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Framework: stochastic interface dynamics

Interface dynamics modeled by (reversible or irreversible) Markov
chains with local update rules.
Typical questions:

e stationary states (for interface gradients)

e space-time correlations of height fluctuations

hydrodynamic limit

formation of shocks

Main object of this talk: (2 4 1)-dimensional models (related to
lozenge tilings) where these questions can be (partly) answered



Symmetric vs. asymmetric random dynamics

q#p

For d = 1: Symmetric vs. Asymmetric Simple Exclusion Process
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In both SSEP/ASEP, Bernoulli(p) are invariant.
For p # q, irreversibility (particle flux).



Generalization to (2 + 1) dimensions




Interlaced particle configurations
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“Analog” of Bernoulli measures: Ergodic Gibbs measures

e Choose p = (p1, p2, p3) with p; € (0,1), p1 + p2 + p3 = 1.
There exists a unique translation invariant, ergodic Gibbs
measure 7, s.t. the density of horizontal, NW and NE

lozenges are p1, p2, p3-
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“Analog” of Bernoulli measures: Ergodic Gibbs measures

e Choose p = (p1, p2, p3) with p; € (0,1), p1 + p2 + p3 = 1.
There exists a unique translation invariant, ergodic Gibbs
measure 7, s.t. the density of horizontal, NW and NE
lozenges are p1, p2, p3-

e lozenge densities p <> average interface slope s, € P.

e height function ~ massless Gaussian field: if [5, p(x)dx =0,
3" plex)he 3 / o(x)X (x)dx

with (X(x)X(y)) = —ﬁ log |x — y|.
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What is known for single-flip dynamics? p = g

e Gibbs states 7, are invariant (no surprise; reversibility)

e In domains of diameter L, mixing time polynomial in L. Under
conditions on domain shape, T = O(L2t°(1).
[P. Caputo, F. Martinelli, F. T., CMP '12, B. Laslier, F. T., CMP '15]

e Unknown: convergence to hydrodynamic limit after diffusive
space-time rescaling: t = 712, x = ¢£L
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What is known for single-flip dynamics? p # g

e Stationary states: unknown. Presumably very different from
7Tp. Numerical Simu|ati0ns [Forrest-Tang-Wolf Phys Rev A 1992] ShOW t024
growth of height fluctuations.

e non-explicit hydrodynamic limit (hyperbolic rescaling):

1
lim —h(xL, tL) = ¢(x,t) almost surely,
L—oo L

where ¢ is Hopf-Lax solution of
oo+ V(Vo) =0

for some convex and unknown V/(-).
Super-addivity method [Seppaldinen, Rezakhanloul]



Part |: A growth process with longer jumps
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The totally asymmetric process g = 1, p = 0 was introduced in A.
Borodin, P. L. Ferrari (CMP '14).



An “integrable” growth process

The totally asymmetric process g = 1, p = 0 was introduced in A.
Borodin, P. L. Ferrari (CMP '14).

For a special deterministic initial condition, certain space-time
correlations of particle occupations given by determinants:

P( particle at (x;, tj),i < N) = N x N determinant (1)
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An “integrable” growth process

This allowed Borodin-Ferrari to obtain various results:

e hydrodynamic limit:

lim %h(XL,TL) = ¢(X7T)a

L—oco

where

9-¢+v(Vg)=0
e /logt Gaussian fluctuations:

1 2
\/@[h(xL, 7L) —Eh(xL, 7L)] = N(0,1/(277))

e ...and convergence of local statistics to those of a Gibbs
measure.

We want to treat “generic” initial conditions.



The stationary process

Theorem 1 [F. T., Ann. Probab. 2017+]

e Dynamics well defined if initial spacings grow sublinearly at
infinity.



The stationary process

Theorem 1 [F. T., Ann. Probab. 2017+]
e Dynamics well defined if initial spacings grow sublinearly at
infinity.

e The Gibbs measures 7, are stationary.



The stationary process

Theorem 1 [F. T., Ann. Probab. 2017+]

e Dynamics well defined if initial spacings grow sublinearly at

infinity.
e The Gibbs measures 7, are stationary.
e One has
Ex, (h(x, t) = h(x,0)) = (g — p)tv
with v(p) <0



The stationary process

Theorem 1 [F. T., Ann. Probab. 2017+]
e Dynamics well defined if initial spacings grow sublinearly at
infinity.
e The Gibbs measures 7, are stationary.
e One has
Ex, (h(x, t) = h(x,0)) = (g — p)tv
with v(p) <0

e and fluctuations grow /logarithmically:

limsup P, (|h(x, t) — h(x,0) — (q — p)tv| > Ay/log t) "= 0.

