Discrete interface dynamics and hydrodynamic limits

F. Toninelli, CNRS and Université Lyon 1

IHP, june 2017

Framework: stochastic interface dynamics

Interface dynamics modeled by (reversible or irreversible) Markov chains with local update rules.

Typical questions:

- stationary states (for interface gradients)
- space-time correlations of height fluctuations
- hydrodynamic limit
- formation of shocks
- ...

Main object of this talk: (2+1)-dimensional models (related to lozenge tilings) where these questions can be (partly) answered

Symmetric vs. asymmetric random dynamics

For d=1: Symmetric vs. Asymmetric Simple Exclusion Process

In both SSEP/ASEP, Bernoulli(ρ) are invariant. For $p \neq q$, irreversibility (particle flux).

Generalization to $\left(2+1\right)$ dimensions

Interlaced particle configurations

The "single-flip dynamics"

"Analog" of Bernoulli measures: Ergodic Gibbs measures

• Choose $\rho=(\rho_1,\rho_2,\rho_3)$ with $\rho_i\in(0,1),\rho_1+\rho_2+\rho_3=1.$ There exists a unique translation invariant, ergodic Gibbs measure π_ρ s.t. the density of horizontal, NW and NE lozenges are $\rho_1,\rho_2,\rho_3.$

"Analog" of Bernoulli measures: Ergodic Gibbs measures

- Choose $\rho=(\rho_1,\rho_2,\rho_3)$ with $\rho_i\in(0,1),\rho_1+\rho_2+\rho_3=1.$ There exists a unique translation invariant, ergodic Gibbs measure π_ρ s.t. the density of horizontal, NW and NE lozenges are $\rho_1,\rho_2,\rho_3.$
- lozenge densities $\rho \Leftrightarrow$ average interface slope $s_{\rho} \in \mathcal{P}$.

"Analog" of Bernoulli measures: Ergodic Gibbs measures

- Choose $\rho=(\rho_1,\rho_2,\rho_3)$ with $\rho_i\in(0,1),\rho_1+\rho_2+\rho_3=1.$ There exists a unique translation invariant, ergodic Gibbs measure π_ρ s.t. the density of horizontal, NW and NE lozenges are $\rho_1,\rho_2,\rho_3.$
- lozenge densities $\rho \Leftrightarrow$ average interface slope $s_{\rho} \in \mathcal{P}$.
- height function \sim massless Gaussian field: if $\int_{\mathbb{R}^2} \varphi(x) dx = 0$,

$$\epsilon^2 \sum_{x} \varphi(\epsilon x) h_x \stackrel{\epsilon \to 0}{\longrightarrow} \int \varphi(x) X(x) dx$$

with
$$\langle X(x)X(y)\rangle = -\frac{1}{2\pi^2}\log|x-y|$$
.

What is known for single-flip dynamics? p = q

• Gibbs states π_{ρ} are invariant (no surprise; reversibility)

What is known for single-flip dynamics? p = q

- Gibbs states π_{ρ} are invariant (no surprise; reversibility)
- In domains of diameter L, mixing time polynomial in L. Under conditions on domain shape, $T_{mix} = O(L^{2+o(1)})$.

```
[P. Caputo, F. Martinelli, F. T., CMP '12, B. Laslier, F. T., CMP '15]
```

What is known for single-flip dynamics? p = q

- Gibbs states π_{ρ} are invariant (no surprise; reversibility)
- In domains of diameter L, mixing time polynomial in L. Under conditions on domain shape, $T_{mix} = O(L^{2+o(1)})$.

```
[P. Caputo, F. Martinelli, F. T., CMP '12, B. Laslier, F. T., CMP '15]
```

• Unknown: convergence to hydrodynamic limit after diffusive space-time rescaling: $t = \tau L^2, x = \xi L$

What is known for single-flip dynamics? $p \neq q$

• Stationary states: unknown. Presumably very different from π_{ρ} . Numerical simulations [Forrest-Tang-Wolf Phys Rev A 1992] show $t^{0.24...}$ growth of height fluctuations.

