On the intertwining approach for proving Poincaré type functional inequalities

## Aldéric Joulin

Institut de Mathématiques de Toulouse
Based on a series of works with M. Bonnefont
(1) A first intertwining and Brascamp-Lieb's inequality
(2) The intertwining with weight
(3) Examples
4. Other consequences
(1) A first intertwining and Brascamp-Lieb's inequality

## 2 2 The intertwining with weight

(3) Examples

## 4. Other consequences

- Consider on $\mathbb{R}^{n}$ the probability measure

$$
d \mu(x) \propto e^{-V(x)} d x
$$

where $V$ is some smooth potential on $\mathbb{R}^{n}$.
$\hookrightarrow$ Canonical diffusion operator:

$$
L f=\Delta f-\langle\nabla V, \nabla f\rangle,
$$

which is (essentially) self-adjoint in $L^{2}(\mu)$ and non-positive:

$$
\int f L g d \mu=\int L f g d \mu=-\int\langle\nabla f, \nabla g\rangle d \mu
$$

- Spectrum : $\sigma(-L) \subset[0, \infty)$ with $\lambda_{0}(-L)=0$ (associated to const).
- Spectral gap: given $\lambda>0$, we have

$$
\sigma(-L) \subset\{0\} \cup[\lambda, \infty)
$$

iif the Poincaré inequality holds with constant $\lambda$ : for all $f \perp$ const,

$$
\lambda \int f^{2} d \mu \leq \int|\nabla f|^{2} d \mu \quad\left(=\int f(-L f) d \mu\right)
$$

- Optimal constant $\lambda_{1}(-L)$, called the spectral gap (of $-L$ ).
- Describes the speed of convergence to equilibrium in $L^{2}(\mu)$ of the semigroup $P_{t}=e^{t L}$ related to the underlying Markov process solution to the SDE

$$
d X_{t}=-\nabla V\left(X_{t}\right) d t+\sqrt{2} d B_{t}
$$

## Theorem (Brascamp-Lieb '76)

If Hess $V$ is positive definite, then the Brascamp-Lieb inequality holds: for all $f \perp$ const,

$$
\int f^{2} d \mu \leq \int\left\langle\nabla f,(\operatorname{Hess} V)^{-1} \nabla f\right\rangle d \mu
$$

In particular if $V$ is uniformly convex, i.e. there exists $\rho>0$ such that

$$
\inf _{x \in \mathbb{R}^{n}} \operatorname{Hess} V(x) \geq \rho / d,
$$

then

$$
\lambda_{1}(-L) \geq \rho .
$$

$\hookrightarrow$ An instance of the famous Bakry-Émery '85 curvature-dimension condition $C D(\rho, \infty)$, optimal in the Gaussian case.

Proof of Helffer '98 based on the $L^{2}$ method of Hörmander:

- Consider the Poisson equation

$$
f=-L g \quad(=-\Delta g+\langle\nabla V, \nabla g\rangle)
$$

where the centered $f$ is given and $g$ is the unknown.

- Key point: the following intertwining between gradient and operators:

$$
\nabla f=-\nabla L g=-(\mathcal{L}-\operatorname{Hess} V)(\nabla g)
$$

where $\mathcal{L}$ is the (diagonal) matrix operator acting on vector fields:

$$
\mathcal{L}=\operatorname{diag} L .
$$

$\hookrightarrow$ Reminiscent of Weitzenböck formula for differential forms in Riemannian geometry and of Bakry-Émery theory.

- At the level of semigroups:

$$
\nabla P_{t} f=\mathcal{P}_{t}^{\text {Hess } V}(\nabla f)
$$

with $\left(\mathcal{P}_{t}^{\text {Hess } V}\right)_{t \geq 0}$ the Feynman-Kac semigroup acting on vector fields with generator the Schrödinger type operator $\mathcal{L}-\operatorname{Hess} V$.

