Entropic Limit Theorems

Arnaud Marsiglietti University of Florida

Conference in honour of Sergey Bobkov May 31, 2023

Joint with Sergey Bobkov Jiange Li, James Melbourne

4

For independent and identically distributed (i.i.d.) centered random variables with finite second moment $X_1, X_2, ...,$ consider

$$Z_n = \frac{X_1 + \dots + X_n}{\sqrt{n}}$$

Rényi entropy of order $r \in [0, +\infty]$:

$$h_r(X) = \frac{1}{1-r} \log\left(\int f^r\right), \qquad X \sim f$$

For independent and identically distributed (i.i.d.) centered random variables with finite second moment $X_1, X_2, ...,$ consider

$$Z_n = \frac{X_1 + \dots + X_n}{\sqrt{n}}$$

Rényi entropy of order $r \in [0, +\infty]$:

$$h_r(X) = \frac{1}{1-r} \log\left(\int f^r\right), \qquad X \sim f$$

Rényi divergence:

$$D_r(X||Y) = \frac{1}{r-1} \log \int \left(\frac{f}{g}\right)^r g, \quad X \sim f, Y \sim g$$

For independent and identically distributed (i.i.d.) centered random variables with finite second moment $X_1, X_2, ...,$ consider

$$Z_n = \frac{X_1 + \dots + X_n}{\sqrt{n}}$$

Rényi entropy of order $r \in [0, +\infty]$:

$$h_r(X) = \frac{1}{1-r} \log\left(\int f^r\right), \qquad X \sim f$$

Rényi divergence:

$$D_r(X||Y) = \frac{1}{r-1} \log \int \left(\frac{f}{g}\right)^r g, \quad X \sim f, Y \sim g$$

• **Bobkov-Chistyakov-Götze** ('18): When *Z* Gaussian with same covariance as *X*₁, established necessary and sufficient conditions for

$$D_r(Z_n||Z) \rightarrow 0.$$

For independent and identically distributed (i.i.d.) centered random variables with finite second moment $X_1, X_2, ...,$ consider

$$Z_n = \frac{X_1 + \dots + X_n}{\sqrt{n}}$$

Rényi entropy of order $r \in [0, +\infty]$:

$$h_r(X) = \frac{1}{1-r} \log\left(\int f^r\right), \qquad X \sim f$$

Rényi divergence:

$$D_r(X||Y) = \frac{1}{r-1} \log \int \left(\frac{f}{g}\right)^r g, \quad X \sim f, Y \sim g$$

• **Bobkov-Chistyakov-Götze** ('18): When *Z* Gaussian with same covariance as *X*₁, established necessary and sufficient conditions for

$$D_r(Z_n||Z) \rightarrow 0.$$

Rem: For r = 1, $D(Z_n || Z) = h(Z) - h(Z_n)$.

For independent and identically distributed (i.i.d.) centered random variables with finite second moment $X_1, X_2, ...,$ consider

$$Z_n = \frac{X_1 + \dots + X_n}{\sqrt{n}}$$

Rényi entropy of order $r \in [0, +\infty]$:

$$h_r(X) = \frac{1}{1-r} \log\left(\int f^r\right), \qquad X \sim f$$

Rényi divergence:

$$D_r(X||Y) = \frac{1}{r-1} \log \int \left(\frac{f}{g}\right)^r g, \quad X \sim f, Y \sim g$$

• **Bobkov-Chistyakov-Götze** ('18): When *Z* Gaussian with same covariance as *X*₁, established necessary and sufficient conditions for

$$D_r(Z_n||Z) \rightarrow 0.$$

Rem: For r = 1, $D(Z_n || Z) = h(Z) - h(Z_n)$. For $r \neq 1$, $D_r(Z_n || Z) \neq h_r(Z) - h_r(Z_n)$

For independent and identically distributed (i.i.d.) centered random variables, consider

$$Z_n = \frac{X_1 + \dots + X_n}{\sqrt{n}}$$

Rényi entropy of order $r \in [0, +\infty]$:

$$h_r(X) = \frac{1}{1-r} \log\left(\int f^r\right), \qquad X \sim f$$

Rényi divergence:

$$D_r(X||Y) = rac{1}{r-1} \log \int \left(rac{f}{g}
ight)^r g, \qquad X \sim f, Y \sim g$$

• **Bobkov-Chistyakov-Götze** ('18): When *Z* Gaussian with same covariance as *X*₁, established necessary and sufficient conditions for

 $D_r(Z_n||Z) \rightarrow 0.$

Rem: For r = 1, $D(Z_n || Z) = h(Z) - h(Z_n)$. For $r \neq 1$,

$$\underbrace{D_r(Z_n||Z)}_{\geq 0} \neq \underbrace{h_r(Z) - h_r(Z_n)}_{\geq 0 \text{ or } \leq 0}$$

Convergence of Z_n in Rényi entropy of order r > 1

- $Z_n = \frac{X_1 + \dots + X_n}{\sqrt{n}}$
- Z Gaussian with same covariance as X_1 .

Theorem (Bobkov-M. '19)

Let r > 1. The following statements are equivalent.

