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One of the major contribution of J. Benabou is the notion of profunctor
or, more precisely, of the composition of profunctors giving rise to a bicate-
gory Prof. This composition, although technically rather difficult (especially
for internal profunctors), is an extraordinary synthesis tool. We shall exem-
plify this observation by an application to group cohomology.

It is well known that any exact sequence of groups with abelian kernel :

1 � A � X � Y � 1

gives rise to an action ψ of the group Y on the group A, and that the set
Extψ(Y,A) of isomorphic classes of extensions between Y and A producing
the same group action ψ is endowed, via the Baer sum, with an abelian
group structure.

The associated split epimorphism Aoψ Y � Y is actually underlying a
abelian group structure in the slice category Gp/Y or, in other words, an
internal groupoid structure Aψ in Gp. The set Extψ(Y,A) is nothing but
the ”internal Hom” Prof(Aψ, Aψ) in the sub-bigroupoid determined by a
special class of internal profunctors in Gp, namely the fully faithful internal
profunctors. The group structure on Extψ(Y,A) = Prof(Aψ, Aψ) is then
induced by the profunctor composition. This could seem rather anecdotical.
The extension of this kind of description to any exact sequence of groups :

1 � K � X � Y � 1

shows that it is not the case. Eilenberg and Mac Lane observed that, any ex-
tension fo this kind produces a group homomorphism φ : Y → AutK/InK,
called the abstract kernel of the sequence. Then the set Extφ(Y,K) of iso-
morphic classes of extensions between Y and K with abstract kernel φ is
endowed with a simply transitive action of the abelian group Extψ(Y,ZK),
where ZK is the center of K and the action ψ is induced by φ.

Now, from the abstract kernel φ it is possible to construct in a natural
way an internal groupoid DφY in Gp, such that Extφ(Y,K) appears as no-
thing but the ”internal Hom” Prof(DφY,ZKψ) in the same sub-bigroupoid
as above. So, the simply transitive action can just be understood as the natu-
ral effect of the profunctor composition of the endo-group Prof(ZKψ, ZKψ)
on the ”internal Hom” Prof(DφY, ZKψ).
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