What is known for single-flip dynamics? $p \neq q$

- Stationary states: unknown. Presumably very different from π_{ρ} . Numerical simulations [Forrest-Tang-Wolf Phys Rev A 1992] show $t^{0.24...}$ growth of height fluctuations.
- non-explicit hydrodynamic limit (hyperbolic rescaling):

$$\lim_{L\to\infty}\frac{1}{L}h(xL,tL)=\phi(x,t)\quad \text{almost surely},$$

where ϕ is Hopf-Lax solution of

$$\partial_t \phi + V(\nabla \phi) = 0$$

for some convex and unknown $V(\cdot)$. Super-addivity method [Seppäläinen, Rezakhanlou]

Part I: A growth process with longer jumps

Dynamics well defined?

Particles can leave to ∞ in infinitesimal time

Dynamics well defined?

Particles can leave to ∞ in infinitesimal time

Dynamics well defined?

Particles can leave to ∞ in infinitesimal time

The totally asymmetric process q=1, p=0 was introduced in A. Borodin, P. L. Ferrari (CMP '14).

The totally asymmetric process q=1, p=0 was introduced in A. Borodin, P. L. Ferrari (CMP '14).

For a special deterministic initial condition, certain space-time correlations of particle occupations given by determinants:

$$\mathbb{P}(\text{ particle at }(x_i,t_i),i\leq N)=N\times N\text{ determinant} \qquad (1)$$

This allowed Borodin-Ferrari to obtain various results:

• hydrodynamic limit:

$$\lim_{L\to\infty}\frac{1}{L}h(xL,\tau L)=\phi(x,\tau),$$

where

$$\partial_{\tau}\phi + \nu(\nabla\phi) = 0$$

This allowed Borodin-Ferrari to obtain various results:

hydrodynamic limit:

$$\lim_{L\to\infty}\frac{1}{L}h(xL,\tau L)=\phi(x,\tau),$$

where

$$\partial_{\tau}\phi + \nu(\nabla\phi) = 0$$

• $\sqrt{\log t}$ Gaussian fluctuations:

$$\frac{1}{\sqrt{\log L}}[h(xL,\tau L) - \mathbb{E}h(xL,\tau L)] \Rightarrow \mathcal{N}(0,1/(2\pi^2))$$

This allowed Borodin-Ferrari to obtain various results:

hydrodynamic limit:

$$\lim_{L\to\infty}\frac{1}{L}h(xL,\tau L)=\phi(x,\tau),$$

where

$$\partial_{\tau}\phi + \nu(\nabla\phi) = 0$$

• $\sqrt{\log t}$ Gaussian fluctuations:

$$\frac{1}{\sqrt{\log L}}[h(xL,\tau L) - \mathbb{E}h(xL,\tau L)] \Rightarrow \mathcal{N}(0,1/(2\pi^2))$$

 ...and convergence of local statistics to those of a Gibbs measure.

This allowed Borodin-Ferrari to obtain various results:

• hydrodynamic limit:

$$\lim_{L\to\infty}\frac{1}{L}h(xL,\tau L)=\phi(x,\tau),$$

where

$$\partial_{\tau}\phi + v(\nabla\phi) = 0$$

• $\sqrt{\log t}$ Gaussian fluctuations:

$$\frac{1}{\sqrt{\log L}}[h(xL,\tau L) - \mathbb{E}h(xL,\tau L)] \Rightarrow \mathcal{N}(0,1/(2\pi^2))$$

 ...and convergence of local statistics to those of a Gibbs measure.

We want to treat "generic" initial conditions.

Theorem 1 [F. T., Ann. Probab. 2017+]

 Dynamics well defined if initial spacings grow sublinearly at infinity.

Theorem 1 [F. T., Ann. Probab. 2017+]

- Dynamics well defined if initial spacings grow sublinearly at infinity.
- The Gibbs measures π_{ρ} are stationary.

Theorem 1 [F. T., Ann. Probab. 2017+]

- Dynamics well defined if initial spacings grow sublinearly at infinity.
- The Gibbs measures π_{ρ} are stationary.
- One has

$$\mathbb{E}_{\pi_{\rho}}(h(x,t)-h(x,0))=(q-p)tv$$

with
$$v(\rho) < 0$$

Theorem 1 [F. T., Ann. Probab. 2017+]

- Dynamics well defined if initial spacings grow sublinearly at infinity.
- The Gibbs measures π_{ρ} are stationary.
- One has

$$\mathbb{E}_{\pi_{\rho}}(h(x,t)-h(x,0))=(q-p)tv$$

with
$$v(\rho) < 0$$

and fluctuations grow √logarithmically:

$$\limsup_{t\to\infty} \mathbb{P}_{\pi_\rho}(|h(x,t)-h(x,0)-(q-p)tv| \geq A\sqrt{\log t}) \overset{A\to\infty}{\to} 0.$$

