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Rényi Entropy and Central Limit Theorem

For independent and identically distributed (i.i.d.) centered random variables
with finite second moment X1,X2, . . . , consider

Zn =
X1 + · · ·+Xn√

n

Rényi entropy of order r ∈ [0,+∞]:

hr (X) =
1

1− r
log

(∫
f r
)
, X ∼ f

Rényi divergence:

Dr (X ||Y ) =
1

r −1
log

∫ (
f
g

)r

g, X ∼ f ,Y ∼ g

• Bobkov-Chistyakov-Götze (’18): When Z Gaussian with same
covariance as X1, established necessary and sufficient conditions for

Dr (Zn||Z )→ 0.

Rem: For r = 1, D(Zn||Z ) = h(Z )−h(Zn). For r ̸= 1,

Dr (Zn||Z ) ̸= hr (Z )−hr (Zn)
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Rényi Entropy and Central Limit Theorem

For independent and identically distributed (i.i.d.) centered random variables,
consider

Zn =
X1 + · · ·+Xn√

n
Rényi entropy of order r ∈ [0,+∞]:

hr (X) =
1

1− r
log

(∫
f r
)
, X ∼ f

Rényi divergence:

Dr (X ||Y ) =
1

r −1
log

∫ (
f
g

)r

g, X ∼ f ,Y ∼ g

• Bobkov-Chistyakov-Götze (’18): When Z Gaussian with same
covariance as X1, established necessary and sufficient conditions for

Dr (Zn||Z )→ 0.

Rem: For r = 1, D(Zn||Z ) = h(Z )−h(Zn). For r ̸= 1,

Dr (Zn||Z )︸ ︷︷ ︸
≥0

̸= hr (Z )−hr (Zn)︸ ︷︷ ︸
≥0or ≤0
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Convergence of Zn in Rényi entropy of order r > 1

• Zn =
X1+···+Xn√

n
• Z Gaussian with same covariance as X1.

Theorem (Bobkov-M. ’19)

Let r > 1. The following statements are equivalent.

(1) hr (Zn)→ hr (Z ).

(2) hr (Zn0) is finite for some integer n0.

(3) Zn0 has a bounded density for some integer n0.

Rem:
• The statement fails when r ∈ (0,1].
• For r = 1, Barron noted that (3) implies (1) but (1) does not imply (3).
• For r ∈ (0,1), one can see that (3) does not imply (1).
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Convergence of Zn in Rényi entropy of order r ∈ (0,1)

Motivated by Rényi EPIs of order r ∈ (0,1) we established convergence for
special classes of distribution:

Def: X ∼ f log-concave if f = e−V , with V convex

Theorem (Li-M.-Melbourne ’20)

For X1, . . . ,Xn i.i.d. log-concave random variables in Rd ,

lim
n→+∞

hr (Zn) = hr (Z )

Def: f spherically symmetric if f (x) = F(∥x∥), with some function
F : [0,+∞)→ [0,+∞), ∥ · ∥ Euclidean norm

Theorem (Li-M.-Melbourne ’20)

For X1, . . . ,Xn i.i.d. random variables in Rd with spherically symmetric
unimodal density with compact support,

lim
n→+∞

hr (Zn) = hr (Z )
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Application to Rényi EPI

• Nr (X) = e
2
d hr (X)

Shannon EPI:
For independent random variables X1, . . . ,Xn in Rd ,

N (X1 + · · ·+Xn)≥
n

∑
i=1

N (Xi)
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Application to Rényi EPI

• Nr (X) = e
2
d hr (X)

Shannon EPI:
For independent random variables X1, . . . ,Xn in Rd ,

Nr (X1 + · · ·+Xn)≥ c
n

∑
i=1

Nr (Xi) ?

When r > 1: Bobkov-Chistyakov ’15, Ram-Sason ’16.

Theorem (Li-M.-Melbourne ’20)

For any r ∈ (0,1), and ε > 0, there exist independent random variables
X1, . . . ,Xn in Rd , for some d ≥ 1 and n ≥ 2, such that

Nr (X1 + · · ·+Xn)< ε

n

∑
i=1

Nr (Xi).
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Smoothed CLT

Let (Xn)n≥1 be independent, identically distributed (i.i.d.) random variables in
Rd with an isotropic distribution:

E[X1] = 0, Cov(X1) = Id .

Let X be a random variable in Rd with finite second moment, independent of
all Xn ’s.

By the central limit theorem (CLT), the normalized sums

Zn =
X +X1 + · · ·+Xn√

n

converges in distribution (as n → ∞) to the standard normal Z .

