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Convex Geometry and Information Theory



Part 1: Brunn–Minkowski inequalities



The Brunn–Minkowski inequality

Given Borel sets A,B ⊆ Rn and 0 < t < 1 we consider the Minkowski
combination

(1− t)A + tB = {(1− t)a + tb : a ∈ A, b ∈ B} .

Theorem (Brunn–Minkowski)
We have

Vol ((1− t)A + tB)
1
n ≥ (1− t) Vol (A)

1
n + t Vol (B)

1
n .

where Vol (·) is the usual (Lebesgue) volume.

By homogeneity of volume this is of course the same as
Vol (A + B)

1
n ≥ Vol(A) 1

n + Vol(B) 1
n , but our formulation generalizes

better.



Borell–Brascamp–Lieb

We characterize all measures that satisfy a Brunn–Minkowski inequality:

Theorem (Borell, Brascamp–Lieb)
Let µ be a Borel measure on Rn with density f . Fix κ ∈ [−∞, 1n ]. Then
the following are equivalent:
1. For all Borel sets A,B ⊆ Rn such that µ(A)µ(B) > 0 and 0 < t < 1

we have

µ ((1− t)A + tB) ≥ ((1− t)µ(A)κ + tµ(B)κ)
1
κ .

2. For all x , y ∈ Rn such that f (x)f (y) > 0 and 0 < t < 1 we have

f ((1− t)x + ty) ≥ ((1− t)f (x)α + tf (y)α)
1
α ,

where 1
α + n = 1

κ .

The cases α, κ ∈ {−∞, 0,+∞} are interpreted in the limiting sense.
This theorem can be further extended to weighted Riemannian manifolds
and beyond, but we will stick to Rn for this talk.



Our main example: The Gaussian measure
We denote by γ the Gaussian measure on Rn, i.e.

dγ
dx = ϕ(x) = 1

(2π)n/2 e
−|x |2/2.

Since |x |2 /2 is convex, ϕ is log-concave, i.e.

ϕ ((1− t)x + ty) ≥ ϕ(x)1−tϕ(t)t

(i.e. α = 0 in the Borell–Brascamp–Lieb theorem). Therefore for all
Borel A,B ⊆ Rn we have

γ ((1− t)A + tB) ≥ γ(A)1−tγ(B)t .

(i.e. κ = 0 in the theorem). However, in general we do not expect an
inequality of the form

γ ((1− t)A + tB) ≥ ((1− t)γ(A)κ + tγ(B)κ)1/κ

for any κ > 0. This can be checked directly by taking B = {x} and
letting |x | → ∞.



Beyond Borell–Brascamp–Lieb

Can we do better than the inequality

γ ((1− t)A + tB) ≥ γ(A)1−tγ(B)t

if we assume more on the sets A and B? Taking them to be convex will
not help.

Question (Gardner-Zvavitch 2010)
If K ,T ⊆ Rn are convex and 0 ∈ K ∩ T , can it be true that

γ ((1− t)K + tT )
1
n ≥ (1− t)γ(K ) 1

n + tγ(T ) 1
n ?

By taking K and T to be “very small” it is easy to see that the exponent
1
n is the best possible.

Nayar and Tkocz found a counterexample, but conjectured the inequality
is true if we replace the assumption 0 ∈ K ∩ T with the stronger
assumption that K and T are centrally symmetric (K = −K and
T = −T , i.e. if x ∈ K then −x ∈ K ).



Infinitesimal formulation

Since we want to prove concavity of the functional

ρ(t) = γ ((1− t)K + tT )
1
n ,

a natural idea is to check that ρ′′(0) ≤ 0.
I Kolesnikov–Milman computed this derivative, and introduced a new

idea to transform the resulting inequality from ∂K to the interior of
K . They used this idea to prove a Brunn–Minkowski inequality on
weighted manifolds under curvature conditions, recovering in
particular Borel–Brascamp–Lieb.

I Kolesnikov-Livshyts applied these ideas to our problem, and noticed
that the curvature condition of Kolesnikov-Milman only has to hold
“on average” in order to have

γ ((1− t)K + tT )
1
n ≥ (1− t)γ(K ) 1

n + tγ(T ) 1
n .



A sufficient condition

Theorem (Kolesnikov–Livshyts, specialized to the measure γ)
Assume that for every symmetric convex body K ⊆ Rn and every smooth
even function u : K → R such that Lu := ∆u − 〈∇u, x〉 = 1 we have∫

K

(∥∥∇2u
∥∥2 + |∇u|2

)
dγ ≥ κ · γ(K ).