t—o00



The stationary process

Theorem 1 [F. T., Ann. Probab. 2017+]

e Dynamics well defined if initial spacings grow sublinearly at
infinity.

e The Gibbs measures 7, are stationary.
e One has
E., (h(x, t) — h(x,0)) = (4 - p)tv
with v(p) <0
e and fluctuations grow +/logarithmically:
limsup P, (|h(x, t) — h(x,0) — (q — p)tv| > Ay/log t) "= 0.

t—o00

(simplified /improved result in [S. Chhita, P. L. Ferrari, F.T.
'17])
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in principle, v(p) is given by infinite sum of determinants
e v(p) is explicit, C* in the interior of P, singular on OP:

1 sin(mdy @) sin(m0x, )
Cwsin(m(1 — 8y 6 — 0x,0))

Explicit computation shows that the Hessian of v(p) has
signature (+, —).

v(V¢) =

Theorem 1 extends to a growth model on domino tilings of

the p|ane [S. Chhita, P. L. Ferrari '15, Chhita-Ferrari-F.T. '17]



A hydrodynamic limit

Theorem 2 [M. Legras, F. T., arXiv '17]
Totally asymmetric case: p=0,qg = 1.
e If the initial condition approximates a smooth profile:

1
Ii{n Zh(XL) = ¢o(x)
with Veo(x) P, then

1
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A hydrodynamic limit

Theorem 2 [M. Legras, F. T., arXiv '17]
Totally asymmetric case: p=0,qg = 1.
e If the initial condition approximates a smooth profile:

1
I|£n Zh(XL) = ¢o(x)

with Veo(x) P, then
1
I|£n Zh(XL, tL) = ¢(X, t), t < Tshocks

where ¢(x,0) = ¢o(x) and 9:¢ + v(V¢) = 0.

e convergence to viscosity solution for t > Tgpocks if initial profile
is convex.
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Remarks on the hydrodynamic limit

e v(-) has singularities

1 sin(m0y, ¢) sin(mOy, )
Cwsin(m(1 — O d — 9%,9))

(Recall: v(V¢) = )

e v(-) neither concave nor convex. Theorem cannot be obtained
by sub/super-additivity

e Borodin-Ferrari initial condition: characteristics do not cross,
classical solution for all times. General initial condition:
singularities appear in finite time.



A heuristic link with 2D KPZ equation

One expects (in some sense) height fluctuations in stationary state
T, to be described by

deh(t,x) = Ah(t,x) + Vh(t,x) - Q,Vh(t, x) + W(t,x)

with W a space-time noise and Q, the Hessian of v(p).
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A heuristic link with 2D KPZ equation

Recall:
e for the single-flip dynamics, v(-) unknown but convex:
signature of Q, is (+,+). “Isotropic KPZ equation”

e B-F dynamics. From explicit form of v(-), signature of Q,, is
(4, —). “Anisotropic KPZ equation”
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A heuristic link with 2D KPZ equation

Wolf [PRL '91] predicted:

e Anisotropic case: non-linearity irrelevant, fluctuations grow
~ /logt as if Q, =0 (Stochastic Heat Equation).
Supported by Theorem 1
Results in the same line: Gates-Westcott model
[Prahofer-Spohn '97]

e |sotropic case: non-linearity relevant, fluctuations grow like t”,
some non-trivial exponent v > 0.
simulations: v ~ 0.24

e Joint work with A. Borodin and I. Corwin [CMP 2017+]: a
variant of the (2 + 1)-d growth process in the AKPZ class for

which convergence to the stochastic heat equation can be
proven



Part |l: Back to the reversible process

We expect: if the initial condition approximates smooth profile,

.1
I|£‘n Zh(xL) = ¢o(x)

then 1
Iiin Zh(xL, t1%) = ¢(x, t)

with

2
Orp = (V) Z 01j(V$)DZ, 6

p > 0: mobility. {o;;}: positive symmetric matrix, Hessian of
surface tension.
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In general (e.g. single-flip dyn) not possible to compute p explicitly

One exception (for d > 1 interfaces): Ginzburg-Landau model with

symmetric convex potential.
Funaki-Spohn '97: hydrodynamic limit with u(V¢) =1
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A reversible process with longer jumps

rate = %
rate = length of jump

[Luby-Randall-Sinclair, SIAM J. Comput. '01, D. Wilson, Ann. Appl. Probab. '04]

Linear response theory:

up) = mol ) ~ | " dt o (g(n(£)) g (n(0))
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Summation by parts:

(o) = o) = [ dematntenig(n(0)
Explicit calculation of 7,(f) gives:

u(p) = 1 sin(mp1)sin(mp2)

msin(m(1 - p1 — p2))