- (1) $h_r(Z_n) \rightarrow h_r(Z)$.
- (2) $h_r(Z_{n_0})$ is finite for some integer n_0 .
- (3) Z_{n_0} has a bounded density for some integer n_0 .

Convergence of Z_n in Rényi entropy of order r > 1

- $Z_n = \frac{X_1 + \dots + X_n}{\sqrt{n}}$
- Z Gaussian with same covariance as X_1 .

Theorem (Bobkov-M. '19)

Let r > 1. The following statements are equivalent.

- (1) $h_r(Z_n) \rightarrow h_r(Z)$.
- (2) $h_r(Z_{n_0})$ is finite for some integer n_0 .
- (3) Z_{n_0} has a bounded density for some integer n_0 .

Rem:

- The statement fails when $r \in (0, 1]$.
- For r = 1, Barron noted that (3) implies (1) but (1) does **not** imply (3).

Convergence of Z_n in Rényi entropy of order r > 1

- $Z_n = \frac{X_1 + \dots + X_n}{\sqrt{n}}$
- Z Gaussian with same covariance as X_1 .

Theorem (Bobkov-M. '19)

Let r > 1. The following statements are equivalent.

- (1) $h_r(Z_n) \rightarrow h_r(Z)$.
- (2) $h_r(Z_{n_0})$ is finite for some integer n_0 .
- (3) Z_{n_0} has a bounded density for some integer n_0 .

Rem:

- The statement fails when $r \in (0, 1]$.
- For r = 1, Barron noted that (3) implies (1) but (1) does **not** imply (3).
- For $r \in (0, 1)$, one can see that (3) does **not** imply (1).

Convergence of Z_n in Rényi entropy of order $r \in (0, 1)$

Motivated by Rényi EPIs of order $r \in (0, 1)$ we established convergence for special classes of distribution:

Convergence of Z_n in Rényi entropy of order $r \in (0, 1)$

Motivated by Rényi EPIs of order $r \in (0, 1)$ we established convergence for special classes of distribution:

Def: $X \sim f$ log-concave if $f = e^{-V}$, with V convex

Theorem (Li-M.-Melbourne '20)

For X_1, \ldots, X_n i.i.d. log-concave random variables in \mathbb{R}^d ,

 $\lim_{n\to+\infty}h_r(Z_n)=h_r(Z)$

Convergence of Z_n in Rényi entropy of order $r \in (0, 1)$

Motivated by Rényi EPIs of order $r \in (0,1)$ we established convergence for special classes of distribution:

Def: $X \sim f$ log-concave if $f = e^{-V}$, with V convex

Theorem (Li-M.-Melbourne '20)

For X_1, \ldots, X_n i.i.d. **log-concave** random variables in \mathbb{R}^d ,

 $\lim_{n\to+\infty}h_r(Z_n)=h_r(Z)$

Def: *f* spherically symmetric if f(x) = F(||x||), with some function $F: [0, +\infty) \to [0, +\infty), ||\cdot||$ Euclidean norm

Theorem (Li-M.-Melbourne '20)

For X_1, \ldots, X_n i.i.d. random variables in \mathbb{R}^d with spherically symmetric unimodal density with compact support,

$$\lim_{n\to+\infty}h_r(Z_n)=h_r(Z)$$

Application to Rényi EPI

• $N_r(X) = e^{\frac{2}{d}h_r(X)}$

Shannon EPI:

For independent random variables X_1, \ldots, X_n in \mathbb{R}^d ,

$$N\left(X_{1}+\cdots+X_{n}
ight)\geq\sum_{i=1}^{n}N\left(X_{i}
ight)$$

Application to Rényi EPI

• $N_r(X) = e^{\frac{2}{d}h_r(X)}$

Shannon EPI:

For independent random variables X_1, \ldots, X_n in \mathbb{R}^d ,

$$N_r(X_1+\cdots+X_n)\geq \frac{c}{\sum_{i=1}^n}N_r(X_i)$$
?

Application to Rényi EPI

• $N_r(X) = e^{\frac{2}{d}h_r(X)}$

Shannon EPI:

For independent random variables X_1, \ldots, X_n in \mathbb{R}^d ,

$$N_r(X_1+\cdots+X_n)\geq \frac{c}{\sum_{i=1}^n}N_r(X_i)$$
?

When r > 1: Bobkov-Chistyakov '15, Ram-Sason '16.

Theorem (Li-M.-Melbourne '20)

For any $r \in (0,1)$, and $\varepsilon > 0$, there exist independent random variables X_1, \ldots, X_n in \mathbb{R}^d , for some $d \ge 1$ and $n \ge 2$, such that

$$N_r(X_1+\cdots+X_n) < \varepsilon \sum_{i=1}^n N_r(X_i).$$

Let $(X_n)_{n\geq 1}$ be independent, identically distributed (i.i.d.) random variables in \mathbb{R}^d with an isotropic distribution:

$$\mathbf{E}[X_1] = \mathbf{0}, \quad \mathbf{Cov}(X_1) = \mathbf{Id}.$$

Let *X* be a random variable in \mathbb{R}^d with finite second moment, independent of all X_n 's.

