On recent progress in the optimal matching problem

Joint works with L. Ambrosio, D. Trevisan, M. Huesmann, F. Otto

Michael Goldman

CNRS, CMAP, École Polytechnique

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Gaussian isoperimetric problem

For $m \in (0, 1)$, let $\mathcal{U}(m)$ be the Gaussian perimeter of a half space of Gaussian measure m. In 97 Bobkov proved that

$$\mathcal{U}\left(\int f d\gamma\right) \leq \int \sqrt{\mathcal{U}^2(f) + |
abla f|^2} d\gamma.$$

As a consequence he derived the Gaussian isoperimetric inequality

$$\mathcal{U}(m) \leq P_{\gamma}(E) \qquad \forall E ext{ with } \gamma(E) = m.$$

In 2012 we proved with M. Novaga that in the Wiener space (here bar denotes lsc enveloppe)

$$ar{\mathsf{P}}_{\gamma}(f) = \int \sqrt{\mathcal{U}^2(f) + |
abla f|^2} d\gamma$$

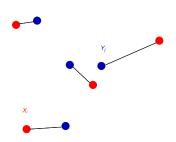
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The bi-partite optimal matching problem

For X_i and Y_j iid uniformly distributed in $[0, 1]^d$ and $p \ge 1$, the optimal matching problem is

$$\min_{\sigma} \sum_{i=1}^{n} |X_i - Y_{\sigma(i)}|^p$$

where the min is among all permutations σ .



Vastly studied combinatorial problem, related to TSP, MST... Typical questions: **expectation of the energy**, description of the optimal σ . For the second aspect, see Ambrosio-Glaudo-Trevisan, Clozeau-Mattesini or G-Huesmann-Otto.

Reformulation as an optimal transport problem

If $\mu(\mathbb{R}^d) = \lambda(\mathbb{R}^d)$, the *p*-Wasserstein distance is defined as

$$W^p_p(\mu,\lambda) = \inf_{\pi \in \Pi(\mu,\lambda)} \int_{\mathbb{R}^d \times \mathbb{R}^d} |x-y|^p d\pi,$$

where $\pi \in \Pi(\mu, \lambda)$ if $\pi_1 = \mu$ and $\pi_2 = \lambda$. Rk: this is a **linear programming** problem.

Let
$$\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}$$
 and $\lambda = \frac{1}{n} \sum_{i=1}^{n} \delta_{Y_i}$. By Birkhoff,

$$\frac{1}{n}\min_{\sigma}\sum_{i=1}^{n}|X_{i}-Y_{\sigma(i)}|^{p}=W_{p}^{p}(\mu,\lambda).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Matching to the reference measure

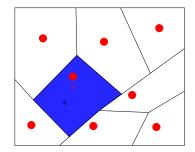
A natural variant is the matching between $\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}$ and the reference measure i.e.

$$W^{p}_{[0,1]^{d}}(\mu,1),$$

where more generally for $\Omega \subset \mathbb{R}^d$,

$$W^{p}_{\Omega}(\mu,\kappa) = W^{p}_{p}(\mu \sqcup \Omega, \kappa \chi_{\Omega})$$

with $\kappa = \frac{\mu(\Omega)}{|\Omega|}$.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Notice that this problem may be seen as an optimal tessellation (Laguerre cells) problem since

$$W_{[0,1]^d}^p(\mu,1) = \min_{A_i \cap A_j = \emptyset, |A_i| = \frac{1}{n}} \sum_{i=1}^n \int_{A_i} |x - X_i|^p dx.$$

Because of their connections to random graph theory, probability (empirical measures), theoretical physics etc.., both problems as well as many variants have received a lot of attention (Yukich, Talagrand, Steel, Ajtai-Komlós-Tusnády, Caracciolo and al., Barthe-Bordenave, Ledoux, Bobkov...).

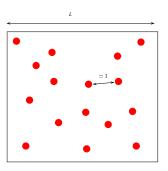
In most of the talk we focus on the **matching to the reference measure**. Also d = 1 is very special (see Bobkov-Ledoux) so we only focus on $d \ge 2$.

