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The Classical Isoperimetric Inequality

“Among all sets in Euclidean space Rn having a given volume,
Euclidean balls minimize surface area."

V(Ω) = V(Ball) ⇒ A(Ω) ≥ A(Ball).

Ω ∈ B(Rn
), V = Lebn, A = Surface Area.

What is Surface Area? Various (non-equivalent) definitions:

If ∂Ω smooth, ∫∂Ω dVol∂Ω.

Hausdorff measure Hn−1
(∂Ω).

Minkowski exterior boundary measure:
V+

(Ω) = lim infε→0+
V(Ωε∖Ω)

ε
, Ωε ∶= {y ∈ Rn ; d(y ,Ω) < ε}.

De Giorgi Perimeter P(Ω) = H
n−1

(∂∗Ω).
Stronger than rest, l.s.c., invariant under null-set modifications.
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Isoperimetric Inequalities on Metric-Measure Spaces

Classical isoperimetric inequality is on Rn
= (Rn, ∣⋅∣ ,Lebn

).
Study in weighted-manifold setting (Mn,g, µ = Ψ(x)dVolg), Ψ > 0.

Weighted Volume and Area:

V(Ω) = µ(Ω) = ∫Ω Ψ(x)dVolg .

A(Ω) = PΨ(Ω) = ∫∂∗Ω Ψ(x)dHn−1
(x).

Examples:

1 Sn
= (Sn,gcan, λSn =

VolSn

Vol(Sn)
) - P. Lévy, Schmidt 20-30’s:

geodesic balls are isoperimetric minimizers.

2 Gn
= (Rn, ∣⋅∣ , γn

=
1

(2π)n/2 e−
∣x ∣2

2 dx) - Sudakov–Tsirelson, Borell ’75:
half-spaces are isoperimetric minimizers.

(flat hyperplane = generalized sphere with zero curvature)

Isoperimetric inequalities crucially used in geometry, analysis, PDE,
probability, combinatorics, etc...
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Isoperimetric Inequalities for Clusters
Cluster Ω = (Ω1, . . . ,Ωq) is a partition M = Ω1 ⊍ . . .⊍Ωq (up to null-sets)
Given V(Ω) = (V(Ω1) . . .V(Ωq)) minimize A(Ω) =

1
2 ∑

q
i=1 A(Ωi) = ∑i<j Aij .

Previous examples: q = 2 (Ω1 = U,Ω2 = M ∖U), "Single Bubble".
Would like to study q ≥ 3, "Multi Bubble" case.
Case q = 3 is called "Double Bubble" (Ω1,Ω2,M ∖ (Ω1 ⊍Ω2)).

0 Rn - Theorem: for all V(Ω) = (v1,v2,∞), standard double bubble
(3 spherical caps meeting at 120○ along (n − 2)-dim sphere)
minimizes total surface area:

R2 - F. Morgan’s “SMALL" undergraduate
group (Foisy–Alfaro–Brock–Hodges–
Zimba) ’93.

R3 - Hass–Hutchings–Schlafly ’95 v1 = v2,
Hutchings–Morgan–Ritoré–Ros ’00.

R4 - SMALL (Reichardt–Heilmann–Lai–
Spielman) ’03, Rn - Reichardt ’07.
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Isoperimetric Double-Bubble Conjectures

q = 3 regions in dimension n ≥ 2:

1 Sn - Double-Bubble Conjecture: for all V(Ω) = (v1,v2,v3),
standard double bubble (3 spherical caps in Sn meeting at 120○

along (n − 2)-dim sphere) minimizes total surface area.
S2 - Proved by Masters ’96.
S3 - Cotton–Freeman ’02, Corneli–Hoffman-HLLMS ’07, partial.
Sn - Corneli–Corwin–Hoffman-HSADLVX ’08, if ∣vi −

1
3 ∣ ≤ 0.04.

2 Gn - Double-Bubble Conjecture: for all V(Ω) = (v1,v2,v3),
standard “tripod" / “Y" (3 half-hyperplanes meeting at 120○ along
(n − 2)-dim plane) minimizes total (Gaussian) surface area.
Gn - Corneli–Corwin–Hoffman-HSADLVX ’08, if ∣vi −

1
3 ∣ ≤ 0.04.

