + 1

(
1 +

1
n− ϕ′(R)R

)
≥ 1; lim

R→0
Aµ,R = 1.

Gaussian Measure and R = 1
Fix n ≥ 2. Let Z ∈ Zn, and C 3 0. Then, one has

γn(Bn
2; Z)γn(Bn

2; C) ≥ e
− (2n+1)

2(n+1)2 n
n− 1

κ2
n−1

κn−2κn
γn(Bn

2)γn(Bn
2; Z,C).

Furthermore, this is sharper than in the above.
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Open questions

1) Hug-Schneider’s conjecture: for any convex bodies:

V(K1, . . . ,Km,Bn
2[n− m]) ≤

(n− m)!

n!
vn−m

(
n

vn−1

)m m∏
i=1

V(Ki,Bn
2[n− 1]), (HS)

with equality iff the affine hulls of Ki are pairwise orthogonal.
2) Courtade’s conjecture: Let n ≥ 3 and B,C be convex compact sets in Rn. Then

(|B||C|)1/n + (|Bn
2||B

n
2 + B + C|)1/n ≤ (|Bn

2 + B||Bn
2 + C|)1/n ? (CC)

3) 3 zonoids’ conjecture: Let n ≥ 4. For any zonoids A,B,C in Rn do we have

|A + B + C||A| ≤ |A + B||A + C|? (3B)

4) Strong 3 zonoids’ conjecture: Let n ≥ 3. For any zonoids A,B,C in Rn do we have

(|B||C|)1/n + (|A||A + B + C|)1/n ≤ (|A + B||A + C|)1/n?
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End

Thank you!
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