A Brunn-Minkowski inequality for the KL-divergence

Liran Rotem
Technion - Israel Institute of Technology
Based on joint work with Gautam Aishwarya

61 Probability Encounters, In honor of Sergey Bobkov Toulouse, May-June 2023

Convex Geometry and Information Theory

Convenparary Mastbemantico

ractional generalizations of Young and Brunn-Minkowski
inequalities Sergey Bobkov, Mokshay Madiman, and Liyao Wans Sergey Aneralization of Youngs shere mumere than two functions the conjecture would
 constant is cond it is proven for cerent entropy polization of the wawk conjecture for

provide a animell as of a cons the generailis to the law of tars
Madiman, is is shown that picication of this to
inequality - ${ }^{2}$ vex sets; an applica
true for convex in described
randons

Part 1: Brunn-Minkowski inequalities

The Brunn-Minkowski inequality

Given Borel sets $A, B \subseteq \mathbb{R}^{n}$ and $0<t<1$ we consider the Minkowski combination

$$
(1-t) A+t B=\{(1-t) a+t b: a \in A, b \in B\} .
$$

Theorem (Brunn-Minkowski)
We have

$$
\operatorname{Vol}((1-t) A+t B)^{\frac{1}{n}} \geq(1-t) \operatorname{Vol}(A)^{\frac{1}{n}}+t \operatorname{Vol}(B)^{\frac{1}{n}}
$$

where $\operatorname{Vol}(\cdot)$ is the usual (Lebesgue) volume.
By homogeneity of volume this is of course the same as $\operatorname{Vol}(A+B)^{\frac{1}{n}} \geq \operatorname{Vol}(A)^{\frac{1}{n}}+\operatorname{Vol}(B)^{\frac{1}{n}}$, but our formulation generalizes better.

Borell-Brascamp-Lieb

We characterize all measures that satisfy a Brunn-Minkowski inequality:

Theorem (Borell, Brascamp-Lieb)

Let μ be a Borel measure on \mathbb{R}^{n} with density f. Fix $\kappa \in\left[-\infty, \frac{1}{n}\right]$. Then the following are equivalent:

1. For all Borel sets $A, B \subseteq \mathbb{R}^{n}$ such that $\mu(A) \mu(B)>0$ and $0<t<1$ we have

$$
\mu((1-t) A+t B) \geq\left((1-t) \mu(A)^{\kappa}+t \mu(B)^{\kappa}\right)^{\frac{1}{\kappa}}
$$

2. For all $x, y \in \mathbb{R}^{n}$ such that $f(x) f(y)>0$ and $0<t<1$ we have

$$
f((1-t) x+t y) \geq\left((1-t) f(x)^{\alpha}+t f(y)^{\alpha}\right)^{\frac{1}{\alpha}}
$$

where $\frac{1}{\alpha}+n=\frac{1}{\kappa}$.
The cases $\alpha, \kappa \in\{-\infty, 0,+\infty\}$ are interpreted in the limiting sense. This theorem can be further extended to weighted Riemannian manifolds and beyond, but we will stick to \mathbb{R}^{n} for this talk.

Our main example: The Gaussian measure

We denote by γ the Gaussian measure on \mathbb{R}^{n}, i.e.

$$
\frac{\mathrm{d} \gamma}{\mathrm{~d} x}=\varphi(x)=\frac{1}{(2 \pi)^{n / 2}} e^{-|x|^{2} / 2}
$$

Since $|x|^{2} / 2$ is convex, φ is log-concave, i.e.

$$
\varphi((1-t) x+t y) \geq \varphi(x)^{1-t} \varphi(t)^{t}
$$

(i.e. $\alpha=0$ in the Borell-Brascamp-Lieb theorem). Therefore for all Borel $A, B \subseteq \mathbb{R}^{n}$ we have

$$
\gamma((1-t) A+t B) \geq \gamma(A)^{1-t} \gamma(B)^{t} .
$$

(i.e. $\kappa=0$ in the theorem). However, in general we do not expect an inequality of the form

$$
\gamma((1-t) A+t B) \geq\left((1-t) \gamma(A)^{\kappa}+t \gamma(B)^{\kappa}\right)^{1 / \kappa}
$$

for any $\kappa>0$. This can be checked directly by taking $B=\{x\}$ and letting $|x| \rightarrow \infty$.

