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Intertwining and BL’s inequality

Consider on Rn the probability measure

dµ(x) ∝ e−V (x)dx ,

where V is some smooth potential on Rn.

↪→ Canonical diffusion operator:

Lf = ∆f − 〈∇V ,∇f 〉,

which is (essentially) self-adjoint in L2(µ) and non-positive:∫
f Lg dµ =

∫
Lf g dµ = −

∫
〈∇f ,∇g〉 dµ.

Spectrum : σ(−L) ⊂ [0,∞) with λ0(−L) = 0 (associated to const).
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Intertwining and BL’s inequality

Spectral gap: given λ > 0, we have

σ(−L) ⊂ {0} ∪ [λ,∞),

iif the Poincaré inequality holds with constant λ: for all f ⊥ const,

λ

∫
f 2 dµ ≤

∫
|∇f |2 dµ

(
=

∫
f (−Lf ) dµ

)
.

Optimal constant λ1(−L), called the spectral gap (of −L).

Describes the speed of convergence to equilibrium in L2(µ) of the
semigroup Pt = etL related to the underlying Markov process solution
to the SDE

dXt = −∇V (Xt) dt +
√
2 dBt .
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Intertwining and BL’s inequality

Theorem (Brascamp-Lieb ’76)

If HessV is positive definite, then the Brascamp-Lieb inequality holds: for
all f ⊥ const, ∫

f 2 dµ ≤
∫
〈∇f , (HessV )−1∇f 〉 dµ.

In particular if V is uniformly convex, i.e. there exists ρ > 0 such that

inf
x∈Rn

HessV (x) ≥ ρ Id ,

then
λ1(−L) ≥ ρ.

↪→ An instance of the famous Bakry-Émery ’85 curvature-dimension
condition CD(ρ,∞), optimal in the Gaussian case.
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Intertwining and BL’s inequality

Proof of Helffer ’98 based on the L2 method of Hörmander:

Consider the Poisson equation

f = −Lg (= −∆g + 〈∇V ,∇g〉) ,

where the centered f is given and g is the unknown.

Key point: the following intertwining between gradient and operators:

∇f = −∇Lg = −(L−HessV )(∇g),

where L is the (diagonal) matrix operator acting on vector fields:

L = diag L.

↪→ Reminiscent of Weitzenböck formula for differential forms in
Riemannian geometry and of Bakry-Émery theory.
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Intertwining and BL’s inequality

At the level of semigroups:

∇Pt f = PHessV
t (∇f ),

with (PHessV
t )t≥0 the Feynman-Kac semigroup acting on vector fields

with generator the Schrödinger type operator L−HessV .

In dimension 1, the Feynman-Kac semigroup (PHessV
t )t≥0 admits a

simple probabilistic representation:

P
∂2
xV

t f = E
[
f (Xt) exp

(
−
∫ t

0
∂2
xV (Xs) ds

)]
.
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Intertwining and BL’s inequality

The tangent process satisfies:

∂xXt = ∂x

(
x −

∫ t

0
∂xV (Xs) ds +

√
2Bt

)
= 1−

∫ t

0
∂2
xV (Xs) ∂xXs ds,

so that

∂xXt = exp

(
−
∫ t

0
∂2
xV (Xs) ds

)
,

and thus,

∂xPt f = ∂x E[f (Xt)] = E[∂x f (Xt) ∂xXt ]

= E
[
∂x f (Xt) exp

(
−
∫ t

0
∂2
xV (Xs) ds

)]
= P

∂2
xV

t ∂x f .

↪→ In the multidimensional case, the situation is somewhat similar and
(PHessV

t )t≥0 admits an explicit expression.