Then for all convex and symmetric K ,T ⊆ Rn we have

γ ((1− t)K + tT )κ ≥ (1− t)γ(K )κ + tγ(T )κ.

Theorem (Kolesnikov–Livshyts)
The inequality holds with κ = 1

2n , even if we only assume that 0 ∈ K ∩T.



A complete solution

Theorem (Eskenazis–Moschidis)
For every symmetric convex body K ⊆ Rn and every even smooth
function u : K → R with Lu ≡ 1 we have∫

K

(∥∥∇2u
∥∥2 + |∇u|2

)
dγ ≥ 1

nγ(K ).

Therefore, for all convex and symmetric K ,T ⊆ Rn we have

γ ((1− t)K + tT )
1
n ≥ (1− t)γ(K ) 1

n + tγ(T ) 1
n .

The proof is a clever application of the Gaussian Poincaré inequality: For
every smooth f : Rn → R we have

Varγ f ≤
∫
|∇f |2 dγ.



Other measures

Theorem (Cordero-Erausquin–R.)
Let w : (0,∞)→ R be a non-decreasing function such that t 7→ w(et) is
convex. Consider the measure µ with density e−w(|x |). Then for all
convex and symmetric K ,T ⊆ Rn we have

µ ((1− t)K + tT )
1
n ≥ (1− t)µ(K ) 1

n + tµ(T ) 1
n .

Examples include dµ
dx = e−|x |p for p > 0 and dµ

dx = 1
(1+|x |2)β for β > 0

(for which Borel–Brascamp–Lieb does not apply for any value of the
parameters!). For this talk we will concentrate on the simplest case of
the Gaussian measure γ.



Part 2: Concavity of entropy



What does this have to do with information theory?

There is a well known (yet slightly mysterious) connection between
convex geometry and information theory.

Given a probability measure µ on Rn with density f , the (differential)
entropy of µ is defined by

h (µ) = −
∫

f log f dx = −
∫

log f dµ.

If µ is uniform on a body K then f = 1
|K |1K and h(µ) = log Vol(K ). In

fact if µ is any probability measure supported on K we have by Jensen’s
inequality

h(µ) =
∫

K
log
(
1
f

)
f dx ≤ log

(∫
K

1
f f dx

)
= log Vol(K ).

So we think of eh(µ) as analogous to Vol(K ).



The Entropy Power Inequality

If eh(µ) is analogous to Vol(K ), what is the analogue of the
Brunn–Minkowski inequality? It is usually considered to be:

Theorem (Entropy Power Inequality, Shannon–Stam)
For all probability measures µ and ν on Rn we have

e 2
n h(µ∗ν) ≥ e 2

n h(µ) + e 2
n h(ν),

where µ ∗ ν denotes the convolution (corresponding to sum of
independent random variables).
This looks similar to Brunn–Minkowski, but doesn’t formally imply or is
implied by it. By taking µ and ν to be uniform on A and B respectively
we get

|A + B|
2
n ≥ |A|

2
n + |B|

2
n

since µ ∗ ν is supported on A + B. But we can do better!



Optimal transport

Instead of considering µ ∗ ν, we consider another way to interpolate
between µ and ν. We do so using the standard notion of optimal
transport.

Given probability measures µ and ν, we say that T]µ = ν (“T pushes µ
to ν”) if for all B ⊆ Rn we have

µ
(
T−1(B)

)
= ν(B).

Our goal is to find the “most efficient” transport map, i.e. to minimize∫
|x − Tx |2 dµ(x)

over all transport maps T pushing µ to ν.



The Brenier map

Let P2 = P2 (Rn) denote the class of all probability measures on Rn with
finite second moment.

Theorem (Brenier)
If µ, ν ∈ P2 (Rn) and µ is absolutely continuous, then the minimization
problem

min
{∫
|x − Tx |2 dµ(x) : T]µ = ν

}
has a unique solution. Moreover this solution is characterize by being the
unique transport map which is the gradient of a convex function,
T = ∇ϕ.
We define the 2-Wasserstein distance on P2 by

W 2
2 (µ, ν) = min

{∫
|x − Tx |2 dµ(x) : T]µ = ν

}
(at least when the measures have a density)



Displacement concavity

Once we have a metric space, we can construct geodesics. Given
µ0, µ1 ∈ P2 with Brenier map T]µ0 = µ1, define

µt = ((1− t) · Id + tT )] µ0.

Since Tt = (1− t)Id + tT is a Brenier map (being the gradient of a
convex function), we can compute and see that
W2 (µ0, µt) = tW2(µ0, µ1) and W2 (µt , µ1) = (1− t)W2 (µ). So
{µt}t∈[0,1] is the geodesic connecting µ0 and µ1, called the displacement
interpolation.