Smoothed CLT: Suppose that X has an absolutely continuous distribution,
so that Zn has some density pn.

Question: Can the weak CLT be strengthened to the convergence of
entropies:

h(Zn)→ h(Z )

to the entropy of the Gaussian limit Z?
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Entropic CLT

Zn =
X +X1 + · · ·+Xn√

n

Shannon entropy: If X has density p, then

h(X) =−
∫
Rd

p(x) logp(x)dx

The usual entropic CLT corresponds to X = 0:

Theorem: (Barron ’86)
The entropic CLT h(Zn)→ h(Z ) holds if and only if Zn have densities pn with
finite h(Zn) for some n large enough.

Theorem: (Artstein-Ball-Barthe-Naor ’04, Madiman-Barron ’07)
Monotonicity in the entropic CLT: h(Zn)≤ h(Zn+1).

Rate of convergence in the entropic CLT:
Miclo ’03, Bobkov-Chistyakov-Götze ’13, Eldan-Mikulincer-Zhai ’18
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Results - Part I

Introduce the characteristic function of X :

f (t) = E[ei⟨t,X⟩], t ∈ Rd .

Theorem (Bobkov, M. ’20)

If f is compactly supported, and X1 has a non-lattice distribution, then

h(Zn)→ h(Z ) as n → ∞.

Convergence in entropy also holds for lattice distributions, if f is supported on
the ball |t| ≤ T for some T > 0 depending on the distribution of X1.

For example, one may take T = 1/β3, where

β3 = sup
|θ|=1

E | ⟨X1,θ⟩ |3 <+∞.

Remark: The assumption of compactness on the support of the
characteristic function of X requires its density p to be the restriction to Rd of
an entire function on Cd of exponential type (Paley-Wiener theorems).
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Motivations - Part I

The usual entropic CLT doesn’t handle the discrete case.

Distances:
• The (quadratic) Kantorovich distance between X ∼ µ and Y ∼ ν is defined
as

W2(X ,Y ) = inf
X̃∼µ,Ỹ∼ν

E[|X̃ − Ỹ |2]
1
2 .

• The Kullback-Leibler distance between X ∼ p and Y ∼ q is defined as

D(X ||Y ) =
∫
Rd

p(x) log
p(x)
q(x)

dx .

When Y is the standard Gaussian measure Z on Rd , the relationship of W2

with relative entropy was emphasized by Talagrand (1996) who showed that

W 2
2 (X ,Z )≤ 2D(X ||Z ).
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1
2 .

• The Kullback-Leibler distance between X ∼ p and Y ∼ q is defined as

D(X ||Y ) =
∫
Rd

p(x) log
p(x)
q(x)

dx .

When Y is the standard Gaussian measure Z on Rd , the relationship of W2

with relative entropy was emphasized by Talagrand (1996) who showed that

W 2
2 (X ,Z )≤ 2D(X ||Z ).

Conference in honour of Sergey Bobkov May 31, 2023 Joint with Sergey Bobkov Jiange Li, James Melbourne 11



Motivations - Part I

The usual entropic CLT doesn’t handle the discrete case.

Distances:
• The (quadratic) Kantorovich distance between X ∼ µ and Y ∼ ν is defined
as

W2(X ,Y ) = inf
X̃∼µ,Ỹ∼ν
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W 2
2 (X ,Z )≤ 2D(X ||Z ).
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Motivations - Part I

Returning to the setting of the above Theorem, define the normalized sums

Z ′
n = Zn −

1√
n

X =
X1 + · · ·+Xn√

n
.

Choose for f a characteristic function supported on a suitable small ball
|t| ≤ T , so that D(Zn||Z )→ 0 by our theorem. Applying the Talagrand
transport-entropy inequality, we get

W 2
2 (Z

′
n,Z ) ≤ 2W 2

2 (Zn,Z )+
2
n

E |X |2 ≤ 4D(Zn||Z )+
2
n

E |X |2 → 0.

=⇒ As the result, Z ′
n converges to Z in Wasserstein distance. The Xi ’s can

be discrete.
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Results - Part II

Necessary and sufficient condition for the uniform on discrete cube:

Theorem (Bobkov, M. ’20)

Suppose that X1 has a uniform distribution on the discrete cube {−1,1}d ,
that is, with independent Bernoulli coordinates. Assume the characteristic
function f of X satisfies∫

Rd
|f (t)|dt < ∞,

∫
Rd

|f ′(t)|
∥t∥d−1 dt < ∞,

where ∥t∥ denotes the distance from the point t to the lattice πZd .
Then, the entropic CLT holds true, if and only if

f (πk) = 0 for all k ∈ Zd , k ̸= 0.