Interaction between G and S:
G2
⇒ SN

∀N ≫ 1 ⇒ Sn
∀n ≥ 2 ⇒ Gn

∀n ≥ 2 by projection.
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Y cone

In R2 In R3

In Rn take ×Rn−2
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Isoperimetric Multi-Bubble Conjectures
Higher-order cluster Ω = (Ω1, . . . ,Ωq).
There’s no reasonable conjecture when q ≫ n:

Image from Cox, Graner, et al.

Multi-Bubble Conjecture on Rn (J. Sullivan ’95): If q − 1 ≤ n + 1, for all
V(Ω) = (v1, . . . ,vq−1,∞), the minimizer is a standard q − 1 bubble:

Multi-Bubble Conjecture on Sn: If q − 1 ≤ n + 1, for all
V(Ω) = (v1, . . . ,vq), the minimizer is a standard q −1 spherical-bubble
(stereographic projection of standard q − 1 bubble in Rn to Sn

⊂ Rn+1).

Multi-Bubble Conjecture on Gn: If q ≤ n + 1, for all V(Ω) = (v1, . . . ,vq),
the minimizer is a standard simplicial cluster = Voronoi cells of q
equidistant points in Rn (appropriately translated).

q = 2 corresponds to the classical isoperimetric inqs.
q = 3 is the double-bubble theorem (Rn) / conjecture (Sn / Gn, n ≥ 3).
q = 4 and n = 2 in Rn (planar triple-bubble) proved by Wichiramala ’04.
Not aware of any other results when q ≥ 4 prior to 2018.
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Isoperimetric Multi-Bubble Results - Old

Multi-Bubble Conjecture on Gn: If q ≤ n + 1, for all V(Ω) = (v1, . . . ,vq),
the minimizer is a standard simplicial cluster (Voronoi cells of q
equidistant points in Rn).

Gaussian Double/Multi-Bubble Thm (M.–Neeman ’18)

For all n ≥ 2 and 2 ≤ q ≤ n + 1, the Multi-Bubble Conjecture on Gn is
true: “a standard simplicial q-cluster is a Gaussian minimizer".

Gaussian Double/Multi-Bubble Uniqueness (M.–Neeman ’18)

For all n ≥ 2 and 2 ≤ q ≤ n + 1, simplicial q-clusters are the unique
minimizers of Gaussian perimeter, up to null-sets.
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Isoperimetric Multi-Bubble Results - New

Multi-Bubble Conjecture on Rn (J. Sullivan ’95): If q − 1 ≤ n + 1, for all
V(Ω) = (v1, . . . ,vq−1,∞), the minimizer is a standard q − 1 bubble.

Multi-Bubble Conjecture on Sn: If q − 1 ≤ n + 1, for all
V(Ω) = (v1, . . . ,vq), the minimizer is a standard q − 1 bubble.

1-2-3-4-5-Bubble Thm on Rn / Sn (M.–Neeman ’22)

For all n ≥ 2 and 2 ≤ q ≤ min(6,n + 1), the Multi-Bubble Conjecture on
Rn / Sn is true: “A standard q −1 bubble is an isoperimetric minimizer".
In other words, Double-Bubble (n ≥ 2), Triple-Bubble (n ≥ 3),
Quadruple-Bubble (n ≥ 4), Quintuple-Bubble (n ≥ 5).

Additional partial results valid for all q ≤ n + 1 later on.

Multi-Bubble Uniqueness on Rn / Sn (M.–Neeman ’22)

Uniqueness (up to null-sets) on Sn for 2 ≤ q ≤ min(6,n + 1).
Uniqueness (up to null-sets) on Rn for 2 ≤ q ≤ min(5,n + 1).
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Tools in Isoperimetric Problems
Single Bubble (q = 2):

0 Rn - symmetrization, Brunn–Minkowski, L2, heat-flow, PDE,
Localization, Optimal-Transport, Combinatorial, GMT.

1 Sn - symmetrization, GMT, Localization.
2 Gn - Projection of SN , symmetrization (Ehrhard), Brunn-

Minkowski (Borell), heat-flow (Bakry–Ledoux), GMT,
Bobkov: Tensorizing 2-point inq, Localization, . . ..

Double/Multi Bubble (q ≥ 3):

Geometric Measure Theory (GMT): existence and (partial)
regularity of minimizers.

Differential-geometric variational arguments: interfaces will have
constant mean curvature (CMC) and meet in threes at 120○.