Let $(X_n)_{n\geq 1}$ be independent, identically distributed (i.i.d.) random variables in \mathbb{R}^d with an isotropic distribution:

$$\mathbf{E}[X_1] = \mathbf{0}, \quad \mathbf{Cov}(X_1) = \mathbf{Id}.$$

Let *X* be a random variable in \mathbb{R}^d with finite second moment, independent of all X_n 's. By the central limit theorem (CLT), the normalized sums

$$Z_n = \frac{X + X_1 + \dots + X_n}{\sqrt{n}}$$

converges in distribution (as $n \rightarrow \infty$) to the standard normal *Z*.

Let $(X_n)_{n\geq 1}$ be independent, identically distributed (i.i.d.) random variables in \mathbb{R}^d with an isotropic distribution:

 $E[X_1] = 0$, $Cov(X_1) = Id$.

Let *X* be a random variable in \mathbb{R}^d with finite second moment, independent of all X_n 's. By the central limit theorem (CLT), the normalized sums

$$Z_n = \frac{X + X_1 + \dots + X_n}{\sqrt{n}}$$

converges in distribution (as $n \rightarrow \infty$) to the standard normal *Z*.

Smoothed CLT: Suppose that *X* has an absolutely continuous distribution, so that Z_n has some density p_n .

Let $(X_n)_{n\geq 1}$ be independent, identically distributed (i.i.d.) random variables in \mathbb{R}^d with an isotropic distribution:

 $E[X_1] = 0$, $Cov(X_1) = Id$.

Let *X* be a random variable in \mathbb{R}^d with finite second moment, independent of all X_n 's. By the central limit theorem (CLT), the normalized sums

$$Z_n = \frac{X + X_1 + \dots + X_n}{\sqrt{n}}$$

converges in distribution (as $n \rightarrow \infty$) to the standard normal *Z*.

Smoothed CLT: Suppose that *X* has an absolutely continuous distribution, so that Z_n has some density p_n .

Question: Can the weak CLT be strengthened to the convergence of entropies:

$$h(Z_n) \rightarrow h(Z)$$

to the entropy of the Gaussian limit Z?

$$Z_n = \frac{X + X_1 + \dots + X_n}{\sqrt{n}}$$

$$Z_n = \frac{X + X_1 + \dots + X_n}{\sqrt{n}}$$

$$h(X) = -\int_{\mathbb{R}^d} p(x) \log p(x) \, dx$$

$$Z_n = \frac{X + X_1 + \dots + X_n}{\sqrt{n}}$$

$$h(X) = -\int_{\mathbb{R}^d} p(x) \log p(x) \, dx$$

The usual entropic CLT corresponds to X = 0:

Theorem: (Barron '86)

The entropic CLT $h(Z_n) \rightarrow h(Z)$ holds if and only if Z_n have densities p_n with finite $h(Z_n)$ for some *n* large enough.

$$Z_n = \frac{X + X_1 + \dots + X_n}{\sqrt{n}}$$

$$h(X) = -\int_{\mathbb{R}^d} p(x) \log p(x) \, dx$$

The usual entropic CLT corresponds to X = 0:

Theorem: (Barron '86)

The entropic CLT $h(Z_n) \rightarrow h(Z)$ holds if and only if Z_n have densities p_n with finite $h(Z_n)$ for some *n* large enough.

Theorem: (Artstein-Ball-Barthe-Naor '04, Madiman-Barron '07) Monotonicity in the entropic CLT: $h(Z_n) \le h(Z_{n+1})$.

$$Z_n = \frac{X + X_1 + \dots + X_n}{\sqrt{n}}$$

$$h(X) = -\int_{\mathbb{R}^d} p(x) \log p(x) \, dx$$

The usual entropic CLT corresponds to X = 0:

Theorem: (Barron '86)

The entropic CLT $h(Z_n) \rightarrow h(Z)$ holds if and only if Z_n have densities p_n with finite $h(Z_n)$ for some *n* large enough.

Theorem: (Artstein-Ball-Barthe-Naor '04, Madiman-Barron '07) Monotonicity in the entropic CLT: $h(Z_n) \le h(Z_{n+1})$.

Rate of convergence in the entropic CLT: Miclo '03, Bobkov-Chistyakov-Götze '13, Eldan-Mikulincer-Zhai '18

Introduce the **characteristic function** of *X*:

 $f(t) = \mathrm{E}[e^{i\langle t, X \rangle}], \quad t \in \mathbb{R}^d.$

Introduce the **characteristic function** of *X*:

$$f(t) = \mathrm{E}[e^{i\langle t, X \rangle}], \quad t \in \mathbb{R}^d.$$

Theorem (Bobkov, M. '20)

If f is compactly supported, and X_1 has a non-lattice distribution, then

 $h(Z_n) \rightarrow h(Z)$ as $n \rightarrow \infty$.

