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Part 1: Brunn—Minkowski inequalities



The Brunn—Minkowski inequality

Given Borel sets A, B C R" and 0 < t < 1 we consider the Minkowski
combination

(1-t)A+tB={(1—t)a+th: ac A, be B}.

Theorem (Brunn—Minkowski)
We have

1 1
n n

Vol (1 — t)A + tB)" > (1 — t) Vol (A)" + t Vol (B)?

where Vol (-) is the usual (Lebesgue) volume.

By homogeneity of volume this is of course the same as

1
Vol (A+ B)" > Vol(A)» + Vol(B)#, but our formulation generalizes
better.



Borell-Brascamp—Lieb

We characterize all measures that satisfy a Brunn—Minkowski inequality:
Theorem (Borell, Brascamp-Lieb)

Let ju be a Borel measure on R" with density f. Fix x € [—co, 1]. Then
the following are equivalent:

1. For all Borel sets A, B C R" such that u(A)u(B) >0 and0 <t <1
we have

=

p((1=t)A+tB) > (1 — t)u(A)" + tu(B)")
2. For all x,y € R" such that f(x)f(y) >0 and 0 < t < 1 we have

F((L—t)x +ty) = ((1— O)F(x)* + tF(y)*)™

1 _1
Wherea—i—nfn

The cases a, k € {—00,0,+00} are interpreted in the limiting sense.
This theorem can be further extended to weighted Riemannian manifolds
and beyond, but we will stick to R” for this talk.



Our main example: The Gaussian measure

We denote by y the Gaussian measure on R”, i.e.

. 2 . . .
Since |x|” /2 is convex, ¢ is log-concave, i.e.

P (1= t)x +ty) = (x)"“p(t)"

(i.e. @ =0 in the Borell-Brascamp-Lieb theorem). Therefore for all

Borel A, B C R"” we have

Y((1 = t)A+tB) > v(A)ty(B)".

(i.e. K =0 in the theorem). However, in general we do not expect an

inequality of the form

Y((1 = t)A+1tB) > ((1 - t)y(A)" + t(B)")""

for any k > 0. This can be checked directly by taking B = {x} and

letting |x| — oo.



Beyond Borell-Brascamp-Lieb

Can we do better than the inequality
7((1 = t)A+tB) > v(A)'~*y(B)"

if we assume more on the sets A and B? Taking them to be convex will
not help.

Question (Gardner-Zvavitch 2010)
If K, T CR" are convex and 0 € KN T, can it be true that

V(1= K +tT)7 > (1 — t)y(K)» + to(T)5?

By taking K and T to be “very small” it is easy to see that the exponent

1 is the best possible.

Nayar and Tkocz found a counterexample, but conjectured the inequality
is true if we replace the assumption 0 € K N T with the stronger
assumption that K and T are centrally symmetric (K = —K and
T=-T,ie if x € K then —x € K).



Infinitesimal formulation

Since we want to prove concavity of the functional
1
p(t) =y (1= t)K+1T)",

a natural idea is to check that p”(0) < 0.

» Kolesnikov—Milman computed this derivative, and introduced a new
idea to transform the resulting inequality from OK to the interior of
K. They used this idea to prove a Brunn—Minkowski inequality on
weighted manifolds under curvature conditions, recovering in
particular Borel-Brascamp—Lieb.

» Kolesnikov-Livshyts applied these ideas to our problem, and noticed
that the curvature condition of Kolesnikov-Milman only has to hold
“on average" in order to have

Si=

1
n

Y((1— )K +tT)7 > (1 — t)y(K) + ty(T)".



A sufficient condition

Theorem (Kolesnikov—Livshyts, specialized to the measure )

Assume that for every symmetric convex body K C R" and every smooth
even function u: K — R such that Lu:= Au— (Vu,x) =1 we have

/ (||V2UH2 + \Vu|2> dy > k- y(K).
K
Then for all convex and symmetric K, T C R" we have

V(A=K +T)" > (1= t)y(K)" + ty(T)".

Theorem (Kolesnikov—Livshyts)
The inequality holds with k = 2—1,7 even if we only assume that0 € KN T.



A complete solution

Theorem (Eskenazis—Moschidis)

For every symmetric convex body K C R" and every even smooth
function u: K — R with Lu =1 we have

/K (||V2u|’2 + \Vu|2) dy > %’Y(K).

Therefore, for all convex and symmetric K, T C R" we have

1 1
n n

V(A=K +T)7 > (1= t)y(K)" + tx(T)".

The proof is a clever application of the Gaussian Poincaré inequality: For
every smooth f : R” — R we have

Var,yfg/\Vf|2dfy.



Other measures

Theorem (Cordero-Erausquin-R.)

Let w: (0,00) — R be a non-decreasing function such that t — w(e') is
convex. Consider the measure ju with density e="(X). Then for all
convex and symmetric K, T C R"” we have

1
n

p((L = K+ tT)" > (1 - O)u(K)# + tu(T)5.