Theorem 1 [F. T., Ann. Probab. 2017+]

- Dynamics well defined if initial spacings grow sublinearly at infinity.
- The Gibbs measures π_{ρ} are stationary.
- One has

$$\mathbb{E}_{\pi_{\rho}}(h(x,t)-h(x,0))=(q-p)tv$$

with
$$v(\rho) < 0$$

and fluctuations grow √logarithmically:

$$\limsup_{t\to\infty} \mathbb{P}_{\pi_\rho}(|h(x,t)-h(x,0)-(q-p)tv| \geq A\sqrt{\log t}) \overset{A\to\infty}{\to} 0.$$

(simplified/improved result in [S. Chhita, P. L. Ferrari, F.T. '17])

• in principle, $v(\rho)$ is given by infinite sum of determinants

- in principle, $v(\rho)$ is given by infinite sum of determinants
- $v(\rho)$ is explicit, C^{∞} in the interior of \mathcal{P} , singular on $\partial \mathcal{P}$:

$$\nu(\nabla\phi) = -\frac{1}{\pi} \frac{\sin(\pi \partial_{x_1} \phi) \sin(\pi \partial_{x_2} \phi)}{\sin(\pi (1 - \partial_{x_1} \phi - \partial_{x_2} \phi))}$$

- in principle, $v(\rho)$ is given by infinite sum of determinants
- $v(\rho)$ is explicit, C^{∞} in the interior of \mathcal{P} , singular on $\partial \mathcal{P}$:

$$\nu(\nabla\phi) = -\frac{1}{\pi} \frac{\sin(\pi \partial_{x_1} \phi) \sin(\pi \partial_{x_2} \phi)}{\sin(\pi (1 - \partial_{x_1} \phi - \partial_{x_2} \phi))}$$

• Explicit computation shows that the Hessian of $v(\rho)$ has signature (+,-).

- in principle, $v(\rho)$ is given by infinite sum of determinants
- $v(\rho)$ is explicit, C^{∞} in the interior of \mathcal{P} , singular on $\partial \mathcal{P}$:

$$\nu(\nabla\phi) = -\frac{1}{\pi} \frac{\sin(\pi \partial_{x_1} \phi) \sin(\pi \partial_{x_2} \phi)}{\sin(\pi (1 - \partial_{x_1} \phi - \partial_{x_2} \phi))}$$

- Explicit computation shows that the Hessian of $v(\rho)$ has signature (+,-).
- Theorem 1 extends to a growth model on domino tilings of the plane [S. Chhita, P. L. Ferrari '15, Chhita-Ferrari-F.T. '17]

A hydrodynamic limit

Theorem 2 [M. Legras, F. T., arXiv '17]

Totally asymmetric case: p = 0, q = 1.

• If the initial condition approximates a smooth profile:

$$\lim_{L} \frac{1}{L} h(xL) = \phi_0(x)$$

with $\nabla \phi_0(x) \in \stackrel{\circ}{\mathcal{P}}$, then

$$\lim_{L} \frac{1}{L} h(xL, tL) = \phi(x, t), \quad t \le T_{shocks}$$

where $\phi(x,0) = \phi_0(x)$ and $\partial_t \phi + v(\nabla \phi) = 0$.

A hydrodynamic limit

Theorem 2 [M. Legras, F. T., arXiv '17]

Totally asymmetric case: p = 0, q = 1.

• If the initial condition approximates a smooth profile:

$$\lim_{L} \frac{1}{L} h(xL) = \phi_0(x)$$

with $\nabla \phi_0(x) \in \stackrel{\circ}{\mathcal{P}}$, then

$$\lim_{L} \frac{1}{L} h(xL, tL) = \phi(x, t), \quad t \le T_{shocks}$$

where $\phi(x,0) = \phi_0(x)$ and $\partial_t \phi + \nu(\nabla \phi) = 0$.

• convergence to viscosity solution for $t > T_{shocks}$ if initial profile is convex.