Introduce the **characteristic function** of *X*:

$$f(t) = \mathrm{E}[e^{i\langle t, X \rangle}], \quad t \in \mathbb{R}^d.$$

Theorem (Bobkov, M. '20)

If f is compactly supported, and X_1 has a non-lattice distribution, then

$$h(Z_n) \rightarrow h(Z)$$
 as $n \rightarrow \infty$.

Convergence in entropy also holds for lattice distributions, if *f* is supported on the ball $|t| \leq T$ for some T > 0 depending on the distribution of X_1 .

Introduce the **characteristic function** of *X*:

$$f(t) = \mathrm{E}[e^{i\langle t, X \rangle}], \quad t \in \mathbb{R}^d.$$

Theorem (Bobkov, M. '20)

If f is compactly supported, and X_1 has a non-lattice distribution, then

$$h(Z_n) \rightarrow h(Z)$$
 as $n \rightarrow \infty$.

Convergence in entropy also holds for lattice distributions, if *f* is supported on the ball $|t| \le T$ for some T > 0 depending on the distribution of X_1 .

For example, one may take $T = 1/\beta_3$, where

$$\beta_3 = \sup_{|\theta|=1} \mathrm{E} |\langle X_1, \theta \rangle|^3 < +\infty.$$

Introduce the **characteristic function** of *X*:

$$f(t) = \mathrm{E}[e^{i\langle t, X \rangle}], \quad t \in \mathbb{R}^d.$$

Theorem (Bobkov, M. '20)

If f is compactly supported, and X_1 has a non-lattice distribution, then

$$h(Z_n) \rightarrow h(Z)$$
 as $n \rightarrow \infty$.

Convergence in entropy also holds for lattice distributions, if *f* is supported on the ball $|t| \le T$ for some T > 0 depending on the distribution of X_1 .

For example, one may take $T = 1/\beta_3$, where

$$\beta_3 = \sup_{|\theta|=1} E |\langle X_1, \theta \rangle|^3 < +\infty.$$

Remark: The assumption of compactness on the support of the characteristic function of *X* requires its density *p* to be the restriction to \mathbb{R}^d of an entire function on \mathbb{C}^d of exponential type (Paley-Wiener theorems).

The usual entropic CLT doesn't handle the discrete case.

The usual entropic CLT doesn't handle the discrete case.

Distances:

- The (quadratic) Kantorovich distance between $X\sim\mu$ and $Y\sim\nu$ is defined as

$$W_2(X,Y) = \inf_{\widetilde{X} \sim \mu, \widetilde{Y} \sim \nu} \mathbb{E}[|\widetilde{X} - \widetilde{Y}|^2]^{\frac{1}{2}}.$$

The usual entropic CLT doesn't handle the discrete case.

Distances:

- The (quadratic) Kantorovich distance between X $\sim \mu$ and Y $\sim \nu$ is defined as

$$W_2(X,Y) = \inf_{\widetilde{X} \sim \mu, \widetilde{Y} \sim \nu} \mathbb{E}[|\widetilde{X} - \widetilde{Y}|^2]^{\frac{1}{2}}.$$

• The Kullback-Leibler distance between $X \sim p$ and $Y \sim q$ is defined as

$$D(X||Y) = \int_{\mathbb{R}^d} p(x) \log \frac{p(x)}{q(x)} dx.$$

The usual entropic CLT doesn't handle the discrete case.

Distances:

- The (quadratic) Kantorovich distance between X $\sim \mu$ and Y $\sim \nu$ is defined as

$$W_2(X,Y) = \inf_{\widetilde{X} \sim \mu, \widetilde{Y} \sim \nu} \mathbb{E}[|\widetilde{X} - \widetilde{Y}|^2]^{\frac{1}{2}}.$$

• The Kullback-Leibler distance between $X \sim p$ and $Y \sim q$ is defined as

$$D(X||Y) = \int_{\mathbb{R}^d} p(x) \log \frac{p(x)}{q(x)} dx.$$

When *Y* is the standard Gaussian measure *Z* on \mathbb{R}^d , the relationship of W_2 with relative entropy was emphasized by Talagrand (1996) who showed that

$$W_2^2(X,Z) \leq 2D(X||Z).$$

Returning to the setting of the above Theorem, define the normalized sums

$$Z'_n = Z_n - \frac{1}{\sqrt{n}} X = \frac{X_1 + \dots + X_n}{\sqrt{n}}.$$

Returning to the setting of the above Theorem, define the normalized sums

$$Z'_n = Z_n - \frac{1}{\sqrt{n}} X = \frac{X_1 + \dots + X_n}{\sqrt{n}}$$

Choose for *f* a characteristic function supported on a suitable small ball $|t| \leq T$, so that $D(Z_n||Z) \rightarrow 0$ by our theorem.