Symmetrization: minimizers will have some symmetries.
On Rn

/Sn, when q ≤ n + 1 – ∃ minimizer with reflection symmetry.

What else? We’ll focus on Rn
/Sn.
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Proof: Steps 1-2-3 – Minimizer is Spherical Voronoi
Thm (M.-Neeman ’22). On Rn

/Sn, q ≤ n + 1:
1. A minimizer’s interfaces Σij ∶= ∂

∗Ωi ∩ ∂
∗Ωj are locally spherical.

2. A minimizer is globally a spherical Voronoi cluster:
There exist {ci}i=1,...,q ⊂ Rn+1

/Rn and {κi}i=1,...,q ⊂ R so that:

1 For every Σij ≠ ∅, Σij lies on a single (gen.) geodesic sphere Sij
with quasi-center cij = ci − cj and curvature κij = κi − κj .
The quasi-center c ∶= n − κp is constant on a sphere S ⊂ Sn

/Rn.

2 On Sn, the following Voronoi representation holds:

Ωi = int{p ∈ Sn ; arg min
j=1,...,q

⟨cj ,p⟩ + κj = i} = ⋂

j≠i
{p ∈ Sn ; ⟨cij ,p⟩ + κij < 0} .

Similarly on Rn, after stereographic projection to Sn.

3. Furthermore, each Ωi is connected.

Step 1 involves stability for family of perturbations.
Step 2 involves simplicial homology of {Ωi}i=1,...,q , Convex Geometry.
Step 3 involves stability again, elliptic regularity, maximum principle.
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Proof: Steps 1-2-3 – Minimizer is Spherical Voronoi
Thm (M.-Neeman ’22). On Rn

/Sn, q ≤ n + 1:
1. A minimizer’s interfaces Σij ∶= ∂

∗Ωi ∩ ∂
∗Ωj are locally spherical.

2. A minimizer is globally a spherical Voronoi cluster:
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Proof: Step 4 – Need Global Information

At this point, we know that our cluster is spherical Voronoi.
We are almost done! Fact: class of Voronoi clusters with Σij ≠ ∅ ∀i < j
coincides with the class of conjectured minimizers.

We now need to incorporate a global argument, as local arguments
(e.g. stability) will never be enough to exclude configurations like:

Typical GMT argument: if cluster non-rigid, move bubbles until they
touch, forming an illegal singularity for an isoperimetric cluster.
⇒ Resolve q ≤ 5 (double, triple, quadruple-bubble on Rn, Sn).

Quintuple case (q = 6) requires more work - in progress.
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Bobkov’s Functional Gaussian Isoperimetric Inq
Gaussian Isoperimetric Profile: I ∶ [0,1] → R+,

I(v) ∶= min{Aγn(Ω); Ω ⊂ Rn,Vγn(Ω) = v} = ϕ ○Φ−1
(v).

(ϕ(s) =
1

√

2π
exp(−s2

/2) , Φ(t) = ∫
t

−∞

ϕ(s)ds)

Thm (Sergey Bobkov 96’-97’)

∀f ∶ Rn
→ [0,1] ∫

Rn

√

I(f )2
+ ∣∇f ∣2dγn

≥ I (∫
Rn

f dγn
) .

The above is an equivalent functional version of the (single-bubble)
Gaussian isoperimetric inequality Aγn(Ω) ≥ I(Vγn(Ω)).

Thm (M.–Neeman ’18, unpublished)

For all f ∶ Rn
→∆(2) = {(v1,v2,v3); vi ≥ 0,∑3

i=1 vi = 1}:

∫
Rn

∑

1≤i<j≤3

√

I(2)ij (f )2
+ ∣wj(f )∇fi −wi(f )∇fj ∣2dγn

≥ I(2) (∫
Rn

f dγn
) .

Here I(2)ij is the Gaussian area of Σij in an optimal tripod cluster,

I(2) = I(2)12 + I(2)13 + I(2)23 , and wi =
I(2)ij I(2)ik

I(2)ij I(2)ik +I(2)ji I(2)jk +I(2)ki I(2)kj

.
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I(2)ij I(2)ik +I(2)ji I(2)jk +I(2)ki I(2)kj

.
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Bobkov’s Functional Gaussian Isoperimetric Inq

Thm (Sergey Bobkov 96’-97’)
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Rn
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Sergey,
thank you for your

contributions,
inspiration,

and Happy Birthday!
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The Isoperimetric Profile for Multi-Bubbles

(Mn,g, µ) ∈ {Gn,Sn
}. Need finite volume, so cannot work on Rn.