We say that F : P2 → R is displacement concave if F (µt) is concave in t
for every such interpolation {µt}t∈[0,1].



An Entropic Brunn–Minkowski, again

Theorem (Erbar–Kuwada–Sturm, 2015 (?))
e 1

n h(µ) is displacement concave on P2 (Rn). Equivalently, for every
displacement interpolation {µt}t∈[0,1] we have

e 1
n h(µt ) ≥ (1− t)e 1

n h(µ0) + t · e 1
n h(µ1).

By taking µ0,µ1 to be uniform on A,B we get the usual
Brunn–Minkowski,

|(1− t)A + tB|
1
n ≥ (1− t) |A|

1
n + t |B|

1
n .



Proof Sketch

e 1
n h(µt ) ≥ (1− t)e 1

n h(µ0) + t · e 1
n h(µ1)

Let ft denote the density of µt . Since Tt = (1− t) Id + tT pushes µ0 to
µt we have by change of variables:

det (DTt(x)) = f0(x)
ft (Ttx) .

We now compute

h(µt) = −
∫

log ft(y)dµt(y) = −
∫

log (ft (Ttx)) dµ0(x)

= −
∫

log
(

f0(x)
detDTt(x)

)
dµ0(x)

= h(µ0) +
∫

log

det ((1− t)Id + tDT )︸ ︷︷ ︸
At

 dµ0,



Proof Sketch – Contd.

e 1
n h(µt ) ≥ (1− t)e 1

n h(µ0) + t · e 1
n h(µ1)

We saw h(µt) = C +
∫

log (detAt) dµ0. The function
M(x , y) = log ((1− t)ex + tey ) is convex, and so

M
(
1
nh (µ0) , 1nh(µ1)

)
= C

n + M
(∫

log (detA0)
1
n dµ0,

∫
log (detA1)

1
n dµ0

)
≤ C

n +
∫

M
(

log (detA0)
1
n , log (detA1)

1
n
)

dµ0

= C
n +

∫
log
(

(1− t) (detA0)
1
n + t (detA1)

1
n
)

dµ0

≤ C
n +

∫
log (detAt)

1
n dµ0 = 1

nh(µt).



General measures

To discuss other measures, we generalize entropy to relative entropy (or
Kullback–Leibler divergence). Given a reference measure ν we define

D(µ‖ν) =
∫

log
(

dµ
dν

)
dµ

(if µ is absolutely continuous with respect to ν). Again if µ = νA, i.e.

µ(B) = ν (B ∩ A)
ν(A)

then −D(νA‖ν) = log ν(A), and more generally if µ is supported on A
then −D(µ‖ν) ≤ log ν(A).

Therefore we think of e−D(µ‖ν) as the entropic analogue of ν(A).



Borell–Brascamp–Lieb for relative entropy

Theorem (Erbar–Kuwada–Sturm)
Let ν be a Borel measure on Rn with density g. Fix 0 ≤ κ ≤ 1

n . Then
the following are equivalent:

1. For every displacement interpolation {µt}t∈[0,1] in P2 (Rn) we have

e−κD(µt‖ν) ≥ (1− t)e−κD(µ0‖ν) + te−κD(µ1‖ν)

2. For all x , y ∈ Rn such that g(x)g(y) > 0 and 0 < t < 1 we have

g ((1− t)x + ty) ≥ ((1− t)g(x)α + tg(y)α)
1
α ,

where 1
α + n = 1

κ .
This implies the classical Borell–Brascamp–Lieb. The full theorem is
more general, considering weighted Riemannian manifolds satisfying a
CD(K ,N) condition and even more general metric measure spaces.



Part 3: The obvious question



Beyond the general inequality

Consider the Gaussian γ as our reference measure. We have the general
theorem for the case κ = 0, i.e.

−D(µt‖γ) ≥ −(1− t) D(µ0‖γ)− t D(µ1‖γ) ,

but nothing better can hold for arbitrary interpolations {µt}t∈[0,1] . But
what if we add symmetry?

Note that if µt is the law of a N(0, t) random variable then {µt}t≥0 is a
displacement interpolation, and

−D(µt‖γ) = 1
2 (1− t + log t) .

This is concave function on (0,∞), but e−κD(µt‖γ) is not concave on
(0,∞) for any κ > 0. However, e−D(µt‖γ) is concave for t ∈ [0, 1].



The general theorem

Theorem (Aishwarya–R.)
Let {µt}t∈[0,1] be a displacement interpolation in P2 (Rn) between two
even measures µ0 and µ1.
Assume every µt satisfies a Poincaré inequality with constant 1, i.e.