Beyond Borell-Brascamp-Lieb

Can we do better than the inequality

$$
\gamma((1-t) A+t B) \geq \gamma(A)^{1-t} \gamma(B)^{t}
$$

if we assume more on the sets A and B ? Taking them to be convex will not help.

Question (Gardner-Zvavitch 2010)

If $K, T \subseteq \mathbb{R}^{n}$ are convex and $0 \in K \cap T$, can it be true that

$$
\gamma((1-t) K+t T)^{\frac{1}{n}} \geq(1-t) \gamma(K)^{\frac{1}{n}}+t \gamma(T)^{\frac{1}{n}} ?
$$

By taking K and T to be "very small" it is easy to see that the exponent $\frac{1}{n}$ is the best possible.
Nayar and Tkocz found a counterexample, but conjectured the inequality is true if we replace the assumption $0 \in K \cap T$ with the stronger assumption that K and T are centrally symmetric ($K=-K$ and $T=-T$, i.e. if $x \in K$ then $-x \in K$).

Infinitesimal formulation

Since we want to prove concavity of the functional

$$
\rho(t)=\gamma((1-t) K+t T)^{\frac{1}{n}},
$$

a natural idea is to check that $\rho^{\prime \prime}(0) \leq 0$.

- Kolesnikov-Milman computed this derivative, and introduced a new idea to transform the resulting inequality from ∂K to the interior of K. They used this idea to prove a Brunn-Minkowski inequality on weighted manifolds under curvature conditions, recovering in particular Borel-Brascamp-Lieb.
- Kolesnikov-Livshyts applied these ideas to our problem, and noticed that the curvature condition of Kolesnikov-Milman only has to hold "on average" in order to have

$$
\gamma((1-t) K+t T)^{\frac{1}{n}} \geq(1-t) \gamma(K)^{\frac{1}{n}}+t \gamma(T)^{\frac{1}{n}} .
$$

A sufficient condition

Theorem (Kolesnikov-Livshyts, specialized to the measure γ)
Assume that for every symmetric convex body $K \subseteq \mathbb{R}^{n}$ and every smooth even function $u: K \rightarrow \mathbb{R}$ such that $L u:=\Delta u-\langle\nabla u, x\rangle=1$ we have

$$
\int_{K}\left(\left\|\nabla^{2} u\right\|^{2}+|\nabla u|^{2}\right) \mathrm{d} \gamma \geq \kappa \cdot \gamma(K)
$$

Then for all convex and symmetric $K, T \subseteq \mathbb{R}^{n}$ we have

$$
\gamma((1-t) K+t T)^{\kappa} \geq(1-t) \gamma(K)^{\kappa}+t \gamma(T)^{\kappa} .
$$

Theorem (Kolesnikov-Livshyts)
The inequality holds with $\kappa=\frac{1}{2 n}$, even if we only assume that $0 \in K \cap T$.

A complete solution

Theorem (Eskenazis-Moschidis)

For every symmetric convex body $K \subseteq \mathbb{R}^{n}$ and every even smooth function $u: K \rightarrow \mathbb{R}$ with $L u \equiv 1$ we have

$$
\int_{K}\left(\left\|\nabla^{2} u\right\|^{2}+|\nabla u|^{2}\right) \mathrm{d} \gamma \geq \frac{1}{n} \gamma(K) .
$$

Therefore, for all convex and symmetric $K, T \subseteq \mathbb{R}^{n}$ we have

$$
\gamma((1-t) K+t T)^{\frac{1}{n}} \geq(1-t) \gamma(K)^{\frac{1}{n}}+t \gamma(T)^{\frac{1}{n}} .
$$

The proof is a clever application of the Gaussian Poincaré inequality: For every smooth $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we have

$$
\operatorname{Var}_{\gamma} f \leq \int|\nabla f|^{2} \mathrm{~d} \gamma
$$

Other measures

Theorem (Cordero-Erausquin-R.)
Let $w:(0, \infty) \rightarrow \mathbb{R}$ be a non-decreasing function such that $t \mapsto w\left(e^{t}\right)$ is convex. Consider the measure μ with density $e^{-w(|x|)}$. Then for all convex and symmetric $K, T \subseteq \mathbb{R}^{n}$ we have

$$
\mu((1-t) K+t T)^{\frac{1}{n}} \geq(1-t) \mu(K)^{\frac{1}{n}}+t \mu(T)^{\frac{1}{n}} .
$$