Aldéric Joulin (Toulouse) Intertwining and Poincaré 8 / 30



Intertwining and BL’s inequality

Coming back to Helffer’s proof of BL’s inequality, we have:∫
f 2 dµ =

∫
f (−Lg) dµ

=

∫
〈∇f ,∇g〉 dµ

(intert.)
=

∫
〈∇f , (−L+ HessV )−1(∇f )〉 dµ

(−L ≥ 0)
≤

∫
〈∇f , (HessV )−1∇f 〉 dµ.
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Intertwining and BL’s inequality

Does this proof give an information on extremal functions ? Yes.
Equality in BL’s inequality holds iif

L(∇g) = 0,

i.e., ∇g = c ∈ Rn, thus

g(x) = 〈x , c〉+ m,

which implies that

f (x) = −Lg(x) = 〈−L(x), c〉 = 〈∇V (x), c〉.
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Intertwining and BL’s inequality

Spectral interpretation.

Theorem (Johnsen ’00)

The operators (−L)|const⊥ and (−L+ HessV )|∇ are unitarily equivalent,
the unitary transformation being the Riesz transform ∇(−L)−1/2.
Consequently, we have

σ((−L)|const⊥) = σ((−L+ HessV )|∇).

Thus

λ1(−L) = λ0((−L)|const⊥)

= λ0((−L+ HessV )|∇)

≥ λ0(−L) + inf
x∈Rn

ρ (HessV (x))

= inf
x∈Rn

ρ (HessV (x)),

where ρ(M) is the smallest eigenvalue of a given M.
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Intertwining with weight

How to obtain BL inequalities involving a convenient estimate on
λ1(−L) when V is not uniformly convex (and even not convex) ?

How to obtain BL inequalities leading to convenient weighted Poincaré
type inequalities of the form: for all f ⊥ const,∫

f 2 dµ ≤
∫
σ2 |∇f |2 dµ ?
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Intertwining with weight

↪→ Idea: to introduce in the previous intertwining a smooth weight
x ∈ Rd 7→ A(x) ∈ GLn(R):

A∇L = A (L−HessV )(A−1A∇) = (LA −MA)(A∇),

where LA is a (non-diagonal) matrix operator acting on vectors fields
as

LAF = LF + 2A∇A−1 · ∇F ,

andMA is the matrix acting as a 0-order operator:

MA = A
(
HessV − L(A−1)A

)
A−1.

If A is diagonal then so is LA.
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Intertwining with weight

Above, the contraction ∇A−1 · ∇F is a vector: if A−1 = (ai ,j)i ,j then

(∇A−1 · ∇F )i =
∑
j

〈∇ai ,j ,∇Fj〉.

What about symmetry and non-positivity of those operators ?
↪→ Given the symmetric and positive definite matrix S = (AAT )−1,
denote L2(S , µ) the space of vector fields F such that∫

〈F ,S F 〉 dµ =

∫
|A−1 F |2 dµ <∞.
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Intertwining with weight

Since (L−HessV )|∇ and (LA −MA)|∇A
are conjugate operators, the

second inherits from the first one the properties of symmetry and
non-positivity on L2(S , µ).

Not so clear for the operator LA.

− Assumption (Asym) the matrix (A−1)T ∇A−1 is symmetric.
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Intertwining with weight

Lemma

Under (Asym), the operator LA is (essentially) self-adjoint in L2(S , µ) and
non-positive. In particular for all F ,G ,∫

〈LAF ,S G 〉 dµ = −
∫
∇F S ∇G dµ,

where ∫
∇F S ∇G dµ =

∑
k

∫
〈∂kF , S ∂kG 〉 dµ.
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Intertwining with weight

In dimension 1, the intertwining with weight a is a composition of the
first intertwining with Doob’s h-transform (with h = 1/a):

∂xPt f
(intert.)

= E
[
∂x f (Xt) exp

(
−
∫ t

0
∂2
xV (Xs) ds

)]
(Girsanov)

= E
[
∂x f (Xa,t) exp

(
−
∫ t

0
∂2
xV (Xa,s) ds

)
M

(a)
t

]
,

where (X
(a)
t )t≥0 has generator

Laf = Lf + 2a∂xa−1 ∂x f

= ∂2
x f − ∂x

(
V + log(a2)

)
∂x f ,

and (M
(a)
t )t≥0 is the Girsanov martingale

M
(a)
t =

a(Xa,t)

a
exp

(
−
∫ t

0

La(a)

a
(Xa,s) ds

)
=

a(Xa,t)

a
exp

(
+

∫ t

0
a L(1/a) (Xa,s) ds

)
,
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Intertwining with weight