Rescaling

Letting $L = n^{\frac{1}{d}}$ and making the change of variables y = Lx, the original matching problem is equivalent to

$$\frac{1}{L^{d}}W^{p}_{[0,L]^{d}}(\mu,1)$$

where
$$\mu = \sum_{i=1}^{L^d} \delta_{X_i}$$
 with X_i iid uniformly distributed in $[0, L]^d$.



In these variables the typical distance between points is of order 1 (the microscale) and the size of the system is $L \gg 1$ (the macroscale).

Scaling laws

Since the distance between points is order 1, one can expect $\mathbb{E}[\frac{1}{L^d}W^p_{[0,L]^d}(\mu,1)]\sim 1$ for $L\gg 1.$ However,

Theorem (Ajtai-Komlós-Tusnády, Talagrand, Bobkov-Ledoux...)

For $p \geq 1$ and $L \gg 1$,

$$\mathbb{E}\left[\frac{1}{L^d} W^p_{[0,L]^d}(\mu,1)\right] \sim \begin{cases} \log^{\frac{p}{2}} L & \text{if } d=2\\ 1 & \text{if } d \geq 3 \end{cases}$$

Question: Are these bounds asymptotically sharp?

The PDE ansatz of Caracciolo and al.

At scales $\gg 1$, $\mu = \sum_{i=1}^{L^d} \delta_{X_i} \sim 1$ and thus all quantities which depend on mesoscopic or macroscopic scales are well described by the linearized problem.

Recall that for p = 2, by Brenier Theorem, optimal coupling given by $\pi = (T \times Id) #1$, where $T = \nabla \psi$ is the gradient of a convex function which solves (formally) the Monge-Ampère equation

$$\det D^2\psi=rac{1}{\mu}.$$

For large scales $\mu\simeq 1$ and writing that $\psi=\frac{1}{2}|x|^2-\phi$ with ϕ small,

$$\det D^2\psi=\det(\mathrm{Id}-D^2\phi)\simeq 1-\Delta\phi,\qquad rac{1}{\mu}=rac{1}{1+(\mu-1)}\simeq 2-\mu$$

i.e. linearization of W_2 around 1 is H^{-1} .

Using this ansatz, Caracciolo and al. predict in particular:

$$\mathbb{E}\left[\frac{1}{L^{d}}W_{[0,L]^{d}}^{2}(\mu,1)\right] = \begin{cases} \frac{1}{2\pi}\log L + f_{2,2} + o(1) & \text{if } d = 2\\ f_{2,d} + \frac{\zeta_{d}(1)}{4\pi^{2}}\frac{1}{L^{d-2}} + o\left(\frac{1}{L^{d-2}}\right) & \text{if } d \geq 3, \end{cases}$$

where $f_{2,d}$ are numerically estimated constants and

$$\zeta_d(s) = \sum_{n \in \mathbb{Z}^d \setminus \{0\}} rac{1}{|n|^{2s}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Also some related predictions for $p \neq 2$.

Rigorous results on the thermo. limit

Theorem (Ambrosio and al., Barthe-Bordenave, Dereich and al., G-T, G-H-O)

For $p \ge 1$ and $L \gg 1$,

$$\mathbb{E}\left[\frac{1}{L^d}W^p_{[0,L]^d}(\mu,1)\right] = \begin{cases} \frac{1}{2\pi}\log L + O(\log\log L) & \text{if } d = p = 2\\ f_{p,d} + o\left(1\right) & \text{if } d \geq 3, p \geq 1. \end{cases}$$

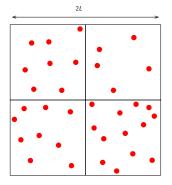
Rk: the error bound $O(\log \log L)$ improves on Ambrosio-Glaudo by a factor $\log^{1/2} L$. Consequence of quantitative linearization down to microscale from GHO.