Varµt ψ ≤
∫
|∇ψ|2 dµt . (?)

Then we have

e− 1
n D(µt‖γ) ≥ (1− t)e− 1

n D(µ0‖γ) + te− 1
n D(µ1‖γ).

This explains the previous observation: If µt is the law of N(0, t) then µt
satisfies (?) iff t ≤ 1. Of course in general this condition is not easy to
check.



Useful corollaries – a Gaussian endpoint

Corollary
Let {µt}t∈[0,1] be a displacement interpolation in P2 (Rn) between
µ0 = γ and µ1 which is even and log-concave with respect to γ (i.e. dµ1

dγ
is log-concave). Then

e− 1
n D(µt‖γ) ≥ (1− t)e− 1

n D(µ0‖γ) + te− 1
n D(µ1‖γ)

Proof.
By Caffarelli contraction theorem the Brenier map T from µ0 to µ1 is a
contraction. Therefore so is

Tt = (1− t)Id + tT .

Therefore, since µ0 = γ satisfies Poincaré with constant 1, so does every
measure µt = (Tt)] (µ0).



Useful corollaries – dimension n = 1

Corollary
Let {µt}t∈[0,1] be a displacement interpolation in P2

(
R1) between µ0

and µ1 which are both even and log-concave with respect to γ. Then

e−D(µt‖γ) ≥ (1− t)e−D(µ0‖γ) + te−D(µ1‖γ)

Proof.
Let T0 and T1 be the Brenier maps between γ and µ0, µ1. In dimension
n = 1 the composition of Brenier maps is a Brenier map (since “gradient
a of convex function” = “increasing”). From this one can show that

((1− t)T0 + tT1)] (γ) = µt .

By Caffarelli T0 and T1 are contractions, hence so is (1− t)T0 + tT1, so
µt satisfies Poincaré with constant 1.



Proof sketch

e− 1
n D(µt‖γ) ≥ (1− t)e− 1

n D(µ0‖γ) + te− 1
n D(µ1‖γ)

The idea is similar to the geometric case: we define ρ(t) = e− 1
n D(µt‖γ)

and prove that ρ′′(t) ≤ 0 for all t ∈ [0, 1].
Denote by ft the density of µt , by T the Brenier map, and as usual
Tt(x) = (1− t)x + tTx .
The standard conservation of mass formula states that ft satisfies a PDE

∂ft
∂t + div (ft∇θt) = 0.

Here ∇θt is the velocity vector field of the transport, that is
d
dt Tt(x) = ∇θt (Tt(x)) .

∇θt is indeed the gradient of a potential θt , and moreover this potential
itself satisfies the PDE

∂θt
∂t + |∇θt |2

2 = 0.



Proof sketch – Contd.

ρ(t) = e− 1
n D(µt‖γ)

Since we have formulas for all time derivatives, we can compute ρ′′. Let
Lu = ∆u − 〈∇u, x〉 denote the Ornstein-Uhlenbeck generator. Then

d
dt D(µt‖γ) = −

∫
(Lθt) dµt

and
d2

dt2 D(µt‖γ) =
∫ (∥∥∇2θt

∥∥+ |∇θt |2
)

dµt .

Therefore the claim ρ′′(t) ≤ 0 is the same as∫ (∥∥∇2θt
∥∥+ |∇θt |2

)
dµt ≥

1
n

(∫
(Lθt) dµt

)2
.

But θt is even, and this inequality holds for all even functions! It is
exactly the Kolesnikov-Livshyts criterion in the geometric case, that was
proved by Eskenazis–Moschidis (when Lθ ≡ 1).



Proof sketch – Contd.

∫ (∥∥∇2θ
∥∥+ |∇θ|2

)
dµ ≥ 1

n

(∫
(Lθ) dµ

)2

Define a function u = θ − a
2n |x |

2 where a =
∫

(Lθ) dµ. Apply Poincaré
to partial derivatives ∂iu to get∫ ∥∥∇2u

∥∥2 dµ ≥
∫
|∇u|2 dµ ≥

∫ (
|∇θ|2 − 2a

n 〈∇θ, x〉
)

dµ.

On the other hand an explicit computation gives∥∥∇2θ
∥∥2 =

∥∥∇2u
∥∥2 + 2a

n ∆θ − a2
n .

Hence∫ (∥∥∇2θ
∥∥+ |∇θ|2

)
dµ ≥

∫ (
2 |∇θ|2 + 2a

n (∆θ − 〈∇θ, x〉)− a2
n

)
dµ

≥ 2a2
n −

a2
n = a2

n = 1
n

(∫
(Lθ) dµ

)2
.



Congratulations Sergey!