Examples include $\frac{\mathrm{d} \mu}{\mathrm{d} x}=e^{-|x|^{p}}$ for $p>0$ and $\frac{\mathrm{d} \mu}{\mathrm{d} x}=\frac{1}{\left(1+|x|^{2}\right)^{\beta}}$ for $\beta>0$ (for which Borel-Brascamp-Lieb does not apply for any value of the parameters!). For this talk we will concentrate on the simplest case of the Gaussian measure γ.

Part 2: Concavity of entropy

What does this have to do with information theory?

There is a well known (yet slightly mysterious) connection between convex geometry and information theory.

Given a probability measure μ on \mathbb{R}^{n} with density f, the (differential) entropy of μ is defined by

$$
h(\mu)=-\int f \log f \mathrm{~d} x=-\int \log f \mathrm{~d} \mu
$$

If μ is uniform on a body K then $f=\frac{1}{|K|} \mathbb{1}_{K}$ and $h(\mu)=\log \operatorname{Vol}(K)$. In fact if μ is any probability measure supported on K we have by Jensen's inequality

$$
h(\mu)=\int_{K} \log \left(\frac{1}{f}\right) f \mathrm{~d} x \leq \log \left(\int_{K} \frac{1}{f} f \mathrm{~d} x\right)=\log \operatorname{Vol}(K) .
$$

So we think of $e^{h(\mu)}$ as analogous to $\operatorname{Vol}(K)$.

The Entropy Power Inequality

If $e^{h(\mu)}$ is analogous to $\operatorname{Vol}(K)$, what is the analogue of the Brunn-Minkowski inequality? It is usually considered to be:
Theorem (Entropy Power Inequality, Shannon-Stam)
For all probability measures μ and ν on \mathbb{R}^{n} we have

$$
e^{\frac{2}{n} h(\mu * \nu)} \geq e^{\frac{2}{n} h(\mu)}+e^{\frac{2}{n} h(\nu)},
$$

where $\mu * \nu$ denotes the convolution (corresponding to sum of independent random variables).
This looks similar to Brunn-Minkowski, but doesn't formally imply or is implied by it. By taking μ and ν to be uniform on A and B respectively we get

$$
|A+B|^{\frac{2}{n}} \geq|A|^{\frac{2}{n}}+|B|^{\frac{2}{n}}
$$

since $\mu * \nu$ is supported on $A+B$. But we can do better!

Optimal transport

Instead of considering $\mu * \nu$, we consider another way to interpolate between μ and ν. We do so using the standard notion of optimal transport.
Given probability measures μ and ν, we say that $T_{\sharp} \mu=\nu$ (" T pushes μ to $\nu^{\prime \prime}$) if for all $B \subseteq \mathbb{R}^{n}$ we have

$$
\mu\left(T^{-1}(B)\right)=\nu(B)
$$

Our goal is to find the "most efficient" transport map, i.e. to minimize

$$
\int|x-T x|^{2} d \mu(x)
$$

over all transport maps T pushing μ to ν.

The Brenier map

Let $\mathcal{P}_{2}=\mathcal{P}_{2}\left(\mathbb{R}^{n}\right)$ denote the class of all probability measures on \mathbb{R}^{n} with finite second moment.

Theorem (Brenier)
If $\mu, \nu \in \mathcal{P}_{2}\left(\mathbb{R}^{n}\right)$ and μ is absolutely continuous, then the minimization problem

$$
\min \left\{\int|x-T x|^{2} \mathrm{~d} \mu(x): \quad T_{\sharp} \mu=\nu\right\}
$$

has a unique solution. Moreover this solution is characterize by being the unique transport map which is the gradient of a convex function, $T=\nabla \varphi$.
We define the 2-Wasserstein distance on \mathcal{P}_{2} by

$$
W_{2}^{2}(\mu, \nu)=\min \left\{\int\left|x-T_{x}\right|^{2} \mathrm{~d} \mu(x): T_{\sharp \mu}=\nu\right\}
$$