Examples include d—’: = e X for p > 0 and d” = ——5for3>0

= @)

(for which Borel-Brascamp—Lieb does not apply for any value of the
parameters!). For this talk we will concentrate on the simplest case of
the Gaussian measure .



Part 2: Concavity of entropy



What does this have to do with information theory?

There is a well known (yet slightly mysterious) connection between
convex geometry and information theory.

Given a probability measure 1 on R” with density f, the (differential)
entropy of u is defined by

h(u):—/flogde:—/logfdu.

If 1 is uniform on a body K then f = &1k and h(u) = log Vol(K). In
fact if p is any probability measure supported on K we have by Jensen's
inequality

) :/Klog (i) fdx < log (/K llrfdx> = log VolI(K).

So we think of e"(*) as analogous to Vol(K).



The Entropy Power Inequality

If M) is analogous to Vol(K), what is the analogue of the
Brunn—Minkowski inequality? It is usually considered to be:

Theorem (Entropy Power Inequality, Shannon—Stam)

For all probability measures v and v on R" we have

erhl) > o3h(n) 4 e%h(V)7
where p * v denotes the convolution (corresponding to sum of
independent random variables).
This looks similar to Brunn—Minkowski, but doesn’t formally imply or is
implied by it. By taking © and v to be uniform on A and B respectively
we get
2 2 2
A+ B|" > |A]" +|B|"

since u * v is supported on A 4+ B. But we can do better!



Optimal transport

Instead of considering u * v, we consider another way to interpolate
between 1 and v. We do so using the standard notion of optimal
transport.

Given probability measures i and v, we say that Tyu = v (“T pushes p
to v") if for all B C R" we have

u(T7(B)) = v(B).

Our goal is to find the “most efficient” transport map, i.e. to minimize

[ x= T dut

over all transport maps T pushing u to v.



The Brenier map

Let P2 = P2 (R") denote the class of all probability measures on R” with
finite second moment.

Theorem (Brenier)
If p,v € P (R") and p is absolutely continuous, then the minimization

problem
min {/ |x — Tx|2 du(x) : Typ= V}

has a unique solution. Moreover this solution is characterize by being the
unique transport map which is the gradient of a convex function,

T = V.

We define the 2-Wasserstein distance on P, by

W3 uov) = min{ [ 1x = T ue) T =

(at least when the measures have a density)



Displacement concavity

Once we have a metric space, we can construct geodesics. Given
o, 11 € P2 with Brenier map Typuo = 1, define

pe=((1—1t)-Id+tT), po.

Since Ty = (1 — t)Id + tT is a Brenier map (being the gradient of a
convex function), we can compute and see that

Wa (o, p1e) = tWa(pio, p1) and Wa (e, pua) = (1 = t)Wa (). So
{Mt}te[o,l] is the geodesic connecting pg and p1, called the displacement
interpolation.

We say that F : P, — R is displacement concave if F(fx:) is concave in t
for every such interpolation {1t} c(o 1)-



An Entropic Brunn—Minkowski, again

Theorem (Erbar—Kuwada-Sturm, 2015 (7))

enh) js displacement concave on P, (R"). Equivalently, for every
displacement interpolation {ji},c[o 1) we have

enhlie) > (1= t)enhlro) 4 ¢. gnhlim),

By taking pg,u1 to be uniform on A,B we get the usual
Brunn—Minkowski,

(1= t)A+tB|" > (1—t)|A]" +t|B|".



Proof Sketch

e%h(p’t) > (1 _ t)e%h(NO) +t- e%h(ﬂl)

Let f; denote the density of u;. Since Ty = (1 — t) Id + tT pushes pg to
¢ we have by change of variables:

det (DT¢(x)) =
We now compute

h(jie) = — / log fi(y)due(y) = — / log (£, (Tex)) dyzo(x)
- / log <dethD(;<'t)(x)> dpo(x)

= h(po) +/|og det ((1 —t)Id +tDT) | dpo,

At




Proof Sketch — Contd.

e%h(ltt) > (1 — t)e%h(ﬂﬂ) +t- e%h(ﬂl)

We saw h(yu¢) = C + [ log (det A;) dpo. The function
M(x,y) = log ((1 — t)eX + te¥) is convex, and so

+M (/ Iog(detAo)%duo,/log (detAl)iduo)

M (|og (det Ag)" , log (det Al)%) dpio

 (2ha). 2 ) =

<

+

log ((1 — t) (det Ag)" + t (det Al)%) dyio

1 1
log (det A;)" dpo = = h(pe)-

n

IA
slasias|as|n

+

+
— S —



General measures

To discuss other measures, we generalize entropy to relative entropy (or
Kullback—Leibler divergence). Given a reference measure v we define

D(ulv) = | 1og (j“) dy

(if p is absolutely continuous with respect to v). Again if ;1 = va, i.e.

_v(BNA)

M(B) = W

then — D(val|v) = logv(A), and more generally if 4 is supported on A
then — D(p||v) < logv(A).

Therefore we think of e~ X#1¥) as the entropic analogue of v(A).