The case $d \ge 3$

We expect that to leading order cost is given by small scale behavior \implies ansatz by Caracciolo and al. cannot be directly used. Idea: use subbaditivity. Indeed,

 $W^{p}(\mu + \mu', \lambda + \lambda') \leq W^{p}(\mu, \lambda) + W^{p}(\mu', \lambda').$

Restriction of μ from $[0, 2L]^d$ to $[0, L]^d$ very similar. Best seen by replacing deterministic number of points L^d by Poisson random variable N (grand canonical vs canonical) **Problem:** In general not the same number of points in each subcube. **Solution:** Relax the problem.



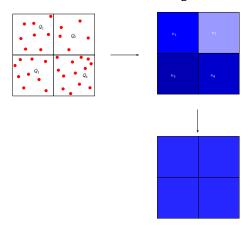
・ロト ・四ト ・ヨト ・ヨト

Idea: treat the defect in number of points as a local mass defect. Use first transport to send points to a locally constant distribution and then use for instance PDE to adjust the mass. Let $\kappa = \frac{\mu([0,L]^d)}{I^d} \text{ and }$

$$f_{p,d}(L) = \mathbb{E}\left[\frac{1}{L^d}W^p_{[0,L]^d}(\mu,\kappa)
ight].$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Divide $[0, 2L]^d$ in 2^d cubes Q_i . Set $\kappa_i = \frac{\mu(Q_i)}{L^d}$.



By Δ inequality for W and subbaditivity of W^p , for every $\varepsilon \ll 1$

$$f_{p,d}(2L) \leq (1+\varepsilon)f_{p,d}(L) + \frac{C}{\varepsilon^{p-1}}\mathbb{E}\left[\frac{1}{L^d}W_{[0,2L]^d}^p\left(\sum_i \kappa_i \chi_{Q_i}, \kappa\right)\right]$$

The Global term: the Caracciolo and al. ansatz.

Recall

$$\|f\|_{W^{-1,p}}^{p} = \min_{\nabla \cdot j = f} \int |j|^{p}$$

and the Benamou-Brenier formula

$$W^{p}(\mu,\lambda) = \inf_{(\rho,j)} \left\{ \int \int_{0}^{1} \frac{1}{\rho^{p-1}} |j|^{p} : \partial_{t}\rho + \nabla \cdot j = 0, \rho_{0} = \mu, \rho_{1} = \lambda \right\}.$$

If $\nabla \cdot j = \mu - 1$, set $\rho = (1-t)\mu + t \Longrightarrow$

$$W^{p}(\mu, 1) \lesssim \|\mu - 1\|_{W^{-1,p}}^{p} \bigg(\lesssim \operatorname{diam}(\Omega)^{p} \int |\mu - 1|^{p} \bigg).$$

PDE ansatz: take $j = \nabla \phi$ with $\Delta \phi = \mu - 1$.

(ロ) (型) (E) (E) (E) (O)(C)

The Global term

By previous slide:

$$W_{[0,2L]^{d}}^{p}\left(\sum_{i}\kappa_{i}\chi_{Q_{i}},\kappa\right) \lesssim \|\sum_{i}\kappa_{i}\chi_{Q_{i}}-\kappa\|_{W^{-1,p}}^{p}$$
$$\lesssim L^{p}\sum_{i}\int_{Q_{i}}|\kappa_{i}-\kappa|^{p}\simeq L^{p+d}\sum_{i}|\kappa_{i}-\kappa|^{p}$$

Now $|\kappa_i - 1| \sim L^{-d/2}$ and thus

$$\mathbb{E}\left[\frac{1}{L^{d}}W_{[0,2L]^{d}}^{p}\left(\sum_{i}\kappa_{i}\chi_{Q_{i}},\kappa\right)\right] \lesssim L^{p}L^{-\frac{pd}{2}} = L^{-\frac{p}{2}(d-2)}$$

Conclusion

All in all,

$$f_{p,d}(2L) \leq (1+\varepsilon)f_{p,d}(L) + rac{C}{L^{rac{p}{2}(d-2)}\varepsilon^{p-1}}$$

Optimizing in ε yield

$$f_{p,d}(2L) \leq f_{p,d}(L) + \frac{C}{L^{\frac{d-2}{2}}}$$

(ロ)、(型)、(E)、(E)、 E) の(()

from which $\lim_{L\to\infty} f_{p,d}(L)$ exists.