(at least when the measures have a density)

Displacement concavity

Once we have a metric space, we can construct geodesics. Given $\mu_{0}, \mu_{1} \in \mathcal{P}_{2}$ with Brenier map $T_{\sharp} \mu_{0}=\mu_{1}$, define

$$
\mu_{t}=((1-t) \cdot l d+t T)_{\sharp} \mu_{0} .
$$

Since $T_{t}=(1-t) / d+t T$ is a Brenier map (being the gradient of a convex function), we can compute and see that $W_{2}\left(\mu_{0}, \mu_{t}\right)=t W_{2}\left(\mu_{0}, \mu_{1}\right)$ and $W_{2}\left(\mu_{t}, \mu_{1}\right)=(1-t) W_{2}(\mu)$. So $\left\{\mu_{t}\right\}_{t \in[0,1]}$ is the geodesic connecting μ_{0} and μ_{1}, called the displacement interpolation.

We say that $F: \mathcal{P}_{2} \rightarrow \mathbb{R}$ is displacement concave if $F\left(\mu_{t}\right)$ is concave in t for every such interpolation $\left\{\mu_{t}\right\}_{t \in[0,1]}$.

An Entropic Brunn-Minkowski, again

Theorem (Erbar-Kuwada-Sturm, 2015 (?))
$e^{\frac{1}{n} h(\mu)}$ is displacement concave on $\mathcal{P}_{2}\left(\mathbb{R}^{n}\right)$. Equivalently, for every displacement interpolation $\left\{\mu_{t}\right\}_{t \in[0,1]}$ we have

$$
e^{\frac{1}{n} h\left(\mu_{t}\right)} \geq(1-t) e^{\frac{1}{n} h\left(\mu_{0}\right)}+t \cdot e^{\frac{1}{n} h\left(\mu_{1}\right)} .
$$

By taking μ_{0}, μ_{1} to be uniform on A, B we get the usual Brunn-Minkowski,

$$
|(1-t) A+t B|^{\frac{1}{n}} \geq(1-t)|A|^{\frac{1}{n}}+t|B|^{\frac{1}{n}} .
$$

Proof Sketch

$$
e^{\frac{1}{n} h\left(\mu_{t}\right)} \geq(1-t) e^{\frac{1}{n} h\left(\mu_{0}\right)}+t \cdot e^{\frac{1}{n} h\left(\mu_{1}\right)}
$$

Let f_{t} denote the density of μ_{t}. Since $T_{t}=(1-t) I d+t T$ pushes μ_{0} to μ_{t} we have by change of variables:

$$
\operatorname{det}\left(D T_{t}(x)\right)=\frac{f_{0}(x)}{f_{t}\left(T_{t} x\right)}
$$

We now compute

$$
\begin{aligned}
h\left(\mu_{t}\right) & =-\int \log f_{t}(y) \mathrm{d} \mu_{t}(y)=-\int \log \left(f_{t}\left(T_{t} x\right)\right) \mathrm{d} \mu_{0}(x) \\
& =-\int \log \left(\frac{f_{0}(x)}{\operatorname{det} D T_{t}(x)}\right) \mathrm{d} \mu_{0}(x) \\
& =h\left(\mu_{0}\right)+\int \log (\operatorname{det} \underbrace{((1-t) I d+t D T)}_{A_{t}}) \mathrm{d} \mu_{0}
\end{aligned}
$$

Proof Sketch - Contd.

$$
e^{\frac{1}{n} h\left(\mu_{t}\right)} \geq(1-t) e^{\frac{1}{n} h\left(\mu_{0}\right)}+t \cdot e^{\frac{1}{n} h\left(\mu_{1}\right)}
$$

