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The Gaussian isoperimetric problem

For m ∈ (0, 1), let U(m) be the Gaussian perimeter of a half space
of Gaussian measure m. In 97 Bobkov proved that

U
(∫

fdγ

)
≤
∫ √

U2(f ) + |∇f |2dγ.

As a consequence he derived the Gaussian isoperimetric inequality

U(m) ≤ Pγ(E ) ∀E with γ(E ) = m.

In 2012 we proved with M. Novaga that in the Wiener space (here
bar denotes lsc enveloppe)

P̄γ(f ) =

∫ √
U2(f ) + |∇f |2dγ



The bi-partite optimal matching problem

For Xi and Yj iid uniformly
distributed in [0, 1]d and p ≥ 1,
the optimal matching problem is

min
σ

n∑
i=1

|Xi − Yσ(i)|p

where the min is among all
permutations σ.

Xi

Yj

Vastly studied combinatorial problem, related to TSP, MST...
Typical questions: expectation of the energy, description of the
optimal σ. For the second aspect, see Ambrosio-Glaudo-Trevisan,
Clozeau-Mattesini or G-Huesmann-Otto.



Reformulation as an optimal transport problem

If µ(Rd) = λ(Rd), the p−Wasserstein distance is defined as

W p
p (µ, λ) = inf

π∈Π(µ,λ)

∫
Rd×Rd

|x − y |pdπ,

where π ∈ Π(µ, λ) if π1 = µ and π2 = λ.
Rk: this is a linear programming problem.

Let µ = 1
n

∑n
i=1 δXi

and λ = 1
n

∑n
i=1 δYi

. By Birkhoff,

1

n
min
σ

n∑
i=1

|Xi − Yσ(i)|p = W p
p (µ, λ).



Matching to the reference measure
A natural variant is the matching
between µ = 1

n

∑n
i=1 δXi

and the
reference measure i.e.

W p
[0,1]d

(µ, 1),

where more generally for Ω ⊂ Rd ,

W p
Ω(µ, κ) = W p

p (µ Ω, κχΩ)

with κ = µ(Ω)
|Ω| .

Xi

Ai

Notice that this problem may be seen as an optimal tessellation
(Laguerre cells) problem since

W p
[0,1]d

(µ, 1) = min
Ai∩Aj=∅,|Ai |= 1

n

n∑
i=1

∫
Ai

|x − Xi |pdx .



Because of their connections to random graph theory, probability
(empirical measures), theoretical physics etc.., both problems as
well as many variants have received a lot of attention (Yukich,
Talagrand, Steel, Ajtai-Komlós-Tusnády, Caracciolo and al.,
Barthe-Bordenave, Ledoux, Bobkov...).

In most of the talk we focus on the matching to the reference
measure. Also d = 1 is very special (see Bobkov-Ledoux) so we
only focus on d ≥ 2.



Rescaling

Letting L = n
1
d and making the change of

variables y = Lx , the original matching
problem is equivalent to

1

Ld
W p

[0,L]d
(µ, 1)

where µ =
∑Ld

i=1 δXi
with Xi iid uniformly

distributed in [0, L]d .

L

≃ 1

In these variables the typical distance between points is of order 1
(the microscale) and the size of the system is L ≫ 1 (the
macroscale).



Scaling laws

Since the distance between points is order 1, one can expect
E[ 1

Ld
W p

[0,L]d
(µ, 1)] ∼ 1 for L ≫ 1. However,

Theorem (Ajtai-Komlós-Tusnády, Talagrand,
Bobkov-Ledoux...)

For p ≥ 1 and L ≫ 1,

E
[
1

Ld
W p

[0,L]d
(µ, 1)

]
∼

{
log

p
2 L if d = 2

1 if d ≥ 3

Question: Are these bounds asymptotically sharp?



The PDE ansatz of Caracciolo and al.

At scales ≫ 1, µ =
∑Ld

i=1 δXi
∼ 1 and thus all quantities which

depend on mesoscopic or macroscopic scales are well described by
the linearized problem.
Recall that for p = 2, by Brenier Theorem, optimal coupling given
by π = (T × Id)#1, where T = ∇ψ is the gradient of a convex
function which solves (formally) the Monge-Ampère equation

detD2ψ =
1

µ
.



For large scales µ ≃ 1 and writing that ψ = 1
2 |x |

2 −ϕ with ϕ small,

detD2ψ = det(Id−D2ϕ) ≃ 1−∆ϕ,
1

µ
=

1

1 + (µ− 1)
≃ 2−µ

=⇒ ∆ϕ ≃ µ− 1 and

∫
[0,L]d

|T − x |2 ≃
∫
[0,L]d

|∇ϕ|2.

i.e. linearization of W2 around 1 is H−1.