Remark: The second moment assumption on X guarantees that f has a
bounded continuous derivative f ′(t) = ∇f (t) with its Euclidean length |f ′(t)|.
The assumption of integrability is fulfilled, for example, under decay
assumptions (say, 1

|t|1+ε ).
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Motivations - Part II

Theorem (Bobkov, M. ’20)

Let (Xn)n≥1 be a sequence of independent, integer valued random variables,
whose components have variance one. Then

limsup
n→∞

h(Zn) ≤ h(X)+h(Z ).

As a consequence, if h(Zn)→ h(Z ) as n → ∞, then necessarily h(X)≥ 0.

Hyperplane Conjecture: (Bourgain ’86)
For any convex body K in Rd there is a hyperplane H such that the
(d −1)-dimensional volume of the slice H ∩K is bounded away from zero by
a universal positive constant.

Bobkov-Madiman (’11): The hyperplane conjecture is equivalent to the
following statement: If X is a random variable in Rd with an isotropic
log-concave distribution then

h(X)≥−cd .

with some universal constant c > 0.
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Proof of Theorems

Let (Xn)n≥1 be a sequence of integer valued random variables in Rd , and let
X be a continuous random variable in Rd with finite second moment,
independent of this sequence. As before, we define the normalized sums

Zn =
1√
n
(X +X1 + · · ·+Xn).

Well known: When the second moment E |U|2 of a continuous random
variable U in Rd is fixed, its entropy is maximized on the normal distribution
with the same second moment. In the case of independent and isotropic
Xn ’s, we have

E[|Zn|2] =
1
n

E[|X |2]+d →n→+∞ d .
Hence

limsup
n→∞

h(Zn)≤ h(Z ), Z standard Gaussian in Rd .

We proved: (When Xn ’s are integer valued)

limsup
n→∞

h(Zn)≤ h(Z )+h(X).

• We expect h(X) to be very negative (otherwise, it would satisfy the
hyperplane conjecture).
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Proof of Theorems

We proved: (When Xn ’s are integer valued)

limsup
n→∞

h(Zn)≤ h(Z )+h(X).

Based on two elementary lemmas, which involve the discrete Shannon
entropy

H(Y ) =−∑
k

pk logpk .

Here, Y is a discrete random variable taking at most countably many values,
say yk , with probabilities pk respectively.
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Proof of Theorems

Lemma

Let X be a continuous random variable, and let Y be a discrete random
variable independent of X . Then,

h(X +Y )≤ h(X)+H(Y ).

Rem: False if Y is continuous.
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Proof of Theorems

Proof: Denote by p the density of X and let pk = P{Y = yk}. Since X and Y
are independent, X +Y has density

q(z) = ∑
k

pk p(z − yk ).

We use the convention u log(u) = 0 if u = 0. Note that, if p(z − yk ) = 0, then

pk p(z − yk ) log∑
i

pip(z − yi) = 0 = pk p(z − yk ) log(pk p(z − yk )),

while in the case p(z − yk )> 0, we have

pk p(z−yk ) log∑
i

pip(z−yi)= pk p(z−yk ) log
(

pk p(z−yk )+∑
i ̸=k

pip(z−yi)
)

= pk p(z − yk )

[
log(pk p(z − yk ))+ log

(
1+

∑i ̸=k pip(z − yi)

pk p(z − yk )

)]
≥ pk p(z − yk ) log(pk p(z − yk )).
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Proof of Theorems

Hence, for all z,

pk p(z − yk ) log ∑
i

pip(z − yi) ≥ pk p(z − yk ) log(pk p(z − yk )).

We may therefore conclude that

h(X +Y ) =−
∫
Rd

q(z) logq(z)dz

=−∑
k

∫
Rd

pk p(z − yk ) log ∑
i

pip(z − yi)dz

≤−∑
k

∫
Rd

pk p(z − yk ) log(pk p(z − yk ))dz

=−∑
k

pk

(∫
Rd

p(z − yk ) logpk dz +
∫
Rd

p(z − yk ) logp(z − yk )dz

)
= h(X)+H(Y ).
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Proof of Theorems

Lemma

Let X be a continuous random variable, and let Y be a discrete random
variable independent of X . Then,

h(X +Y )≤ h(X)+H(Y ).