Motivations - Part I

Returning to the setting of the above Theorem, define the normalized sums

$$Z'_n = Z_n - \frac{1}{\sqrt{n}} X = \frac{X_1 + \dots + X_n}{\sqrt{n}}$$

Choose for *f* a characteristic function supported on a suitable small ball $|t| \leq T$, so that $D(Z_n||Z) \rightarrow 0$ by our theorem. Applying the Talagrand transport-entropy inequality, we get

$$W_2^2(Z'_n,Z) \leq 2W_2^2(Z_n,Z) + \frac{2}{n} \mathbb{E}|X|^2 \leq 4D(Z_n||Z) + \frac{2}{n} \mathbb{E}|X|^2 \rightarrow 0.$$

Motivations - Part I

Returning to the setting of the above Theorem, define the normalized sums

$$Z'_n = Z_n - \frac{1}{\sqrt{n}} X = \frac{X_1 + \dots + X_n}{\sqrt{n}}$$

Choose for *f* a characteristic function supported on a suitable small ball $|t| \leq T$, so that $D(Z_n||Z) \rightarrow 0$ by our theorem. Applying the Talagrand transport-entropy inequality, we get

$$W_2^2(Z'_n,Z) \leq 2W_2^2(Z_n,Z) + \frac{2}{n} \mathbb{E}|X|^2 \leq 4D(Z_n||Z) + \frac{2}{n} \mathbb{E}|X|^2 \rightarrow 0.$$

 \implies As the result, Z'_n converges to Z in Wasserstein distance. The X_i 's can be discrete.

Results - Part II

Necessary and sufficient condition for the uniform on discrete cube:

Theorem (Bobkov, M. '20)

Suppose that X_1 has a uniform distribution on the discrete cube $\{-1,1\}^d$, that is, with independent Bernoulli coordinates. Assume the characteristic function f of X satisfies

$$\int_{\mathbb{R}^d} |f(t)| \, dt < \infty, \quad \int_{\mathbb{R}^d} \frac{|f'(t)|}{\|t\|^{d-1}} \, dt < \infty,$$

where ||t|| denotes the distance from the point t to the lattice $\pi \mathbb{Z}^d$. Then, the entropic CLT holds true, if and only if

 $f(\pi k) = 0$ for all $k \in \mathbb{Z}^d$, $k \neq 0$.

Results - Part II

Necessary and sufficient condition for the uniform on discrete cube:

Theorem (Bobkov, M. '20)

Suppose that X_1 has a uniform distribution on the discrete cube $\{-1,1\}^d$, that is, with independent Bernoulli coordinates. Assume the characteristic function f of X satisfies

$$\int_{\mathbb{R}^d} |f(t)| \, dt < \infty, \quad \int_{\mathbb{R}^d} rac{|f'(t)|}{\|t\|^{d-1}} \, dt < \infty,$$

where ||t|| denotes the distance from the point t to the lattice $\pi \mathbb{Z}^d$. Then, the entropic CLT holds true, if and only if

 $f(\pi k) = 0$ for all $k \in \mathbb{Z}^d$, $k \neq 0$.

Remark: The second moment assumption on *X* guarantees that *f* has a bounded continuous derivative $f'(t) = \nabla f(t)$ with its Euclidean length |f'(t)|. The assumption of integrability is fulfilled, for example, under decay assumptions (say, $\frac{1}{|t|^{1+\varepsilon}}$).

Theorem (Bobkov, M. '20)

Let $(X_n)_{n\geq 1}$ be a sequence of independent, integer valued random variables, whose components have variance one. Then

$$\limsup_{n\to\infty} h(Z_n) \leq h(X) + h(Z).$$

As a consequence, if $h(Z_n) \rightarrow h(Z)$ as $n \rightarrow \infty$, then necessarily $h(X) \ge 0$.

Theorem (Bobkov, M. '20)

Let $(X_n)_{n\geq 1}$ be a sequence of independent, integer valued random variables, whose components have variance one. Then

 $\limsup_{n\to\infty} h(Z_n) \leq h(X) + h(Z).$

As a consequence, if $h(Z_n) \rightarrow h(Z)$ as $n \rightarrow \infty$, then necessarily $h(X) \ge 0$.

Hyperplane Conjecture: (Bourgain '86)

For any convex body K in \mathbb{R}^d there is a hyperplane H such that the (d-1)-dimensional volume of the slice $H \cap K$ is bounded away from zero by a universal positive constant.

Theorem (Bobkov, M. '20)

Let $(X_n)_{n\geq 1}$ be a sequence of independent, integer valued random variables, whose components have variance one. Then

 $\limsup_{n\to\infty} h(Z_n) \leq h(X) + h(Z).$

As a consequence, if $h(Z_n) \rightarrow h(Z)$ as $n \rightarrow \infty$, then necessarily $h(X) \ge 0$.

Hyperplane Conjecture: (Bourgain '86)

For any convex body K in \mathbb{R}^d there is a hyperplane H such that the (d-1)-dimensional volume of the slice $H \cap K$ is bounded away from zero by a universal positive constant.

Bobkov-Madiman ('11): The hyperplane conjecture is equivalent to the following statement: If *X* is a random variable in \mathbb{R}^d with an isotropic log-concave distribution then

$$h(X) \geq -cd.$$

with some universal constant c > 0.