We saw $h\left(\mu_{t}\right)=C+\int \log \left(\operatorname{det} A_{t}\right) \mathrm{d} \mu_{0}$. The function $M(x, y)=\log \left((1-t) e^{x}+t e^{y}\right)$ is convex, and so

$$
\begin{aligned}
M\left(\frac{1}{n} h\left(\mu_{0}\right), \frac{1}{n} h\left(\mu_{1}\right)\right) & =\frac{C}{n}+M\left(\int \log \left(\operatorname{det} A_{0}\right)^{\frac{1}{n}} \mathrm{~d} \mu_{0}, \int \log \left(\operatorname{det} A_{1}\right)^{\frac{1}{n}} \mathrm{~d} \mu_{0}\right) \\
& \leq \frac{C}{n}+\int M\left(\log \left(\operatorname{det} A_{0}\right)^{\frac{1}{n}}, \log \left(\operatorname{det} A_{1}\right)^{\frac{1}{n}}\right) \mathrm{d} \mu_{0} \\
& =\frac{C}{n}+\int \log \left((1-t)\left(\operatorname{det} A_{0}\right)^{\frac{1}{n}}+t\left(\operatorname{det} A_{1}\right)^{\frac{1}{n}}\right) \mathrm{d} \mu_{0} \\
& \leq \frac{C}{n}+\int \log \left(\operatorname{det} A_{t}\right)^{\frac{1}{n}} \mathrm{~d} \mu_{0}=\frac{1}{n} h\left(\mu_{t}\right)
\end{aligned}
$$

General measures

To discuss other measures, we generalize entropy to relative entropy (or Kullback-Leibler divergence). Given a reference measure ν we define

$$
\mathrm{D}(\mu \| \nu)=\int \log \left(\frac{\mathrm{d} \mu}{\mathrm{~d} \nu}\right) \mathrm{d} \mu
$$

(if μ is absolutely continuous with respect to ν). Again if $\mu=\nu_{A}$, i.e.

$$
\mu(B)=\frac{\nu(B \cap A)}{\nu(A)}
$$

then $-\mathrm{D}\left(\nu_{A} \| \nu\right)=\log \nu(A)$, and more generally if μ is supported on A then $-\mathrm{D}(\mu \| \nu) \leq \log \nu(A)$.
Therefore we think of $e^{-\mathrm{D}(\mu \| \nu)}$ as the entropic analogue of $\nu(A)$.

Borell-Brascamp-Lieb for relative entropy

Theorem (Erbar-Kuwada-Sturm)

Let ν be a Borel measure on \mathbb{R}^{n} with density g. Fix $0 \leq \kappa \leq \frac{1}{n}$. Then the following are equivalent:

1. For every displacement interpolation $\left\{\mu_{t}\right\}_{t \in[0,1]}$ in $\mathcal{P}_{2}\left(\mathbb{R}^{n}\right)$ we have

$$
e^{-\kappa \mathrm{D}\left(\mu_{t} \| \nu\right)} \geq(1-t) e^{-\kappa \mathrm{D}\left(\mu_{0} \| \nu\right)}+t e^{-\kappa \mathrm{D}\left(\mu_{1} \| \nu\right)}
$$

2. For all $x, y \in \mathbb{R}^{n}$ such that $g(x) g(y)>0$ and $0<t<1$ we have

$$
g((1-t) x+t y) \geq\left((1-t) g(x)^{\alpha}+\operatorname{tg}(y)^{\alpha}\right)^{\frac{1}{\alpha}}
$$

where $\frac{1}{\alpha}+n=\frac{1}{\kappa}$.
This implies the classical Borell-Brascamp-Lieb. The full theorem is more general, considering weighted Riemannian manifolds satisfying a $C D(K, N)$ condition and even more general metric measure spaces.

Part 3: The obvious question

Beyond the general inequality

Consider the Gaussian γ as our reference measure. We have the general theorem for the case $\kappa=0$, i.e.

$$
-\mathrm{D}\left(\mu_{t} \| \gamma\right) \geq-(1-t) \mathrm{D}\left(\mu_{0} \| \gamma\right)-t \mathrm{D}\left(\mu_{1} \| \gamma\right)
$$

but nothing better can hold for arbitrary interpolations $\left\{\mu_{t}\right\}_{t \in[0,1]}$. But what if we add symmetry?