Remarks on the hydrodynamic limit

• $v(\cdot)$ has singularities

$$(\text{Recall: } v(\nabla \phi) = -\frac{1}{\pi} \frac{\sin(\pi \partial_{x_1} \phi) \sin(\pi \partial_{x_2} \phi)}{\sin(\pi (1 - \partial_{x_1} \phi - \partial_{x_2} \phi))})$$

Remarks on the hydrodynamic limit

• $v(\cdot)$ has singularities

(Recall:
$$v(\nabla \phi) = -\frac{1}{\pi} \frac{\sin(\pi \partial_{x_1} \phi) \sin(\pi \partial_{x_2} \phi)}{\sin(\pi (1 - \partial_{x_1} \phi - \partial_{x_2} \phi))}$$
)

 v(·) neither concave nor convex. Theorem cannot be obtained by sub/super-additivity

Remarks on the hydrodynamic limit

v(⋅) has singularities

(Recall:
$$v(\nabla \phi) = -\frac{1}{\pi} \frac{\sin(\pi \partial_{x_1} \phi) \sin(\pi \partial_{x_2} \phi)}{\sin(\pi (1 - \partial_{x_1} \phi - \partial_{x_2} \phi))}$$
)

- $v(\cdot)$ neither concave nor convex. Theorem cannot be obtained by sub/super-additivity
- Borodin-Ferrari initial condition: characteristics do not cross, classical solution for all times. General initial condition: singularities appear in finite time.

One expects (in some sense) height fluctuations in stationary state π_{ρ} to be described by

$$\partial_t h(t,x) = \Delta h(t,x) + \nabla h(t,x) \cdot Q_\rho \nabla h(t,x) + \dot{W}(t,x)$$

with \dot{W} a space-time noise and Q_{ρ} the Hessian of $v(\rho)$.

One expects (in some sense) height fluctuations in stationary state π_{ρ} to be described by

$$\partial_t h(t,x) = \Delta h(t,x) + \nabla h(t,x) \cdot Q_\rho \nabla h(t,x) + \dot{W}(t,x)$$

with \dot{W} a space-time noise and Q_{ρ} the Hessian of $v(\rho)$.

Recall:

- for the single-flip dynamics, $v(\cdot)$ unknown but convex: signature of Q_{ρ} is (+,+). "Isotropic KPZ equation"
- B-F dynamics. From explicit form of $v(\cdot)$, signature of Q_{ρ} is (+,-). "Anisotropic KPZ equation"

Wolf [PRL '91] predicted:

• Anisotropic case: non-linearity irrelevant, fluctuations grow $\sim \sqrt{\log t}$ as if $Q_{\rho}=0$ (Stochastic Heat Equation). Supported by Theorem 1

Wolf [PRL '91] predicted:

• Anisotropic case: non-linearity irrelevant, fluctuations grow $\sim \sqrt{\log t}$ as if $Q_{\rho}=0$ (Stochastic Heat Equation). Supported by Theorem 1 Results in the same line: Gates-Westcott model [Prähofer-Spohn '97]

Wolf [PRL '91] predicted:

• Anisotropic case: non-linearity irrelevant, fluctuations grow $\sim \sqrt{\log t}$ as if $Q_{\rho}=0$ (Stochastic Heat Equation). Supported by Theorem 1 Results in the same line: Gates-Westcott model

Results in the same line: Gates-Westcott model [Prähofer-Spohn '97]

• Isotropic case: non-linearity relevant, fluctuations grow like t^{ν} , some non-trivial exponent $\nu>0$.

simulations: $\nu \approx 0.24$

Wolf [PRL '91] predicted:

- Anisotropic case: non-linearity irrelevant, fluctuations grow $\sim \sqrt{\log t}$ as if $Q_{\rho}=0$ (Stochastic Heat Equation). Supported by Theorem 1 Results in the same line: Gates-Westcott model [Prähofer-Spohn '97]
- Isotropic case: non-linearity relevant, fluctuations grow like t^{ν} , some non-trivial exponent $\nu > 0$. simulations: $\nu \approx 0.24$
- Joint work with A. Borodin and I. Corwin [CMP 2017+]: a variant of the (2+1)-d growth process in the AKPZ class for which convergence to the stochastic heat equation can be proven

Part II: Back to the reversible process

We expect: if the initial condition approximates smooth profile,

$$\lim_{L} \frac{1}{L} h(xL) = \phi_0(x)$$

then

$$\lim_{L} \frac{1}{L} h(xL, tL^{2}) = \phi(x, t)$$

with

$$\partial_t \phi = \mu(\nabla \phi) \sum_{i,j=1}^2 \sigma_{i,j}(\nabla \phi) \partial_{x_i,x_j}^2 \phi.$$

 $\mu > 0$: mobility. $\{\sigma_{i,j}\}$: positive symmetric matrix, Hessian of surface tension.