Borell-Brascamp—Lieb for relative entropy

Theorem (Erbar—Kuwada—Sturm)

Let v be a Borel measure on R" with density g. Fix 0 < x < % Then
the following are equivalent:

1. For every displacement interpolation {/},c(o 1 in P2 (R") we have
e ellv) > (1 — p)ermollv) 4 pe—r Dnllv)

2. For all x,y € R” such that g(x)g(y) > 0 and 0 < t < 1 we have

1
g((1—t)x+1ty) = ((1-1)g(x)* +ta(y)*)~,
where é +n= %
This implies the classical Borell-Brascamp—Lieb. The full theorem is

more general, considering weighted Riemannian manifolds satisfying a
CD(K, N) condition and even more general metric measure spaces.



Part 3: The obvious question



Beyond the general inequality

Consider the Gaussian = as our reference measure. We have the general
theorem for the case k = 0, i.e.

— D(peellv) = —(1 = t) D(pollv) — t D(pal|v) ,

but nothing better can hold for arbitrary interpolations {Nt}te[o,l] . But
what if we add symmetry?

Note that if 1, is the law of a N(0, t) random variable then {fi;},, is a
displacement interpolation, and B

~D(juelly) = 5 (1 — t +log t).

N =

This is concave function on (0,00), but e=*X#l17) is not concave on
(0,00) for any x > 0. However, e~ X7 is concave for t € [0, 1].



The general theorem

Theorem (Aishwarya—R.)

Let {pi¢},cp0,1) be a displacement interpolation in P> (R") between two
even measures g and fi.
Assume every u; satisfies a Poincaré inequality with constant 1, i.e.

Var,, < / Vol . )

Then we have
e n Dl > (1 — )emn Dol 4 g Aemlln),
This explains the previous observation: If y; is the law of N(0,t) then p;

satisfies (%) iff t < 1. Of course in general this condition is not easy to
check.



Useful corollaries — a Gaussian endpoint

Corollary

Let {pi¢},cp0,1) be a displacement interpolation in P2 (R") between

dp

to =y and py which is even and log-concave with respect to v (i.e. &

is log-concave). Then

e*% D(peellY) Z (]_ _ t)ef% D(polly) + te*% D1 ly)

Proof.
By Caffarelli contraction theorem the Brenier map T from pg to py is a
contraction. Therefore so is

Te=(1-t)ld+tT.

Therefore, since g = v satisfies Poincaré with constant 1, so does every
measure e = (T¢)y (ko) O



Useful corollaries — dimension n =1

Corollary
Let {41t} ,cj01) be a displacement interpolation in P, (R') between i
and py which are both even and log-concave with respect to v. Then

e~ x> (1 — p)e= Dol L g Dlmll)

Proof.

Let Ty and T; be the Brenier maps between v and g, pt1. In dimension
n = 1 the composition of Brenier maps is a Brenier map (since “gradient
a of convex function” = “increasing”). From this one can show that

(1= To+tT1), (7) = pe.

By Caffarelli Ty and T; are contractions, hence so is (1 — t) To + t Ty, so
1y satisfies Poincaré with constant 1. O



Proof sketch

e 5 el > (1 — f)emn Mol 4 o= Diall)

The idea is similar to the geometric case: we define p(t) = e~ Xpllv)
and prove that p”(t) <0 for all t € [0, 1].

Denote by f; the density of u;, by T the Brenier map, and as usual
Ti(x)=(1—t)x + tTx.
The standard conservation of mass formula states that #; satisfies a PDE

ofy .
6tt +div (£V6;) = 0.
Here V0, is the velocity vector field of the transport, that is
d

I Ti(x) = VO (Te(x)) .

V0, is indeed the gradient of a potential 8;, and moreover this potential
itself satisfies the PDE
90: VO,

et 0




Proof sketch — Contd.

p(t) = e~ Xuwell”)

Since we have formulas for all time derivatives, we can compute p”’. Let
Lu = Au— (Vu, x) denote the Ornstein-Uhlenbeck generator. Then

D) == [ (0 ds

and
2

dr2 D(pel|y) = / (HVzétH + |V9t|2> dpe.

Therefore the claim p”(t) < 0 is the same as

/(|\V29rl\ V0L ) de > (/(Lﬁt)dut>2.

But 6, is even, and this inequality holds for all even functions! It is
exactly the Kolesnikov-Livshyts criterion in the geometric case, that was
proved by Eskenazis—Moschidis (when L6 = 1).



Proof sketch — Contd.

/(Hvzeu +[6P) du > % (/(L@)duf

Define a function u =6 — 5 \X\Z where a = [ (L6) dp. Apply Poincaré

to partial derivatives O;u to get

[z [19atanz [ (1908 -2 v0.2) an

On the other hand an explicit computation gives

2
1720 = | V2u]? + 2a0 - 2.
n n
Hence

/ <||V20|| " ‘vo|2> = / <2 |V9|2 * 27173 (AG o <V0,x>) - f) dp

2 2 2 2
Z%_a_a_l(/(Lg)du> _
n n n n



Congratulations Sergey!