On the case of non-uniform densities

 $\boldsymbol{\Omega}$ connected bounded Lipschitz domain.

Theorem (Ambrosio-G-Trevisan)

For every Hölder continuous probability density ρ bounded above and below on Ω , if X_i are iid distributed according to ρ ,

$$\lim_{n \to \infty} \frac{n}{\log n} \mathbb{E} \left[W_2^2 \left(\frac{1}{n} \sum_{i=1}^n \delta_{X_i}, \rho \right) \right] = \frac{|\Omega|}{4\pi}$$

This answers a conjecture of Benedetto and Cagliotti (which proved the upper bound when $\Omega = (0, 1)^2$.

Strategy of proof: Upper bound

Use subbaditivity and the result of Ambrosio-Stra-Trevisan for $(0,1)^2$. Difficulty: in general cannot divide Ω in a finite number of cubes. Solution: use a Whitney partition which refines close to the boundary. This forces a much more careful treatment of the 'global term' $(\|f\|_{W^{-1,\rho}} \lesssim \|f\|_{L^p})$ is not enough).

Lower bound

Consider a superaditive quantity *Wb* (see Figalli-Gigli) and show that for $\mu = \sum_{i=1}^{L^d} \delta_{X_i}$ with X_i iid uniformly distributed in $(0, L)^d$

$$\begin{split} \lim_{L \to \infty} \frac{1}{\log L} \mathbb{E} \left[\frac{1}{L^2} W_{[0,L]^2}^2(\mu, 1) \right] \\ &= \lim_{L \to \infty} \frac{1}{\log L} \mathbb{E} \left[\frac{1}{L^2} W b_{[0,L]^2}^2(\mu, 1) \right] = \frac{1}{2\pi}. \end{split}$$

Rk: other case when Dirichlet cost=Neumann cost: d = 1, $p \in (0, 1/2)$, see G-Trevisan. General case $p \ge 1$, $d \ge 3$: open since Barthe-Bordenave.

The previous analysis strongly relied on the connection between matching and optimal transport. What about the case of more general combinatorial problems (TSP, MST...)?

- The case p < d/2 has been treated by Barthe-Bordenave using 'soft' subbaditivity arguments.
- For non-bipartite problems the result is only known for p < d.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An example, the bipartite TSP

Set
$$\mathbf{x} = (X_i)_{i=1}^n$$
 and $\mathbf{y} = (Y_i)_{i=1}^n$.
For $p \ge 1$, the TSP is

$$TSP^p(\mathbf{x}, \mathbf{y}) = \min_{\sigma, \tau} \sum_{i=1}^n |X_{\sigma(i)} - Y_{\tau(i)}|^p + |X_{\sigma(i)} - Y_{\tau(i+1)}|^p.$$

Can extend it for $|\mathbf{x}| \neq |\mathbf{y}|$ by requesting that the tour contains as many points as possible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Let Ω be a bounded connected domain either smooth or convex and ρ Hölder continuous probability density ρ bounded above and below on Ω .

Theorem (G-Trevisan)

For every $p \in [1, d)$ there exists $\beta_p \in (0, \infty)$ such that if X_i, Y_j are *iid* distributed according to ρ ,

$$\lim_{n\to\infty} n^{\frac{p}{d}-1}\mathbb{E}\left[\mathsf{TSP}^{p}(\mathbf{x},\mathbf{y})\right] \leq \beta_{p} \int_{\Omega} \rho^{1-\frac{p}{d}}.$$

Moreover if ρ is constant then equality holds.

As in B-B, AGT, etc... first proved for $\Omega = (0,1)^d$ and $\rho = 1$, then use it as a building block for the general case. As in AGT, we need a Whitney partition in this second step.