In general (e.g. single-flip dyn) not possible to compute μ explicitly One exception (for d>1 interfaces): Ginzburg-Landau model with symmetric convex potential.

Funaki-Spohn '97: hydrodynamic limit with $\mu(\nabla \phi) \equiv 1$

A reversible process with longer jumps

[Luby-Randall-Sinclair, SIAM J. Comput. '01, D. Wilson, Ann. Appl. Probab. '04]

A reversible process with longer jumps

 $\label{lem:comput. 101} \mbox{$\tt [Luby-Randall-Sinclair, SIAM J. Comput. '01, D. Wilson, Ann. Appl. Probab. '04]} \\ \mbox{$\tt Linear response theory:}$

$$\mu(
ho) = \pi_
ho(f(\eta)) - \int_0^\infty dt \, \pi_
ho(g(\eta(t))g(\eta(0))$$

Summation by parts:

$$\mu(\rho) = \pi_{\rho}(f(\eta)) - \int_{0}^{\infty} dt \, \pi_{\rho}(g(\eta(t))g(\eta(0)))$$

Summation by parts:

$$\mu(\rho) = \pi_{\rho}(f(\eta)) - \int_{0}^{\infty} dt \, \pi_{\rho}(g(\eta(t))g(\eta(0)))$$

Explicit calculation of $\pi_{\rho}(f)$ gives:

$$\mu(\rho) = \frac{1}{\pi} \frac{\sin(\pi \rho_1) \sin(\pi \rho_2)}{\sin(\pi (1 - \rho_1 - \rho_2))}$$

[B. Laslier, F. T., Ann. H. Poincaré 2017+]

Summation by parts:

$$\mu(\rho) = \pi_{\rho}(f(\eta)) - \int_{0}^{\infty} dt \, \pi_{\rho}(g(\eta(t))g(\eta(0)))$$

Explicit calculation of $\pi_{\rho}(f)$ gives:

$$\mu(\rho) = \frac{1}{\pi} \frac{\sin(\pi \rho_1) \sin(\pi \rho_2)}{\sin(\pi (1 - \rho_1 - \rho_2))}$$

[B. Laslier, F. T., Ann. H. Poincaré 2017+]

NB same as velocity function $v(\cdot)$ of the long-jump growth process: Einstein relation

A (diffusive) hydrodynamic limit

Theorem 3 [B. Laslier, F. T., arXiv '17]

On the torus, convergence to the limit PDE:

$$\left\|\frac{h(\cdot,L^2t)}{L}-\phi(\cdot,t)\right\|_2^2:=\frac{1}{L^2}\mathbb{E}\sum_{\mathbf{x}}\left|\frac{h(\mathbf{x}L,tL^2)}{L}-\phi(\mathbf{x},t)\right|^2\stackrel{L\to\infty}{\to} 0$$

with ϕ solution of

$$\partial_t \phi = \mu(\nabla \phi) \sum_{i,j=1}^2 \sigma_{i,j}(\nabla \phi) \partial_{x_i,x_j}^2 \phi.$$

A (diffusive) hydrodynamic limit

Theorem 3 [B. Laslier, F. T., arXiv '17]

On the torus, convergence to the limit PDE:

$$\left\| \frac{h(\cdot, L^2 t)}{L} - \phi(\cdot, t) \right\|_2^2 := \frac{1}{L^2} \mathbb{E} \sum_{x} \left| \frac{h(xL, tL^2)}{L} - \phi(x, t) \right|^2 \stackrel{L \to \infty}{\to} 0$$

with ϕ solution of

$$\partial_t \phi = \mu(\nabla \phi) \sum_{i,j=1}^2 \sigma_{i,j}(\nabla \phi) \partial_{x_i,x_j}^2 \phi.$$

Proof via H^{-1} method (Yau, Funaki-Spohn).

Non-trivial fact: PDE contracts \mathbb{L}^2 distance between solutions (would be trivial if $\mu(\cdot) \equiv 1$).

 single-flip version of both reversible and irreversible process are too hard (no gradient condition/no known stationary measures)...