V(Ω) = (V(Ω1), . . . ,V(Ωq)) ∈ ∆(q−1)
∶= {v ∈ Rq ; vi ≥ 0 , ∑q

i=1 vi = 1}.

Isoperimetric Profile: I(q−1)
∶ ∆(q−1)

→ R+,

I(q−1)
(v) ∶= inf {A(Ω); V(Ω) = v} .

Model Isoperimetric Profile: I(q−1)
m ∶ int ∆(q−1)

→ R+,
(denoting by Ωm the conjectured model standard q-cluster),

I(q−1)
m (v) = A(Ωm

) s.t. V(Ωm
) = v ∈ int ∆(q−1);

extend continuously to ∂∆(q−1).

Obviously I(q−1)
≤ I(q−1)

m ; want to show: I(q−1)
≥ I(q−1)

m on ∆(q−1).
Inducting on q, can assume I(q−1)

= I(q−1)
m on the boundary ∂∆(q−1).
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Partial Differential Inequality for Profile

On Gn, one can show that a fully non-linear elliptic PDE holds:

tr((−∇2
Im)

−1
) = 2Im on ∆(q−1).

Similar (but more complicated) PDE holds on Sn.

If we could show that the following PDI holds (in the viscosity sense):

∇
2
I < 0 , tr((−∇2

I)
−1

) ≤ 2I on int ∆(q−1),

since I = Im on ∂∆(q−1) by induction, I ≥ Im by maximum-principle.

This is our global information!! PDI takes into account entire ∆(q−1).

Hence, need upper bounds on ∇
2
I(v) for a given v ∈ int ∆(q−1).

How? using a local 2nd order variation of our minimizing cluster Ω.
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The index-form Q(X)
Recall d

dt Ft = X ○ Ft diffeo, Ωt = Ft(Ω), I(V(Ωt)) ≤ A(Ωt). Hence:

⟨∇I, δ1
X V ⟩ = δ1

X A = ⟨λ, δ1
X V ⟩ ⇒ ∇I = λ.

(δ1
X V)

T
∇

2
I δ1

X V ≤ δ2
X A − ⟨∇I, δ2

X V ⟩ = δ2
X A − ⟨λ, δ2

X V ⟩ =∶ Q(X).

This generalizes stability: δ1
X V = 0 ⇒ 0 ≤ Q(X).

The goal: choose X well to get a sharp PDI for I.

Q(X) index-form, depends only on fij = ⟨X ,nij⟩ on Σ1
= ⊔i<j Σij .

Q(f ) = − ⟨LJac f , f ⟩Σ1 + ∫
∂∗Σ1

bdry(f , II).

LJac is the Jacobi operator:

−δ1
fnHΣ,µ = LJac f = ∆Σ,µf + (Ricg,µ(n,n) + ∥II∥2

)f .
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Obtaining the Partial Differential Inequality

(δ1
X V)

T
∇

2
I δ1

X V ≤ − ⟨LJacXn,Xn
⟩Σ1 + ∫

∂∗Σ1
bdry(Xn, II),

LJacXn
= (∆Σ,µ +Ricg,µ(n,n) + ∥II∥2

)Xn.

Here Ricg,µ(n,n) = 1 on Gn and Ricg,µ(n,n) = (n − 1) on Sn.
And we already know that II = 0 on Gn and II = κij Id on Sn.

On Gn: LJac1 = 1, so if Xnij = ai − aj then LJacXnij = ai − aj .
As nij + njk + nki = 0 on ∂∗Σ1, possible to (approximately) construct X .
This yields sharp PDI, and we conclude the proof that I ≥ Im.

On Sn: fields yielding sharp PDI exist (non-trivial). But we don’t have
explicit formula, unless cluster is (pseudo)-conformally-flat ({ci , κi}).
E.g.: ● when cluster is full-dimenional, i.e. affine-rank{ci}

q
i=1 = q − 1;

● if all bubbles have a mutual common point.
In those cases, we obtain the sharp PDI for I.

But what if the cluster is not pseudo-conformally-flat???
While this should never happen, we cannot a-priori exclude this.
Using Step 6 (= some tricks), we can go up to q ≤ 6 on Sn.
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