- In dimension 1, the Feynman-Kac semigroup $\left(\mathcal{P}_{t}^{\mathrm{Hess} V}\right)_{t \geq 0}$ admits a simple probabilistic representation:

$$
P_{t}^{\partial_{x}^{2}} V_{f=\mathbb{E}}\left[f\left(X_{t}\right) \exp \left(-\int_{0}^{t} \partial_{x}^{2} V\left(X_{s}\right) d s\right)\right]
$$

The tangent process satisfies:
$\partial_{x} X_{t}=\partial_{x}\left(x-\int_{0}^{t} \partial_{x} V\left(X_{s}\right) d s+\sqrt{2} B_{t}\right)=1-\int_{0}^{t} \partial_{x}^{2} V\left(X_{s}\right) \partial_{x} X_{s} d s$,
so that

$$
\partial_{x} X_{t}=\exp \left(-\int_{0}^{t} \partial_{x}^{2} V\left(X_{s}\right) d s\right)
$$

and thus,

$$
\begin{aligned}
\partial_{x} P_{t} f & =\partial_{x} \mathbb{E}\left[f\left(X_{t}\right)\right]=\mathbb{E}\left[\partial_{x} f\left(X_{t}\right) \partial_{x} X_{t}\right] \\
& =\mathbb{E}\left[\partial_{x} f\left(X_{t}\right) \exp \left(-\int_{0}^{t} \partial_{x}^{2} V\left(X_{s}\right) d s\right)\right]=P_{t}^{\partial_{x}^{2}} v \partial_{x} f
\end{aligned}
$$

$\hookrightarrow$ In the multidimensional case, the situation is somewhat similar and $\left(\mathcal{P}_{t}^{\mathrm{Hess} V}\right)_{t \geq 0}$ admits an explicit expression.

Coming back to Helffer's proof of BL's inequality, we have:

$$
\begin{array}{rll}
\int f^{2} d \mu & = & \int f(-L g) d \mu \\
& = & \int\langle\nabla f, \nabla g\rangle d \mu \\
& \stackrel{\text { intert.) }}{=} & \int\left\langle\nabla f,(-\mathcal{L}+\operatorname{Hess} V)^{-1}(\nabla f)\right\rangle d \mu \\
(-\mathcal{L} \geq 0) & \int\left\langle\nabla f,(\operatorname{Hess} V)^{-1} \nabla f\right\rangle d \mu
\end{array}
$$

- Does this proof give an information on extremal functions? Yes. Equality in BL's inequality holds iif

$$
\mathcal{L}(\nabla g)=0
$$

i.e., $\nabla g=c \in \mathbb{R}^{n}$, thus

$$
g(x)=\langle x, c\rangle+m,
$$

which implies that

$$
f(x)=-L g(x)=\langle-\mathcal{L}(x), c\rangle=\langle\nabla V(x), c\rangle .
$$

Spectral interpretation.

## Theorem (Johnsen '00)

The operators $(-L)_{\mid c o n s t ~}$ and $(-\mathcal{L}+\operatorname{Hess} V)_{\mid \nabla}$ are unitarily equivalent, the unitary transformation being the Riesz transform $\nabla(-L)^{-1 / 2}$.
Consequently, we have

$$
\sigma\left((-L)_{\mid \text {const }}\right)=\sigma\left((-\mathcal{L}+\operatorname{Hess} V)_{\mid \nabla}\right)
$$

Thus

$$
\begin{aligned}
\lambda_{1}(-L) & =\lambda_{0}\left((-L)_{\mid \text {const }} \perp\right) \\
& =\lambda_{0}\left((-\mathcal{L}+\operatorname{Hess} V)_{\mid \nabla}\right) \\
& \geq \lambda_{0}(-\mathcal{L})+\inf _{x \in \mathbb{R}^{n}} \rho(\operatorname{Hess} V(x)) \\
& =\inf _{x \in \mathbb{R}^{n}} \rho(\operatorname{Hess} V(x)),
\end{aligned}
$$

where $\rho(M)$ is the smallest eigenvalue of a given $M$.