Using this ansatz, Caracciolo and al. predict in particular:

E
[
1

Ld
W 2

[0,L]d (µ, 1)

]
=


1
2π log L+ f2,2 + o(1) if d = 2

f2,d + ζd (1)
4π2

1
Ld−2 + o

(
1

Ld−2

)
if d ≥ 3,

where f2,d are numerically estimated constants and

ζd(s) =
∑

n∈Zd\{0}

1

|n|2s
.

Also some related predictions for p ̸= 2.



Rigorous results on the thermo. limit

Theorem (Ambrosio and al., Barthe-Bordenave, Dereich and
al., G-T, G-H-O)

For p ≥ 1 and L ≫ 1,

E
[
1

Ld
W p

[0,L]d
(µ, 1)

]
=


1
2π log L+ O(log log L) if d = p = 2

fp,d + o (1) if d ≥ 3, p ≥ 1.

Rk: the error bound O(log log L) improves on Ambrosio-Glaudo by
a factor log1/2 L. Consequence of quantitative linearization down
to microscale from GHO.



The case d ≥ 3

We expect that to leading order cost is given by small scale
behavior =⇒ ansatz by Caracciolo and al. cannot be directly used.
Idea: use subbaditivity. Indeed,
W p(µ+ µ′, λ+ λ′) ≤ W p(µ, λ) +W p(µ′, λ′).

Restriction of µ from [0, 2L]d to [0, L]d very
similar. Best seen by replacing deterministic
number of points Ld by Poisson random
variable N (grand canonical vs canonical)
Problem: In general not the same number
of points in each subcube.
Solution: Relax the problem.

2L



Idea: treat the defect in number of points as a local mass defect.
Use first transport to send points to a locally constant distribution
and then use for instance PDE to adjust the mass. Let

κ = µ([0,L]d )
Ld

and

fp,d(L) = E
[
1

Ld
W p

[0,L]d
(µ, κ)

]
.



Divide [0, 2L]d in 2d cubes Qi . Set κi =
µ(Qi )
Ld

.

Q1

Q2

Q4

Q3

κ1
κ2

κ4κ3

By ∆ inequality for W and subbaditivity of W p, for every ε≪ 1

fp,d(2L) ≤ (1 + ε)fp,d(L) +
C

εp−1
E

[
1

Ld
W p

[0,2L]d

(∑
i

κiχQi
, κ

)]



The Global term: the Caracciolo and al. ansatz.

Recall

∥f ∥p
W−1,p = min

∇·j=f

∫
|j |p

and the Benamou-Brenier formula

W p(µ, λ) = inf
(ρ,j)

{∫ ∫ 1

0

1

ρp−1
|j |p : ∂tρ+∇ · j = 0, ρ0 = µ, ρ1 = λ

}
.

If ∇ · j = µ− 1, set ρ = (1− t)µ+ t =⇒

W p(µ, 1) ≲ ∥µ− 1∥p
W−1,p

(
≲diam(Ω)p

∫
|µ− 1|p

)
.

PDE ansatz: take j = ∇ϕ with ∆ϕ = µ− 1.



The Global term

By previous slide:

W p
[0,2L]d

(∑
i

κiχQi
, κ

)
≲ ∥

∑
i

κiχQi
− κ∥p

W−1,p

≲ Lp
∑
i

∫
Qi

|κi − κ|p ≃ Lp+d
∑
i

|κi − κ|p

Now |κi − 1| ∼ L−d/2 and thus

E

[
1

Ld
W p

[0,2L]d

(∑
i

κiχQi
, κ

)]
≲ LpL−

pd
2 = L−

p
2
(d−2)



Conclusion

All in all,

fp,d(2L) ≤ (1 + ε)fp,d(L) +
C

L
p
2
(d−2)εp−1

.

Optimizing in ε yield

fp,d(2L) ≤ fp,d(L) +
C

L
d−2
2

from which limL→∞ fp,d(L) exists.



On the case of non-uniform densities

Ω connected bounded Lipschitz domain.

Theorem (Ambrosio-G-Trevisan)

For every Hölder continuous probability density ρ bounded above
and below on Ω, if Xi are iid distributed according to ρ,

lim
n→∞

n

log n
E

[
W 2

2

(
1

n

n∑
i=1

δXi
, ρ

)]
=

|Ω|
4π

This answers a conjecture of Benedetto and Cagliotti (which
proved the upper bound when Ω = (0, 1)2.