Let $(X_n)_{n\geq 1}$ be a sequence of integer valued random variables in \mathbb{R}^d , and let X be a continuous random variable in \mathbb{R}^d with finite second moment, independent of this sequence. As before, we define the normalized sums

$$Z_n = \frac{1}{\sqrt{n}} (X + X_1 + \dots + X_n).$$

Let $(X_n)_{n\geq 1}$ be a sequence of integer valued random variables in \mathbb{R}^d , and let X be a continuous random variable in \mathbb{R}^d with finite second moment, independent of this sequence. As before, we define the normalized sums

$$Z_n = \frac{1}{\sqrt{n}} (X + X_1 + \cdots + X_n).$$

Well known: When the second moment $E|U|^2$ of a continuous random variable U in \mathbb{R}^d is fixed, its entropy is maximized on the normal distribution with the same second moment.

Let $(X_n)_{n\geq 1}$ be a sequence of integer valued random variables in \mathbb{R}^d , and let X be a continuous random variable in \mathbb{R}^d with finite second moment, independent of this sequence. As before, we define the normalized sums

$$Z_n = \frac{1}{\sqrt{n}} (X + X_1 + \cdots + X_n).$$

Well known: When the second moment $E|U|^2$ of a continuous random variable U in \mathbb{R}^d is fixed, its entropy is maximized on the normal distribution with the same second moment. In the case of independent and isotropic X_n 's, we have

$$\mathrm{E}[|Z_n|^2] = \frac{1}{n} \mathrm{E}[|X|^2] + d \to_{n \to +\infty} d.$$

Hence

 $\limsup_{n\to\infty} h(Z_n) \le h(Z), \quad Z \text{ standard Gaussian in } \mathbb{R}^d.$

Let $(X_n)_{n\geq 1}$ be a sequence of integer valued random variables in \mathbb{R}^d , and let X be a continuous random variable in \mathbb{R}^d with finite second moment, independent of this sequence. As before, we define the normalized sums

$$Z_n = \frac{1}{\sqrt{n}} (X + X_1 + \cdots + X_n).$$

Well known: When the second moment $E|U|^2$ of a continuous random variable U in \mathbb{R}^d is fixed, its entropy is maximized on the normal distribution with the same second moment. In the case of independent and isotropic X_n 's, we have

$$\mathrm{E}[|Z_n|^2] = \frac{1}{n} \mathrm{E}[|X|^2] + d \to_{n \to +\infty} d.$$

Hence

$$\limsup_{n\to\infty} h(Z_n) \le h(Z), \quad Z \text{ standard Gaussian in } \mathbb{R}^d.$$

We proved: (When X_n 's are integer valued)

$$\limsup_{n\to\infty} h(Z_n) \leq h(Z) + h(X).$$

Let $(X_n)_{n\geq 1}$ be a sequence of integer valued random variables in \mathbb{R}^d , and let X be a continuous random variable in \mathbb{R}^d with finite second moment, independent of this sequence. As before, we define the normalized sums

$$Z_n = \frac{1}{\sqrt{n}} (X + X_1 + \cdots + X_n).$$

Well known: When the second moment $E|U|^2$ of a continuous random variable U in \mathbb{R}^d is fixed, its entropy is maximized on the normal distribution with the same second moment. In the case of independent and isotropic X_n 's, we have

$$\mathrm{E}[|Z_n|^2] = \frac{1}{n} \mathrm{E}[|X|^2] + d \to_{n \to +\infty} d.$$

Hence

$$\limsup_{n\to\infty} h(Z_n) \le h(Z), \quad Z \text{ standard Gaussian in } \mathbb{R}^d.$$

We proved: (When X_n 's are integer valued)

$$\limsup_{n\to\infty} h(Z_n) \leq h(Z) + h(X).$$

• We expect h(X) to be very negative (otherwise, it would satisfy the hyperplane conjecture).

We proved: (When *X_n*'s are integer valued)

$$\limsup_{n\to\infty} h(Z_n) \leq h(Z) + h(X).$$

We proved: (When *X_n*'s are integer valued)

$$\limsup_{n\to\infty} h(Z_n) \leq h(Z) + h(X).$$

Based on two elementary lemmas, which involve the discrete Shannon entropy

$$H(Y) = -\sum_k p_k \log p_k.$$

Here, *Y* is a discrete random variable taking at most countably many values, say y_k , with probabilities p_k respectively.

Let X be a continuous random variable, and let Y be a discrete random variable independent of X. Then,

 $h(X+Y) \leq h(X) + H(Y).$

Rem: False if *Y* is continuous.

Proof: Denote by *p* the density of *X* and let $p_k = P\{Y = y_k\}$. Since *X* and *Y* are independent, *X* + *Y* has density

$$q(z)=\sum_k p_k p(z-y_k).$$

Proof: Denote by *p* the density of *X* and let $p_k = P\{Y = y_k\}$. Since *X* and *Y* are independent, *X* + *Y* has density

$$q(z)=\sum_k p_k p(z-y_k).$$

We use the convention $u \log(u) = 0$ if u = 0. Note that, if $p(z - y_k) = 0$, then

$$p_k p(z-y_k) \log \sum_i p_i p(z-y_i) = 0 = p_k p(z-y_k) \log(p_k p(z-y_k)),$$

Proof: Denote by *p* the density of *X* and let $p_k = P\{Y = y_k\}$. Since *X* and *Y* are independent, *X* + *Y* has density

$$q(z)=\sum_k p_k p(z-y_k).$$

We use the convention $u \log(u) = 0$ if u = 0. Note that, if $p(z - y_k) = 0$, then

$$p_k p(z-y_k) \log \sum_i p_i p(z-y_i) = 0 = p_k p(z-y_k) \log(p_k p(z-y_k)),$$

while in the case $p(z - y_k) > 0$, we have

$$p_k p(z-y_k) \log \sum_i p_i p(z-y_i) = p_k p(z-y_k) \log \left(p_k p(z-y_k) + \sum_{i \neq k} p_i p(z-y_i) \right)$$

$$= p_k p(z-y_k) \left[\log(p_k p(z-y_k)) + \log\left(1 + \frac{\sum_{i \neq k} p_i p(z-y_i)}{p_k p(z-y_k)}\right) \right]$$
$$\geq p_k p(z-y_k) \log(p_k p(z-y_k)).$$

Hence, for all z,

$$p_k p(z-y_k) \log \sum_i p_i p(z-y_i) \geq p_k p(z-y_k) \log(p_k p(z-y_k)).$$

Hence, for all z,

$$p_k p(z-y_k) \log \sum_i p_i p(z-y_i) \geq p_k p(z-y_k) \log(p_k p(z-y_k)).$$

We may therefore conclude that

$$h(X+Y) = -\int_{\mathbb{R}^d} q(z) \log q(z) dz$$
$$= -\sum_k \int_{\mathbb{R}^d} p_k p(z-y_k) \log \sum_i p_i p(z-y_i) dz$$
$$\leq -\sum_k \int_{\mathbb{R}^d} p_k p(z-y_k) \log(p_k p(z-y_k)) dz$$
$$= -\sum_k p_k \left(\int_{\mathbb{R}^d} p(z-y_k) \log p_k dz + \int_{\mathbb{R}^d} p(z-y_k) \log p(z-y_k) dz \right)$$
$$= h(X) + H(Y).$$

Let *X* be a continuous random variable, and let *Y* be a discrete random variable independent of *X*. Then,

 $h(X+Y) \leq h(X) + H(Y).$

Let X be a continuous random variable, and let Y be a discrete random variable independent of X. Then,

 $h(X+Y) \leq h(X) + H(Y).$

Sharpening: (Melbourne-Madiman-Salapaka, 2019)

$$h(X+Y) \leq h(X|Y) + TH(Y),$$

where h(X|Y) is the conditional entropy, reducing to h(X) on independence, and T is the supremum of the total variation of the conditional densities from their "mixture complements", necessarily $T \leq 1$.

For any integer valued random variable Y with finite second moment,

$$H(Y) \leq \frac{1}{2} \log \left(2\pi e \left(\operatorname{Var}(Y) + \frac{1}{12} \right) \right).$$

The proof also combines both discrete and differential entropy:

For any integer valued random variable Y with finite second moment,

$$H(Y) \leq \frac{1}{2} \log \left(2\pi e \left(\operatorname{Var}(Y) + \frac{1}{12} \right) \right).$$

The proof also combines both discrete and differential entropy:

Proof:

Note

Put $p_k = \mathbb{P}\{Y = k\}, k \in \mathbb{Z}$. Consider a continuous random variable \widetilde{Y} with density q defined to be

$$q(x) = p_k \quad \text{if } x \in (k - \frac{1}{2}, k + \frac{1}{2}).$$

In other words,
$$q(x) = \sum_k p_k \mathbf{1}_{(k - \frac{1}{2}, k + \frac{1}{2})}(x), \quad x \in \mathbb{R}.$$

Note that

$$E[\widetilde{Y}] = \sum_{k} p_{k} \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} x \, dx = \sum_{k} \frac{p_{k}}{2} \left(\left(k+\frac{1}{2}\right)^{2} - \left(k-\frac{1}{2}\right)^{2} \right) = \sum_{k} k p_{k} = E[Y]$$

and similarly

$$E[\widetilde{Y}^2] = \sum_{k} p_k \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} x^2 \, dx = E[Y^2] + \frac{1}{12}.$$

Hence $\operatorname{Var}(\widetilde{Y}) = \operatorname{Var}(Y) + \frac{1}{12}$. Also,

$$h(\widetilde{Y}) = -\int_{-\infty}^{\infty} \sum_{k} p_{k} \mathbf{1}_{\left(k - \frac{1}{2}, k + \frac{1}{2}\right)}(x) \log \sum_{j} p_{j} \mathbf{1}_{\left(j - \frac{1}{2}, j + \frac{1}{2}\right)}(x) dx$$
$$= -\sum_{k} p_{k} \int_{k - \frac{1}{2}}^{k + \frac{1}{2}} \log p_{k} dx = H(Y).$$

Hence $\operatorname{Var}(\widetilde{Y}) = \operatorname{Var}(Y) + \frac{1}{12}$. Also,

$$h(\widetilde{Y}) = -\int_{-\infty}^{\infty} \sum_{k} p_k \mathbf{1}_{\left(k - \frac{1}{2}, k + \frac{1}{2}\right)}(x) \log \sum_{j} p_j \mathbf{1}_{\left(j - \frac{1}{2}, j + \frac{1}{2}\right)}(x) dx$$

$$= -\sum_{k} p_{k} \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \log p_{k} \, dx = H(Y).$$

Now, since Gaussian distributions maximize the differential entropy for a fixed variance, we conclude that

$$H(Y) = h(\widetilde{Y}) \leq \frac{1}{2} \log \left(2\pi e \operatorname{Var}(\widetilde{Y}) \right) = \frac{1}{2} \log \left(2\pi e \left(\operatorname{Var}(Y) + \frac{1}{12} \right) \right).$$

Theorem (Bobkov, M. '20)

Given a sequence $X_n = (X_{n,1}, ..., X_{n,d})$ of random variables with values in \mathbb{Z}^d , independent of X, assume that for each $k \leq d$, the components $X_{n,k}$, $n \geq 1$, are uncorrelated and have variance one. Then,

$$\limsup_{n\to\infty} h(Z_n) \leq h(X) + h(Z).$$

Theorem (Bobkov, M. '20)

Given a sequence $X_n = (X_{n,1}, ..., X_{n,d})$ of random variables with values in \mathbb{Z}^d , independent of X, assume that for each $k \leq d$, the components $X_{n,k}$, $n \geq 1$, are uncorrelated and have variance one. Then,

$$\limsup_{n\to\infty} h(Z_n) \leq h(X) + h(Z).$$

Proof: Putting $S_n = X_1 + \cdots + X_n$ and applying Lemma 1 above, we get

$$h(Z_n) = h\left(\frac{X+S_n}{\sqrt{n}}\right) = h(X+S_n) - \frac{d}{2}\log n$$

$$\leq h(X) + H(S_n) - \frac{d}{2}\log n.$$

Note that

$$S_n = (S_{n,1}, \ldots, S_{n,d}), \qquad S_{n,k} = X_{1,k} + \cdots + X_{n,k} \quad (1 \le k \le d).$$

By the well-known subadditivity of entropy along components of a random variable (an abstract property on product spaces which is irrelevant to the independence assumption), we have

$$H(S_n) \leq H(S_{n,1}) + \cdots + H(S_{n,d}).$$

Here, the entropy functional on the left is applied to the *d*-dimensional random variable, while on the right-hand side we deal with one-dimensional entropies.

By the well-known subadditivity of entropy along components of a random variable (an abstract property on product spaces which is irrelevant to the independence assumption), we have

$$H(S_n) \leq H(S_{n,1}) + \cdots + H(S_{n,d}).$$

Here, the entropy functional on the left is applied to the *d*-dimensional random variable, while on the right-hand side we deal with one-dimensional entropies. For each $k \le d$, the *k*-th component $S_{n,k}$ of the random variable S_n represents the sum of *n* uncorrelated integer valued random variables with variance one, so that $Var(S_{n,k}) = n$.

By the well-known subadditivity of entropy along components of a random variable (an abstract property on product spaces which is irrelevant to the independence assumption), we have

$$H(S_n) \leq H(S_{n,1}) + \cdots + H(S_{n,d}).$$

Here, the entropy functional on the left is applied to the *d*-dimensional random variable, while on the right-hand side we deal with one-dimensional entropies. For each $k \le d$, the *k*-th component $S_{n,k}$ of the random variable S_n represents the sum of *n* uncorrelated integer valued random variables with variance one, so that $Var(S_{n,k}) = n$. Hence, by Lemma 2 applied to $Y = S_{n,k}$, we have

$$H(S_{n,k}) \leq \frac{1}{2} \log \left(2\pi e \left(n + \frac{1}{12} \right) \right) = \frac{1}{2} \log (2\pi e n) + O(1/n),$$

By the well-known subadditivity of entropy along components of a random variable (an abstract property on product spaces which is irrelevant to the independence assumption), we have

$$H(S_n) \leq H(S_{n,1}) + \cdots + H(S_{n,d}).$$

Here, the entropy functional on the left is applied to the *d*-dimensional random variable, while on the right-hand side we deal with one-dimensional entropies. For each $k \le d$, the *k*-th component $S_{n,k}$ of the random variable S_n represents the sum of *n* uncorrelated integer valued random variables with variance one, so that $Var(S_{n,k}) = n$. Hence, by Lemma 2 applied to $Y = S_{n,k}$, we have

$$H(S_{n,k}) \leq \frac{1}{2} \log \left(2\pi e \left(n + \frac{1}{12} \right) \right) = \frac{1}{2} \log (2\pi e n) + O(1/n),$$

and therefore

$$H(S_n) \leq \frac{d}{2}\log(2\pi en) + O(1/n).$$

We conclude that

$$\limsup_{n\to\infty} h(Z_n) \leq h(X) + \frac{d}{2}\log(2\pi e) = h(X) + h(Z).$$

Thank you!