## (1) A first intertwining and Brascamp-Lieb's inequality

(2) The intertwining with weight
(3) Examples

## 4. Other consequences

- How to obtain BL inequalities involving a convenient estimate on $\lambda_{1}(-L)$ when $V$ is not uniformly convex (and even not convex) ?
- How to obtain BL inequalities leading to convenient weighted Poincaré type inequalities of the form: for all $f \perp$ const,

$$
\int f^{2} d \mu \leq \int \sigma^{2}|\nabla f|^{2} d \mu \quad ?
$$

$\hookrightarrow$ Idea: to introduce in the previous intertwining a smooth weight $x \in \mathbb{R}^{d} \mapsto A(x) \in G L_{n}(\mathbb{R}):$

$$
A \nabla L=A(\mathcal{L}-\operatorname{Hess} V)\left(A^{-1} A \nabla\right)=\left(\mathcal{L}_{A}-\mathcal{M}_{A}\right)(A \nabla)
$$

where $\mathcal{L}_{A}$ is a (non-diagonal) matrix operator acting on vectors fields as

$$
\mathcal{L}_{A} F=\mathcal{L} F+2 A \nabla A^{-1} \cdot \nabla F
$$

and $\mathcal{M}_{A}$ is the matrix acting as a 0 -order operator:

$$
\mathcal{M}_{A}=A\left(\operatorname{Hess} V-\mathcal{L}\left(A^{-1}\right) A\right) A^{-1}
$$

- If $A$ is diagonal then so is $\mathcal{L}_{A}$.
- Above, the contraction $\nabla A^{-1} \cdot \nabla F$ is a vector: if $A^{-1}=\left(a^{i, j}\right)_{i, j}$ then

$$
\left(\nabla A^{-1} \cdot \nabla F\right)_{i}=\sum_{j}\left\langle\nabla a^{i, j}, \nabla F_{j}\right\rangle
$$

- What about symmetry and non-positivity of those operators ?
$\hookrightarrow$ Given the symmetric and positive definite matrix $S=\left(A A^{T}\right)^{-1}$, denote $L^{2}(S, \mu)$ the space of vector fields $F$ such that

$$
\int\langle F, S F\rangle d \mu=\int\left|A^{-1} F\right|^{2} d \mu<\infty
$$

- Since $(\mathcal{L}-\operatorname{Hess} V)_{\mid \nabla}$ and $\left(\mathcal{L}_{A}-\mathcal{M}_{A}\right)_{\mid \nabla_{A}}$ are conjugate operators, the second inherits from the first one the properties of symmetry and non-positivity on $L^{2}(S, \mu)$.
- Not so clear for the operator $\mathcal{L}_{A}$.
- Assumption $\left(A_{\text {sym }}\right)$ the matrix $\left(A^{-1}\right)^{T} \nabla A^{-1}$ is symmetric.


## Lemma

Under $\left(A_{\text {sym }}\right)$, the operator $\mathcal{L}_{A}$ is (essentially) self-adjoint in $L^{2}(S, \mu)$ and non-positive. In particular for all $F, G$,

$$
\int\left\langle\mathcal{L}_{A} F, S G\right\rangle d \mu=-\int \nabla F S \nabla G d \mu
$$

where

$$
\int \nabla F S \nabla G d \mu=\sum_{k} \int\left\langle\partial_{k} F, S \partial_{k} G\right\rangle d \mu .
$$

- In dimension 1, the intertwining with weight $a$ is a composition of the first intertwining with Doob's $h$-transform (with $h=1 / a$ ):

$$
\begin{aligned}
\partial_{x} P_{t} f & \stackrel{\text { (intert.) }}{=} \\
& \mathbb{E}\left[\partial_{x} f\left(X_{t}\right) \exp \left(-\int_{0}^{t} \partial_{x}^{2} V\left(X_{s}\right) d s\right)\right] \\
& \stackrel{(\text { Girsanov })}{=} \\
& \mathbb{E}\left[\partial_{x} f\left(X_{a, t}\right) \exp \left(-\int_{0}^{t} \partial_{x}^{2} V\left(X_{a, s}\right) d s\right) M_{t}^{(a)}\right]
\end{aligned}
$$

where $\left(X_{t}^{(a)}\right)_{t \geq 0}$ has generator

$$
\begin{aligned}
L_{a} f & =L f+2 a \partial_{x} a^{-1} \partial_{x} f \\
& =\partial_{x}^{2} f-\partial_{x}\left(V+\log \left(a^{2}\right)\right) \partial_{x} f,
\end{aligned}
$$

and $\left(M_{t}^{(a)}\right)_{t \geq 0}$ is the Girsanov martingale

$$
\begin{aligned}
M_{t}^{(a)} & =\frac{a\left(X_{a, t}\right)}{a} \exp \left(-\int_{0}^{t} \frac{L_{a}(a)}{a}\left(X_{a, s}\right) d s\right) \\
& =\frac{a\left(X_{a, t}\right)}{a} \exp \left(+\int_{0}^{t} a L(1 / a)\left(X_{a, s}\right) d s\right)
\end{aligned}
$$

Hence the intertwining with weight a rewrites as

$$
\begin{aligned}
a \partial_{x} P_{t} f & =\mathbb{E}\left[\left(a \partial_{x} f\right)\left(X_{a, t}\right) \exp \left(-\int_{0}^{t}\left(\partial_{x}^{2} V-a L(1 / a)\right)\left(X_{a, s}\right) d s\right)\right] \\
& =P_{a, t}^{\mathcal{M}_{a}}\left(a \partial_{x} f\right)
\end{aligned}
$$

Recall the Poisson equation $f=-L g$. Using the intertwining with weight in Helffer's proof gives (recall that $S=\left(A A^{T}\right)^{-1}$ )

$$
\begin{array}{rlrl}
\int f^{2} d \mu & = & \int\langle\nabla f, \nabla g\rangle d \mu \\
& = & \int\langle A \nabla f, S A \nabla g\rangle d \mu \\
& \stackrel{\text { (intert.) }}{=} & \int\left\langle A \nabla f, S\left(-\mathcal{L}_{A}+\mathcal{M}_{A}\right)^{-1}(A \nabla f)\right\rangle d \mu \\
\left(-\mathcal{L}_{A} \geq 0\right) \\
& \int\left\langle A \nabla f, S \mathcal{M}_{A}^{-1} A \nabla f\right\rangle d \mu \\
& = & \int\left\langle\nabla f,\left(\operatorname{Hess} V-\mathcal{L}\left(A^{-1}\right) A\right)^{-1} \nabla f\right\rangle d \mu,
\end{array}
$$

which looks like BL's inequality (the original one recovered with $A=I d$ ).

Summarizing, we obtain the following Generalized BL inequality.
Theorem (Arnaudon, Bonnefont, J. '18)
Assume $\left(A_{\text {sym }}\right)$ and that the matrix $\operatorname{Hess} V-\mathcal{L}\left(A^{-1}\right) A$ is positive definite. Then for all $f \perp$ const,

$$
\int f^{2} d \mu \leq \int\left\langle\nabla f,\left(\operatorname{Hess} V-\mathcal{L}\left(A^{-1}\right) A\right)^{-1} \nabla f\right\rangle d \mu
$$

Moreover the spectral gap satisfies

$$
\lambda_{1}(-L) \geq \inf _{\mathbb{R}^{n}} \rho\left(\operatorname{Hess} V-\mathcal{L}\left(A^{-1}\right) A\right)
$$

$\hookrightarrow$ Authors dealing recently with BL type inequalities: Hargé '08, Helffer '98, Barthe-Cordero Erausquin '13, Nguyen '14, Kolesnikov-Milman '17, Cordero Erausquin '17, Bolley-Gentil-Guillin '18, and others...