Strategy of proof: Upper bound

Use subbaditivity and the result of Ambrosio-Stra-Trevisan for
(0, 1)2.
Difficulty: in general cannot divide Ω in a finite number of cubes.
Solution: use a Whitney partition which refines close to the
boundary. This forces a much more careful treatment of the ’global
term’ (∥f ∥W−1,p ≲ ∥f ∥Lp is not enough).



Lower bound

Consider a superaditive quantity Wb (see Figalli-Gigli) and show

that for µ =
∑Ld

i=1 δXi
with Xi iid uniformly distributed in (0, L)d

lim
L→∞

1

log L
E
[
1

L2
W 2

[0,L]2(µ, 1)

]
= lim

L→∞

1

log L
E
[
1

L2
Wb2[0,L]2(µ, 1)

]
=

1

2π
.

Rk: other case when Dirichlet cost=Neumann cost: d = 1,
p ∈ (0, 1/2), see G-Trevisan. General case p ≥ 1, d ≥ 3: open
since Barthe-Bordenave.



Extension to more general bipartite combinatorial problems

The previous analysis strongly relied on the connection between
matching and optimal transport. What about the case of more
general combinatorial problems (TSP, MST...)?

▶ The case p < d/2 has been treated by Barthe-Bordenave
using ’soft’ subbaditivity arguments.

▶ For non-bipartite problems the result is only known for p < d .



An example, the bipartite TSP

Set x = (Xi )
n
i=1 and y = (Yi )

n
i=1.

For p ≥ 1, the TSP is

TSPp(x, y) = min
σ,τ

n∑
i=1

|Xσ(i)−Yτ(i)|p

+|Xσ(i)−Yτ(i+1)|p.
Xi

Yj

Can extend it for |x| ≠ |y| by requesting that the tour contains as
many points as possible.



Let Ω be a bounded connected domain either smooth or convex
and ρ Hölder continuous probability density ρ bounded above and
below on Ω.

Theorem (G-Trevisan)

For every p ∈ [1, d) there exists βp ∈ (0,∞) such that if Xi ,Yj are
iid distributed according to ρ,

lim
n→∞

n
p
d
−1E [TSPp(x, y)] ≤ βp

∫
Ω
ρ1−

p
d .

Moreover if ρ is constant then equality holds.

As in B-B, AGT, etc... first proved for Ω = (0, 1)d and ρ = 1, then
use it as a building block for the general case. As in AGT, we need
a Whitney partition in this second step.



Sketch of proof

Both steps rely on the combination of

▶ Subbaditivity: If Ω = ∪kΩk and for each k , xk , yk ⊂ Ωk with
|xk | = |yk | and x0, y0 ∈ Ω then with x = x0 ∪

⋃
k xk and

similarly for y,

TSPp(x, y) ≤
∑
k

TSPp(xk , yk) + CTSPp(x0, y0) + lot.

▶ Growth: For every x, y ∈ Ω,

TSPp(x, y) ≲ diam(Ω)p min
{
|x|1−

p
d , |y|1−

p
d

}
+Mp(x, y),

where Mp is the matching cost.



Growth:

Follows from (assume |x| ≤ |y|)

TSPp(x, y) ≲ TSPp(x) + Mp(x, y),

which is proven in Capelli and al. and

TSPp(x) ≲ diam(Ω)p|x|1−
p
d .



Given Subbaditivity +Growth we write x = x1−η ∪ xη where
|x1−η| = (1− η)n (same for y).

▶ Let (xk , yk) be minimizers of TSPp(x1−η ∩ Ωk , y
1−η ∩ Ωk)

▶ Set U = x1−η\ (∪kxk), V = y1−η\ (∪kyk)

▶ and x0 = xη ∪ U , y0 = yη ∪ V.



We get

TSPp(x, y) ≤
∑
k

TSPp(xk , yk)

+ C
(
|xη|1−

p
d + |U|1−

p
d +Mp(xη ∪ U , yη ∪ V)

)
.

Notice that |xη|1−
p
d = (ηn)1−

p
d and |U|1−

p
d ≲ n

1
2
(1− p

d
). Thus the

term in parenthesis is small provided

E[Mp(xη ∪ U , yη ∪ V)] ≲ (ηn)1−
p
d + Cηn

1
2
(1− p

d
).

Since xη are iid points but U are not, this requires extending
bounds for the matching to the case where most but not all points
are iid.



Notice that the proof extends to all combinatorial problems
satisfying Subbaditivity +Growth. This covers essentially all the
examples from B-B.



Thank you for your attention and happy birthday
Sergey.


