A STORY OF ACTION REPRESENTATIVITY

George Janelidze, University of Cape Town

Defining an action of a monoid M on a set X, we can either say that it is a map $h: M \times X \rightarrow X$ with $h(1, x)=x$ and $h\left(m, h\left(m^{\prime}, x\right)\right)=h\left(m m^{\prime}, x\right)$ for all $x \in X$ and $m, m^{\prime} \in M$, or that it is a monoid homomorphism $f: M \rightarrow X^{X}$. In other words, there is a natural in M bijection

$$
\operatorname{Act}(M, X) \approx \operatorname{Hom}\left(M, X^{X}\right)
$$

and we say that the functor

$$
\operatorname{Act}(-, X): \text { Mon } \rightarrow \text { Set }
$$

is representable. This action representability property has many well-known and less-well-known generalizations and counterparts, some of which are described in [3] and in [2]. The context of the 'widest' generalization described in [2] has:

- a monoidal category \mathcal{C}, a category \mathcal{X}, and a 'hyper action' $(\otimes: \mathcal{C} \times \mathcal{X} \rightarrow$ X, \ldots) of \mathcal{C} on X (making X a " \mathcal{C}-actegory" in the terminology of Paddy McCrudden [4]) instead of just the category of sets;
- the role of actions $M \times X \rightarrow X$ played by morphisms $M \otimes X \rightarrow X$ satisfying suitable conditions, in which $M \in \operatorname{Mon}(\mathcal{C})$ is a monoid in \mathcal{C} and X an object in X;
- whether the functor $\operatorname{Act}(-, X): \operatorname{Mon}(\mathcal{C}) \rightarrow$ Set is representable or not becomes an open question, highly non-trivial in some special cases.

The purpose of this talk is a brief description of joint work (in progress) with Ross Street, where we go 'one dimension up' in order to develop a new context where the above-mentioned "hyper action" itself becomes 'an action'. In particular, it will be explained that in that special case, which goes back Jean Bénabou's Subsection (2.3) of [1], in fact we have a well-known action representability, which uses monoidal functors.

References

1. J. Bénabou, Introduction to bicategories, 1967 Reports of the Midwest Category Seminar, Lecture Notes in Mathematics 47, 1967, 1-77
2. F. Borceux, G. Janelidze, and G. M. Kelly, Internal object actions, Commentationes Mathematicae Universitatis Carolinae 46, 2, 2005, 235-255
3. G. Janelidze and G. M. Kelly, A note on actions of a monoidal category, Theory and Applications of Categories 9, 4, 2001, 61-91
4. P. McCrudden, Categories of Representations of Coalgebroids, Advances in Mathematics 154, 2000, 299-332