Hence the intertwining with weight a rewrites as

a∂xPt f = E
[

(a∂x f )(Xa,t) exp

(
−
∫ t

0

(
∂2
xV − a L(1/a)

)
(Xa,s) ds

)]
= PMa

a,t (a∂x f ).
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Intertwining with weight

Recall the Poisson equation f = −Lg . Using the intertwining with weight
in Helffer’s proof gives (recall that S = (AAT )−1)∫

f 2 dµ =

∫
〈∇f ,∇g〉 dµ

=

∫
〈A∇f ,S A∇g〉 dµ

(intert.)
=

∫
〈A∇f ,S (−LA +MA)−1(A∇f )〉 dµ

(−LA≥ 0)
≤

∫
〈A∇f ,SM−1

A A∇f 〉 dµ

=

∫
〈∇f ,

(
HessV − L(A−1)A

)−1 ∇f 〉 dµ,

which looks like BL’s inequality (the original one recovered with A = Id).
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Intertwining with weight

Summarizing, we obtain the following Generalized BL inequality.

Theorem (Arnaudon, Bonnefont, J. ’18)

Assume (Asym) and that the matrix HessV − L(A−1)A is positive definite.
Then for all f ⊥ const,∫

f 2 dµ ≤
∫
〈∇f ,

(
HessV − L(A−1)A

)−1 ∇f 〉 dµ.

Moreover the spectral gap satisfies

λ1(−L) ≥ inf
Rn

ρ
(
HessV − L(A−1)A

)
.

↪→ Authors dealing recently with BL type inequalities: Hargé ’08, Helffer
’98, Barthe-Cordero Erausquin ’13, Nguyen ’14, Kolesnikov-Milman ’17,
Cordero Erausquin ’17, Bolley-Gentil-Guillin ’18, and others...
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Intertwining with weight

How to choose weight A in the GBL inequality ?
Choose A = (Jac HT )−1 for H diffeomorphism on Rn, so that

HessV − L(A−1)A = HessV − L(Jac HT ) (Jac HT )−1

=
(
HessV Jac HT − L(Jac HT )

)
(Jac HT )−1

=
(

(−L+ HessV ) Jac HT
)

(Jac HT )−1

(intert.)
= −Jac LHT (Jac HT )−1.

↪→ The previous spectral gap estimate becomes

λ1(−L) ≥ inf
Rn

ρ
(
−Jac LHT (Jac HT )−1

)
,

which generalizes the famous one-dimensional Chen-Wang ’97
estimate.
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Intertwining with weight

Equality case in the GBL inequality holds iif

LA(A∇g) = 0,

i.e., A∇g = c ∈ Rn.

Assuming moreover A = (Jac HT )−1 entails ∇g = Jac HT c , hence

g = 〈H, c〉+ m,

which implies that

f (x) = −Lg(x) = 〈−LH, c〉.

↪→ BL’s inequality is recovered with H(x) = x .

Equality case reaching λ1(−L) ?

↪→ Depends on the structure of the eigenspace Eλ1(−L) (required of
full dimension n, cf. Barthe-Klartag ’20 for measures with enough
symmetries).
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Examples

Perturbed product measures of the type

V (x) =
n∑

i=1

Ui (xi ) + ϕ(x),

arising in statistical mechanics, cf. Helffer ’98, Bodineau-Helffer ’99,
Ledoux ’01, Gentil-Roberto ’01, Chen ’08, Barthe-Cordero Erausquin
’13, Barthe-Klartag ’20, and others...

↪→ Convenient spectral estimate for those models: Helffer’s criterion:

λ1(−L) ≥ inf
x∈Rn

ρ
(

˜HessV (x) + diag λx−i

1

)
,

where M̃ = M − diagM and λx−i

1 is the spectral gap of the 1D
conditional distribution of xi knowing x−i .
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Examples

A curious non-convex example: a Gaussian model perturbed by
quartic interaction: for β > 0,

V (x) =
n∑

i=1

x2
i

2
+ β

n∑
i=1

x2
i x

2
i+1, x ∈ Rn,

studied by Helffer-Nier ’03 for discreteness of the spectrum.
Since the 1D conditional distributions are Gaussian, we have

˜HessV (x) + diag λx−i

1 = HessV (x), x ∈ Rn.