Sketch of proof

Both steps rely on the combination of

• Subbaditivity: If $\Omega = \bigcup_k \Omega_k$ and for each $k, \mathbf{x}_k, \mathbf{y}_k \subset \Omega_k$ with $|\mathbf{x}_k| = |\mathbf{y}_k|$ and $\mathbf{x}_0, \mathbf{y}_0 \in \Omega$ then with $\mathbf{x} = \mathbf{x}_0 \cup \bigcup_k \mathbf{x}_k$ and similarly for \mathbf{y} ,

$$\mathsf{TSP}^p(\mathbf{x},\mathbf{y}) \leq \sum_k \mathsf{TSP}^p(\mathbf{x}_k,\mathbf{y}_k) + \mathsf{CTSP}^p(\mathbf{x}_0,\mathbf{y}_0) + \mathit{lot}.$$

b Growth: For every $\mathbf{x}, \mathbf{y} \in \Omega$,

$$\mathsf{TSP}^p(\mathbf{x},\mathbf{y}) \lesssim \operatorname{diam}(\Omega)^p \min\left\{|\mathbf{x}|^{1-\frac{p}{d}}, |\mathbf{y}|^{1-\frac{p}{d}}\right\} + \mathsf{M}^p(\mathbf{x},\mathbf{y}),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

where M^p is the matching cost.

Growth:

Follows from (assume $|\mathbf{x}| \leq |\mathbf{y}|$)

$$\mathsf{TSP}^p(\mathbf{x}, \mathbf{y}) \lesssim \mathsf{TSP}^p(\mathbf{x}) + \mathsf{M}^p(\mathbf{x}, \mathbf{y}),$$

which is proven in Capelli and al. and

 $\mathsf{TSP}^{p}(\mathbf{x}) \lesssim \operatorname{diam}(\Omega)^{p} |\mathbf{x}|^{1-\frac{p}{d}}.$

Given Subbaditivity +Growth we write
$$\mathbf{x} = \mathbf{x}^{1-\eta} \cup \mathbf{x}^{\eta}$$
 where $|\mathbf{x}^{1-\eta}| = (1-\eta)n$ (same for **y**).

• Let $(\mathbf{x}_k, \mathbf{y}_k)$ be minimizers of $\mathsf{TSP}^p(\mathbf{x}^{1-\eta} \cap \Omega_k, \mathbf{y}^{1-\eta} \cap \Omega_k)$

$$\blacktriangleright \text{ Set } \mathcal{U} = \mathsf{x}^{1-\eta} \backslash \left(\cup_k \mathsf{x}_k \right), \ \mathcal{V} = \mathsf{y}^{1-\eta} \backslash \left(\cup_k \mathsf{y}_k \right)$$

▶ and
$$\mathbf{x}_0 = \mathbf{x}^\eta \cup \mathcal{U}$$
, $\mathbf{y}_0 = \mathbf{y}^\eta \cup \mathcal{V}$.

We get

$$\begin{split} \mathsf{TSP}^p(\mathbf{x},\mathbf{y}) &\leq \sum_k \mathsf{TSP}^p(\mathbf{x}_k,\mathbf{y}_k) \\ &+ C\left(|\mathbf{x}^{\eta}|^{1-\frac{p}{d}} + |\mathcal{U}|^{1-\frac{p}{d}} + \mathsf{M}^p(\mathbf{x}^{\eta} \cup \mathcal{U},\mathbf{y}^{\eta} \cup \mathcal{V}) \right). \end{split}$$

Notice that $|\mathbf{x}^{\eta}|^{1-\frac{p}{d}} = (\eta n)^{1-\frac{p}{d}}$ and $|\mathcal{U}|^{1-\frac{p}{d}} \lesssim n^{\frac{1}{2}(1-\frac{p}{d})}$. Thus the term in parenthesis is small provided

$$\mathbb{E}[\mathsf{M}^{p}(\mathsf{x}^{\eta}\cup\mathcal{U},\mathsf{y}^{\eta}\cup\mathcal{V})]\lesssim(\eta n)^{1-\frac{p}{d}}+C_{\eta}n^{\frac{1}{2}(1-\frac{p}{d})}.$$

Since \mathbf{x}_{η} are iid points but \mathcal{U} are not, this requires extending bounds for the matching to the case where most but not all points are iid.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Notice that the proof extends to all combinatorial problems satisfying Subbaditivity +Growth. This covers essentially all the examples from B-B.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thank you for your attention and happy birthday Sergey.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @