Emanuel Milman: Multi-Bubble Isoperimetric Problems - Old and New

Abstract

lundi 29 mai 2023 14:00 (45 minutes)

The classical isoperimetric inequality in Euclidean space $R^{\wedge} n$ states that among all sets of prescribed volume, the Euclidean ball minimizes surface area. One may similarly consider isoperimetric problems for more general metric-measure spaces, such as on the n-sphere $S^{\wedge} n$ and on n-dimensional Gaussian space $G^{\wedge} n$ (i.e. $R^{\wedge} n$ endowed with the standard Gaussian measure). Furthermore, one may consider the "multi-bubble"isoperimetric problem, in which one prescribes the volume of $\mathrm{p} \backslash \mathrm{geq} 2$ bubbles (possibly disconnected) and minimizes their total surface area -as any mutual interface will only be counted once, the bubbles are now incentivized to clump together. The classical case, referred to as the single-bubble isoperimetric problem, corresponds to $\mathrm{p}=1$; the case $\mathrm{p}=2$ is called the double-bubble problem, and so on. In 2000, Hutchings, Morgan, Ritoré and Ros resolved the double-bubble conjecture in Euclidean space $\mathrm{R}^{\wedge} 3$ (and this was subsequently resolved in $R^{\wedge} n$ as well) -the boundary of a minimizing double-bubble is given by three spherical caps meeting at 120°-degree angles. A more general conjecture of J. Sullivan from the 1990's asserts that when $\mathrm{p} \backslash$ leq $\mathrm{n}+1$, the optimal multi-bubble in $\mathrm{R}^{\wedge} \mathrm{n}$ (as well as in $\mathrm{S}^{\wedge} \mathrm{n}$) is obtained by taking the Voronoi cells of $\mathrm{p}+1$ equidistant points in $\mathrm{S}^{\wedge} \mathrm{n}$ and applying appropriate stereographic projections to $\mathrm{R}^{\wedge} \mathrm{n}$ (and backwards).

In 2018, together with Joe Neeman, we resolved the analogous multi-bubble conjecture for $\mathrm{p} \backslash$ leq n bubbles in Gaussian space $G^{\wedge} n$-the unique partition which minimizes the total Gaussian surface area is given by the Voronoi cells of (appropriately translated) p+1 equidistant points. In the present talk, we describe our recent progress with Neeman on the multi-bubble problem on $R^{\wedge} n$ and $S^{\wedge} n$. In particular, we show that minimizing bubbles in $\mathrm{R}^{\wedge} \mathrm{n}$ and $\mathrm{S}^{\wedge} \mathrm{n}$ are always spherical when $\mathrm{p} \backslash$ leq n , and we resolve the latter conjectures when in addition p \leq 5 (e.g. the triple-bubble conjectures when $\mathrm{n} \backslash \mathrm{geq} 3$ and the quadruple-bubble conjectures when $n \backslash$ geq 4).

Orateur: MILMAN, Emanuel