↪→ Helffer’s result does not apply !

What about the intertwining approach ?
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Examples

Coming to the general perturbed product measure case, the choice

H(x) = (h1(x1), . . . , hn(xn))T , x ∈ Rn,

for convenient 1D strictly monotone functions hi entails that the matrix
weight A in the intertwining is diagonal.
↪→ Important quantities to control for a relevant compensation of terms

in the matrix −Jac LH(x)T (Jac H(x)T )−1:

Hessϕ(x)︸ ︷︷ ︸,
interaction term

∂2
xi
Ui (xi ), |∂xiUi (xi )|2︸ ︷︷ ︸,

product measure part

∂xiϕ(x)∂xiUi (xi )︸ ︷︷ ︸
mix contribution

.

Proposition (Bonnefont, J. ’21)

For the Gaussian model perturbed by quartic interaction, there exists two
explicit dimension-free constants β0 > 0 and C > 0 such that for all
β ∈ [0, β0],

λ1(−L) ≥ C .
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Examples

Coming back to the second question, does the GBL inequality allow to
obtain convenient weighted Poincaré type inequalities of the form: for
all f ⊥ const, ∫

f 2 dµ ≤
∫
σ2 |∇f |2 dµ ?

The simple Gaussian case:

↪→ Taking A = a Id with some radial function a leads by the GBL
inequality to the following weighted Poincaré inequality: for all
f ⊥ const, ∫

f 2 dµ ≤
∫

|∇f |2

1− a L(1/a)
dµ,

and choosing conveniently the function a leads to

Cn

∫
f 2 dµ ≤

∫
|∇f |2

1 + |x |2
dµ,

with Cn ' 1/n for large dimension n.
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Other consequences

Second-order GBL inequalities related to second smallest positive
eigenvalue (Bonnefont-J. ’21).

Iteration of intertwinings for recovering spectral comparison proposed
by Milman ’18 (Bonnefont, J., Steiner, in progress).

Extension to the Riemannian case (Huguet ’22).

Exploiting the spectrum identity:

σ(−L)\{0} = σ((−LA +MA)|A∇).

↪→ Higher eigenvalues estimates in dimension 1 and gap estimates
between consecutive first eigenvalues (Bonnefont-J. ’22).

Other functional inequalities (e.g., log-Sobolev, cf. Steiner ’21).

Spectral estimates on convex domains for statistical purposes: Global
Sensitivity Analysis, dimension reduction through active subspaces
(Bonnefont-J. ’23).

Stability in BL’s inequality (Bonnefont, J., Serres, in progress).
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Other consequences

As predicted by Jim Morrison, this is the end...

THANK YOU FOR YOUR ATTENTION

and 61 thanks to Sergey Bobkov for all those wonderful mathematics that
inspired several generations !

Thanks ! Thanks ! Thanks ! Thanks ! Thanks ! Thanks ! Thanks !
Thanks ! Thanks ! Thanks ! Thanks ! Thanks ! Thanks ! Thanks !
Thanks ! Thanks ! Thanks ! Thanks ! Thanks ! Thanks ! Thanks !
Thanks ! Thanks ! Thanks ! Thanks ! Thanks ! Thanks ! Thanks !
Thanks ! Thanks ! Thanks ! Thanks ! Thanks ! Thanks ! Thanks !
Thanks ! Thanks ! Thanks ! Thanks ! Thanks ! Thanks ! Thanks !
Thanks ! Thanks ! Thanks ! Thanks ! Thanks ! Thanks ! Thanks !
Thanks ! Thanks ! Thanks ! Thanks ! Thanks ! Thanks ! Thanks !

Thanks ! Thanks ! Thanks ! Thanks ! Thanks !

And what a soccer player !
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