Note that if μ_{t} is the law of a $N(0, t)$ random variable then $\left\{\mu_{t}\right\}_{t \geq 0}$ is a displacement interpolation, and

$$
-\mathrm{D}\left(\mu_{t} \| \gamma\right)=\frac{1}{2}(1-t+\log t) .
$$

This is concave function on $(0, \infty)$, but $e^{-\kappa \mathrm{D}\left(\mu_{t} \| \gamma\right)}$ is not concave on $(0, \infty)$ for any $\kappa>0$. However, $e^{-\mathrm{D}\left(\mu_{t} \| \gamma\right)}$ is concave for $t \in[0,1]$.

The general theorem

Theorem (Aishwarya-R.)
Let $\left\{\mu_{t}\right\}_{t \in[0,1]}$ be a displacement interpolation in $\mathcal{P}_{2}\left(\mathbb{R}^{n}\right)$ between two even measures μ_{0} and μ_{1}.
Assume every μ_{t} satisfies a Poincaré inequality with constant 1, i.e.

$$
\operatorname{Var}_{\mu_{t}} \psi \leq \int|\nabla \psi|^{2} \mathrm{~d} \mu_{t}
$$

Then we have

$$
e^{-\frac{1}{n} D\left(\mu_{t} \| \gamma\right)} \geq(1-t) e^{-\frac{1}{n} D\left(\mu_{0} \| \gamma\right)}+t e^{-\frac{1}{n} D\left(\mu_{1} \| \gamma\right)} .
$$

This explains the previous observation: If μ_{t} is the law of $N(0, t)$ then μ_{t} satisfies (\star) iff $t \leq 1$. Of course in general this condition is not easy to check.

Useful corollaries - a Gaussian endpoint

Corollary

Let $\left\{\mu_{t}\right\}_{t \in[0,1]}$ be a displacement interpolation in $\mathcal{P}_{2}\left(\mathbb{R}^{n}\right)$ between $\mu_{0}=\gamma$ and μ_{1} which is even and log-concave with respect to γ (i.e. $\frac{\mathrm{d} \mu_{1}}{\mathrm{~d} \gamma}$ is log-concave). Then

$$
e^{-\frac{1}{n} D\left(\mu_{t} \| \gamma\right)} \geq(1-t) e^{-\frac{1}{n} D\left(\mu_{0} \| \gamma\right)}+t e^{-\frac{1}{n} D\left(\mu_{1} \| \gamma\right)}
$$

Proof.

By Caffarelli contraction theorem the Brenier map T from μ_{0} to μ_{1} is a contraction. Therefore so is

$$
T_{t}=(1-t) l d+t T .
$$

Therefore, since $\mu_{0}=\gamma$ satisfies Poincaré with constant 1 , so does every measure $\mu_{t}=\left(T_{t}\right)_{\sharp}\left(\mu_{0}\right)$.

Useful corollaries - dimension $n=1$

Corollary

Let $\left\{\mu_{t}\right\}_{t \in[0,1]}$ be a displacement interpolation in $\mathcal{P}_{2}\left(\mathbb{R}^{1}\right)$ between μ_{0} and μ_{1} which are both even and log-concave with respect to γ. Then

$$
e^{-\mathrm{D}\left(\mu_{t} \| \gamma\right)} \geq(1-t) e^{-\mathrm{D}\left(\mu_{0} \| \gamma\right)}+t e^{-\mathrm{D}\left(\mu_{1} \| \gamma\right)}
$$

Proof.

Let T_{0} and T_{1} be the Brenier maps between γ and μ_{0}, μ_{1}. In dimension $n=1$ the composition of Brenier maps is a Brenier map (since "gradient a of convex function" = "increasing"). From this one can show that

$$
\left((1-t) T_{0}+t T_{1}\right)_{\sharp}(\gamma)=\mu_{t} .
$$

By Caffarelli T_{0} and T_{1} are contractions, hence so is $(1-t) T_{0}+t T_{1}$, so μ_{t} satisfies Poincaré with constant 1.