Sharpening: (Melbourne-Madiman-Salapaka, 2019)

h(X +Y )≤ h(X |Y )+TH(Y ),

where h(X |Y ) is the conditional entropy, reducing to h(X) on independence,
and T is the supremum of the total variation of the conditional densities from
their “mixture complements”, necessarily T ≤ 1.
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Lemma

For any integer valued random variable Y with finite second moment,

H(Y ) ≤ 1
2
log

(
2πe

(
Var(Y )+

1
12

))
.

The proof also combines both discrete and differential entropy:

Proof:
Put pk = P{Y = k}, k ∈ Z. Consider a continuous random variable Ỹ with
density q defined to be

q(x) = pk if x ∈ (k − 1
2 ,k +

1
2 ).

In other words, q(x) = ∑k pk 1(k− 1
2 ,k+

1
2 )
(x), x ∈ R.

Note that

E[Ỹ ] = ∑
k

pk

∫ k+ 1
2

k− 1
2

x dx = ∑
k

pk

2

((
k +

1
2

)2
−
(

k − 1
2

)2)
= ∑

k
kpk = E[Y ]

and similarly

E[Ỹ 2] = ∑
k

pk

∫ k+ 1
2

k− 1
2

x2 dx = E[Y 2]+
1
12

.
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density q defined to be

q(x) = pk if x ∈ (k − 1
2 ,k +

1
2 ).

In other words, q(x) = ∑k pk 1(k− 1
2 ,k+

1
2 )
(x), x ∈ R.

Note that
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Proof of Theorems

Hence Var(Ỹ ) = Var(Y )+ 1
12 . Also,

h(Ỹ ) =−
∫

∞

−∞
∑
k

pk 1(k− 1
2 ,k+

1
2 )
(x) log ∑

j
pj1(j− 1

2 ,j+
1
2 )
(x)dx

=−∑
k

pk

∫ k+ 1
2

k− 1
2

logpk dx = H(Y ).

Now, since Gaussian distributions maximize the differential entropy for a fixed
variance, we conclude that

H(Y ) = h(Ỹ ) ≤ 1
2
log

(
2πe Var(Ỹ )

)
=

1
2
log

(
2πe

(
Var(Y )+

1
12

))
.
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Proof of Theorems

Theorem (Bobkov, M. ’20)

Given a sequence Xn = (Xn,1, . . . ,Xn,d) of random variables with values in
Zd , independent of X , assume that for each k ≤ d, the components Xn,k ,
n ≥ 1, are uncorrelated and have variance one. Then,

limsup
n→∞

h(Zn) ≤ h(X)+h(Z ).

Proof: Putting Sn = X1 + · · ·+Xn and applying Lemma 1 above, we get

h(Zn) = h
(X +Sn√

n

)
= h(X +Sn)−

d
2
logn

≤ h(X)+H(Sn)−
d
2
logn.

Note that

Sn = (Sn,1, . . . ,Sn,d), Sn,k = X1,k + · · ·+Xn,k (1 ≤ k ≤ d).
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n ≥ 1, are uncorrelated and have variance one. Then,

limsup
n→∞

h(Zn) ≤ h(X)+h(Z ).

Proof: Putting Sn = X1 + · · ·+Xn and applying Lemma 1 above, we get

h(Zn) = h
(X +Sn√

n

)
= h(X +Sn)−

d
2
logn

≤ h(X)+H(Sn)−
d
2
logn.

Note that

Sn = (Sn,1, . . . ,Sn,d), Sn,k = X1,k + · · ·+Xn,k (1 ≤ k ≤ d).
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Proof of Theorems

By the well-known subadditivity of entropy along components of a random
variable (an abstract property on product spaces which is irrelevant to the
independence assumption), we have

H(Sn) ≤ H(Sn,1)+ · · ·+H(Sn,d).

Here, the entropy functional on the left is applied to the d-dimensional
random variable, while on the right-hand side we deal with one-dimensional
entropies.

For each k ≤ d , the k -th component Sn,k of the random variable
Sn represents the sum of n uncorrelated integer valued random variables
with variance one, so that Var(Sn,k ) = n. Hence, by Lemma 2 applied to
Y = Sn,k , we have

H(Sn,k ) ≤
1
2
log

(
2πe

(
n+

1
12

))
=

1
2
log(2πen)+O(1/n),

and therefore

H(Sn) ≤
d
2
log(2πen)+O(1/n).

We conclude that

limsup
n→∞

h(Zn) ≤ h(X)+
d
2
log(2πe) = h(X)+h(Z ).
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Thank you!
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