- How to choose weight $A$ in the GBL inequality ?

Choose $A=\left(\operatorname{Jac} H^{T}\right)^{-1}$ for $H$ diffeomorphism on $\mathbb{R}^{n}$, so that

$$
\begin{aligned}
\operatorname{Hess} V-\mathcal{L}\left(A^{-1}\right) A & =\operatorname{Hess} V-\mathcal{L}\left(\operatorname{Jac} H^{T}\right)\left(\operatorname{Jac} H^{T}\right)^{-1} \\
& =\left(\operatorname{Hess} V \operatorname{Jac} H^{T}-\mathcal{L}\left(\operatorname{Jac} H^{T}\right)\right)\left(\operatorname{Jac} H^{T}\right)^{-1} \\
& =\left((-\mathcal{L}+\operatorname{Hess} V) \operatorname{Jac} H^{T}\right)\left(\operatorname{Jac} H^{T}\right)^{-1} \\
& \stackrel{(\text { intert. })}{=}-\operatorname{Jac} \mathcal{L} H^{T}\left(\operatorname{Jac} H^{T}\right)^{-1} .
\end{aligned}
$$

$\hookrightarrow$ The previous spectral gap estimate becomes

$$
\lambda_{1}(-L) \geq \inf _{\mathbb{R}^{n}} \rho\left(-\operatorname{Jac} \mathcal{L} H^{T}\left(\operatorname{Jac} H^{T}\right)^{-1}\right)
$$

which generalizes the famous one-dimensional Chen-Wang '97 estimate.

- Equality case in the GBL inequality holds iif

$$
\mathcal{L}_{A}(A \nabla g)=0,
$$

i.e., $A \nabla g=c \in \mathbb{R}^{n}$.

Assuming moreover $A=\left(\operatorname{Jac} H^{T}\right)^{-1}$ entails $\nabla g=J a c H^{T} c$, hence

$$
g=\langle H, c\rangle+m
$$

which implies that

$$
f(x)=-L g(x)=\langle-\mathcal{L} H, c\rangle .
$$

$\hookrightarrow$ BL's inequality is recovered with $H(x)=x$.

- Equality case reaching $\lambda_{1}(-L)$ ?
$\hookrightarrow$ Depends on the structure of the eigenspace $E_{\lambda_{1}(-L)}$ (required of full dimension $n$, cf. Barthe-Klartag ' 20 for measures with enough symmetries).


## (1) A first intertwining and Brascamp-Lieb's inequality

## (2) The intertwining with weight

## 4. Other consequences

- Perturbed product measures of the type

$$
V(x)=\sum_{i=1}^{n} U_{i}\left(x_{i}\right)+\varphi(x)
$$

arising in statistical mechanics, cf. Helffer '98, Bodineau-Helffer '99, Ledoux '01, Gentil-Roberto '01, Chen '08, Barthe-Cordero Erausquin '13, Barthe-Klartag '20, and others...
$\hookrightarrow$ Convenient spectral estimate for those models: Helffer's criterion:

$$
\lambda_{1}(-L) \geq \inf _{x \in \mathbb{R}^{n}} \rho\left(\widetilde{\operatorname{Hess} V(x)}+\operatorname{diag} \lambda_{1}^{x_{-i}}\right)
$$

where $\widetilde{M}=M-\operatorname{diag} M$ and $\lambda_{1}^{x_{-i}}$ is the spectral gap of the 1D conditional distribution of $x_{i}$ knowing $x_{-i}$.