[B. Laslier, F. T., Ann. H. Poincaré 2017+]



Summation by parts:

(o) = o)) — [ dn 2(n(0)

Explicit calculation of 7,(f) gives:

_ 1 sin(mp1)sin(mpz)
M) = Gne (1~ 1~ p2))

[B. Laslier, F. T., Ann. H. Poincaré 2017+]

NB same as velocity function v(-) of the long-jump growth
process: Einstein relation



A (diffusive) hydrodynamic limit

Theorem 3 [B. Laslier, F. T., arXiv '17]
On the torus, convergence to the limit PDE:

h(-, L%t)
L
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A (diffusive) hydrodynamic limit

Theorem 3 [B. Laslier, F. T., arXiv '17]
On the torus, convergence to the limit PDE:

h(-, L%t)
L

2
EZ‘ CL ) ol 200

_ (z)(

with ¢ solution of

2

0rdp = (V) Y 01 (V)O3 0.

ij=1

Proof via H~! method (Yau, Funaki-Spohn).

Non-trivial fact: PDE contracts L2 distance between solutions
(would be trivial if p(-) = 1).
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Conclusions

e single-flip version of both reversible and irreversible process
are too hard (no gradient condition/no known stationary
measures)...

e ..but “natural” longer-jump versions can be analyzed in detail
(some “integrable structure” behind)

e Caveat: for the growth process, long-jump and single-flip
versions are in two different universality classes (AKPZ/KPZ)

e presumably, results and methods extend to a class of 2d

growth processes introduced by Borodin-Ferrari, Petrov,
Borodin-Bufetov-Olshanski...



Thanks!
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|deas I: Comparison with the Hammersley process (HP)

0@ @

Seppilidinen '96: if spacing between particle 1 and n is o(n?), then
dynamics well defined.

Lozenge dynamics ~ infinite set of coupled Hammersley processes.
Comparison: lozenges move less than HP particles
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Ideas Il: Fluctuations

p=1q¢=0

A={1L,..., L}?

Let Qn(t) = 2 xen(hx(t) — hx(0)).

CiQu(e) = (Ve NN, () = En,




|deas II: Fluctuations
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Ideas Il: Fluctuations

Recall

((QA(T) = (@n(T)))?) = O(T?L*log L).
If L =1, we get the (useless) bound \/(1)(T)?) = O(T

How to do better?

Neglecting the small (logarithmic) fluctuations in 7,, we have

QAMT) = (Q(T)) ~ L2(T).
If we choose L = T we get then /(¢ = O(Vlog T

wished.
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Ideas IllI: From the torus to the infinite graph

Difficulty: show that “information does not propagate
instantaneously” = coupling between torus dynamics and infinite
volume dynamics

Key fact:

Lemma: The probability of seeing an inter-particle gap > log R
within distance R from the origin before time 1 is O(R~K) for
every K.



Towards the Stochastic Heat Equation

One can generalize the model: rates depend on a parameter
r € [0,1) and (in a special way) on the distances between a
particle and its six neighbors
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One can generalize the model: rates depend on a parameter
r € [0,1) and (in a special way) on the distances between a
particle and its six neighbors

e OO0 o0 @

O
@ Q rate = 4= )-r?)
. ole@ r =0 : back to Borodin — Ferrari dyn.
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Theorem 3 [Corwin-Toninelli, ECP 2016]: explicit stationary
measure of Gibbs type.




Towards the Stochastic Heat Equation

For r = e=¢ — 1, with 1 /e rescaling of time and particle distances,
particle positions z, have Gaussian fluctuations.

Theorem 4 [Borodin-Corwin-Toninelli, CMP 2016+]:
e(zp(t/€) = 2p(0)) — Vi

and
VE(z(t/2) — 25(0) — e Ve) = &,(1)

and £,(t) (< height fluctuations w.r.t. deterministically growing
profile) solve a linear system of SDEs.



Towards the Stochastic Heat Equation

In that limit, space-time correlations can be computed:

E [éx,t fy,s] —E [fx,t] E [éy,s]



Towards the Stochastic Heat Equation

Along a special direction U € R? (“characteristics”)

]E X S S - E X E S S
g%-‘rﬁ% §g+\;375:| |:§tg+\/37§:| |:€g+jgz5:|

tends as 0 — 0 to C(s, t,x — y), the space-time correlation of the
2d SHE

dth=Ah+ W, h(0,x) =0.
For all other directions U’, correlations = 0 if t — s >> \/t.

Remark: A similar behavior expected for growth models in the
Anisotropic KPZ class. E.g. the Borodin-Ferrari dynamics.