Proof sketch

$$
e^{-\frac{1}{n} \mathrm{D}\left(\mu_{t} \| \gamma\right)} \geq(1-t) e^{-\frac{1}{n} \mathrm{D}\left(\mu_{0} \| \gamma\right)}+t e^{-\frac{1}{n} \mathrm{D}\left(\mu_{1} \| \gamma\right)}
$$

The idea is similar to the geometric case: we define $\rho(t)=e^{-\frac{1}{n} \mathrm{D}\left(\mu_{t} \| \gamma\right)}$ and prove that $\rho^{\prime \prime}(t) \leq 0$ for all $t \in[0,1]$.
Denote by f_{t} the density of μ_{t}, by T the Brenier map, and as usual $T_{t}(x)=(1-t) x+t T x$.
The standard conservation of mass formula states that f_{t} satisfies a PDE

$$
\frac{\partial f_{t}}{\partial t}+\operatorname{div}\left(f_{t} \nabla \theta_{t}\right)=0
$$

Here $\nabla \theta_{t}$ is the velocity vector field of the transport, that is

$$
\frac{\mathrm{d}}{\mathrm{~d} t} T_{t}(x)=\nabla \theta_{t}\left(T_{t}(x)\right)
$$

$\nabla \theta_{t}$ is indeed the gradient of a potential θ_{t}, and moreover this potential itself satisfies the PDE

$$
\frac{\partial \theta_{t}}{\partial t}+\frac{\left|\nabla \theta_{t}\right|^{2}}{2}=0
$$

Proof sketch - Contd.

$$
\rho(t)=e^{-\frac{1}{n} \mathbb{D}\left(\mu_{t} \| \gamma\right)}
$$

Since we have formulas for all time derivatives, we can compute $\rho^{\prime \prime}$. Let $L u=\Delta u-\langle\nabla u, x\rangle$ denote the Ornstein-Uhlenbeck generator. Then

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{D}\left(\mu_{t} \| \gamma\right)=-\int\left(L \theta_{t}\right) \mathrm{d} \mu_{t}
$$

and

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \mathrm{D}\left(\mu_{t} \| \gamma\right)=\int\left(\left\|\nabla^{2} \theta_{t}\right\|+\left|\nabla \theta_{t}\right|^{2}\right) \mathrm{d} \mu_{t}
$$

Therefore the claim $\rho^{\prime \prime}(t) \leq 0$ is the same as

$$
\int\left(\left\|\nabla^{2} \theta_{t}\right\|+\left|\nabla \theta_{t}\right|^{2}\right) \mathrm{d} \mu_{t} \geq \frac{1}{n}\left(\int\left(L \theta_{t}\right) \mathrm{d} \mu_{t}\right)^{2}
$$

But θ_{t} is even, and this inequality holds for all even functions! It is exactly the Kolesnikov-Livshyts criterion in the geometric case, that was proved by Eskenazis-Moschidis (when $L \theta \equiv 1$).

Proof sketch - Contd.

$$
\int\left(\left\|\nabla^{2} \theta\right\|+|\nabla \theta|^{2}\right) \mathrm{d} \mu \geq \frac{1}{n}\left(\int(L \theta) \mathrm{d} \mu\right)^{2}
$$

Define a function $u=\theta-\frac{a}{2 n}|x|^{2}$ where $a=\int(L \theta) \mathrm{d} \mu$. Apply Poincaré to partial derivatives $\partial_{i} u$ to get

$$
\int\left\|\nabla^{2} u\right\|^{2} \mathrm{~d} \mu \geq \int|\nabla u|^{2} \mathrm{~d} \mu \geq \int\left(|\nabla \theta|^{2}-\frac{2 a}{n}\langle\nabla \theta, x\rangle\right) \mathrm{d} \mu .
$$

On the other hand an explicit computation gives

$$
\left\|\nabla^{2} \theta\right\|^{2}=\left\|\nabla^{2} u\right\|^{2}+\frac{2 a}{n} \Delta \theta-\frac{a^{2}}{n} .
$$

Hence

$$
\begin{aligned}
\int\left(\left\|\nabla^{2} \theta\right\|+|\nabla \theta|^{2}\right) \mathrm{d} \mu & \geq \int\left(2|\nabla \theta|^{2}+\frac{2 a}{n}(\Delta \theta-\langle\nabla \theta, x\rangle)-\frac{a^{2}}{n}\right) \mathrm{d} \mu \\
& \geq \frac{2 a^{2}}{n}-\frac{a^{2}}{n}=\frac{a^{2}}{n}=\frac{1}{n}\left(\int(L \theta) \mathrm{d} \mu\right)^{2}
\end{aligned}
$$

Congratulations Sergey!