- A curious non-convex example: a Gaussian model perturbed by quartic interaction: for $\beta>0$,

$$
V(x)=\sum_{i=1}^{n} \frac{x_{i}^{2}}{2}+\beta \sum_{i=1}^{n} x_{i}^{2} x_{i+1}^{2}, \quad x \in \mathbb{R}^{n}
$$

studied by Helffer-Nier '03 for discreteness of the spectrum. Since the 1D conditional distributions are Gaussian, we have

$$
\widetilde{\operatorname{Hess} V(x)}+\operatorname{diag} \lambda_{1}^{x_{-i}}=\operatorname{Hess} V(x), \quad x \in \mathbb{R}^{n} .
$$

$\hookrightarrow$ Helffer's result does not apply!

- What about the intertwining approach ?

Coming to the general perturbed product measure case, the choice

$$
H(x)=\left(h_{1}\left(x_{1}\right), \ldots, h_{n}\left(x_{n}\right)\right)^{T}, \quad x \in \mathbb{R}^{n},
$$

for convenient 1D strictly monotone functions $h_{i}$ entails that the matrix weight $A$ in the intertwining is diagonal.
$\hookrightarrow$ Important quantities to control for a relevant compensation of terms in the matrix - Jac $\mathcal{L} H(x)^{T}\left(\operatorname{Jac} H(x)^{T}\right)^{-1}$ :


## Proposition (Bonnefont, J. '21)

For the Gaussian model perturbed by quartic interaction, there exists two explicit dimension-free constants $\beta_{0}>0$ and $C>0$ such that for all $\beta \in\left[0, \beta_{0}\right]$,

$$
\lambda_{1}(-L) \geq C .
$$

- Coming back to the second question, does the GBL inequality allow to obtain convenient weighted Poincaré type inequalities of the form: for all $f \perp$ const,

$$
\int f^{2} d \mu \leq \int \sigma^{2}|\nabla f|^{2} d \mu
$$

## The simple Gaussian case:

$\hookrightarrow$ Taking $A=a I_{d}$ with some radial function a leads by the GBL inequality to the following weighted Poincaré inequality: for all $f \perp$ const,

$$
\int f^{2} d \mu \leq \int \frac{|\nabla f|^{2}}{1-a L(1 / a)} d \mu
$$

and choosing conveniently the function a leads to

$$
C_{n} \int f^{2} d \mu \leq \int \frac{|\nabla f|^{2}}{1+|x|^{2}} d \mu
$$

with $C_{n} \simeq 1 / n$ for large dimension $n$.

## (1) A first intertwining and Brascamp-Lieb's inequality

## (2) The intertwining with weight

(3) Examples
4. Other consequences

- Second-order GBL inequalities related to second smallest positive eigenvalue (Bonnefont-J. '21).
- Iteration of intertwinings for recovering spectral comparison proposed by Milman '18 (Bonnefont, J., Steiner, in progress).
- Extension to the Riemannian case (Huguet '22).
- Exploiting the spectrum identity:

$$
\sigma(-L) \backslash\{0\}=\sigma\left(\left.\left(-\mathcal{L}_{A}+\mathcal{M}_{A}\right)\right|_{A \nabla}\right)
$$

$\hookrightarrow$ Higher eigenvalues estimates in dimension 1 and gap estimates between consecutive first eigenvalues (Bonnefont-J. '22).

- Other functional inequalities (e.g., log-Sobolev, cf. Steiner '21).
- Spectral estimates on convex domains for statistical purposes: Global Sensitivity Analysis, dimension reduction through active subspaces (Bonnefont-J. '23).
- Stability in BL's inequality (Bonnefont, J., Serres, in progress).

As predicted by Jim Morrison, this is the end...

## THANK YOU FOR YOUR ATTENTION

and 61 thanks to Sergey Bobkov for all those wonderful mathematics that inspired several generations!

Thanks! Thanks! Thanks! Thanks! Thanks! Thanks! Thanks!<br>Thanks! Thanks! Thanks! Thanks! Thanks!

> And what a soccer player!