- single-flip version of both reversible and irreversible process are too hard (no gradient condition/no known stationary measures)...
- ...but "natural" longer-jump versions can be analyzed in detail (some "integrable structure" behind)

- single-flip version of both reversible and irreversible process are too hard (no gradient condition/no known stationary measures)...
- ...but "natural" longer-jump versions can be analyzed in detail (some "integrable structure" behind)
- Caveat: for the growth process, long-jump and single-flip versions are in two different universality classes (AKPZ/KPZ)

- single-flip version of both reversible and irreversible process are too hard (no gradient condition/no known stationary measures)...
- ...but "natural" longer-jump versions can be analyzed in detail (some "integrable structure" behind)
- Caveat: for the growth process, long-jump and single-flip versions are in two different universality classes (AKPZ/KPZ)
- presumably, results and methods extend to a class of 2d growth processes introduced by Borodin-Ferrari, Petrov, Borodin-Bufetov-Olshanski...

Ideas I: Comparison with the Hammersley process (HP)

Seppäläinen '96: if spacing between particle 1 and n is $o(n^2)$, then dynamics well defined.

Ideas I: Comparison with the Hammersley process (HP)

Seppäläinen '96: if spacing between particle 1 and n is $o(n^2)$, then dynamics well defined.

Lozenge dynamics \sim infinite set of coupled Hammersley processes. Comparison: lozenges move less than HP particles

Let
$$Q_{\Lambda}(t) = \sum_{x \in \Lambda} (h_x(t) - h_x(0)).$$

$$\frac{d}{dt} \langle Q_{\Lambda}(t) \rangle = \langle \sum_{x} |V(x,\uparrow) \cap \Lambda| \rangle, \quad \langle \cdot \rangle := \mathbb{E}_{\pi_{\rho}}.$$

Similarly, one can prove

$$\begin{split} \frac{d}{dt} \langle (Q_{\Lambda}(t) - \langle Q_{\Lambda}(t) \rangle)^2 \rangle &\leq \sqrt{\langle (Q_{\Lambda}(t) - \langle Q_{\Lambda}(t) \rangle)^2 \rangle} L \sqrt{\log L} + O(L^2) \\ \text{so that} \\ & \langle (Q_{\Lambda}(T) - \langle Q_{\Lambda}(T) \rangle)^2 \rangle = O(T^2 L^2 \log L). \end{split}$$

Similarly, one can prove

$$\begin{split} \frac{d}{dt} \langle (Q_{\Lambda}(t) - \langle Q_{\Lambda}(t) \rangle)^2 \rangle &\leq \sqrt{\langle (Q_{\Lambda}(t) - \langle Q_{\Lambda}(t) \rangle)^2 \rangle} L \sqrt{\log L} + O(L^2) \\ \text{so that} \\ & \langle (Q_{\Lambda}(T) - \langle Q_{\Lambda}(T) \rangle)^2 \rangle = O(T^2 L^2 \log L). \end{split}$$

Recall

$$\langle (Q_{\Lambda}(T) - \langle Q_{\Lambda}(T) \rangle)^2 \rangle = O(T^2 L^2 \log L).$$

If L=1, we get the (useless) bound $\sqrt{\langle \psi(T)^2 \rangle} = O(T)$. How to do better?

Recall

$$\langle (Q_{\Lambda}(T) - \langle Q_{\Lambda}(T) \rangle)^2 \rangle = O(T^2 L^2 \log L).$$

If L=1, we get the (useless) bound $\sqrt{\langle \psi(T)^2 \rangle} = O(T)$. How to do better?

Neglecting the small (logarithmic) fluctuations in π_{ρ} , we have $Q_{\Lambda}(T) - \langle Q_{\Lambda}(T) \rangle \approx L^2 \psi(T)$.

Recall

$$\langle (Q_{\Lambda}(T) - \langle Q_{\Lambda}(T) \rangle)^2 \rangle = O(T^2 L^2 \log L).$$

If L=1, we get the (useless) bound $\sqrt{\langle \psi(T)^2 \rangle} = O(T)$. How to do better?

Neglecting the small (logarithmic) fluctuations in π_{ρ} , we have $Q_{\Lambda}(T) - \langle Q_{\Lambda}(T) \rangle \approx L^2 \psi(T)$.

If we choose L=T we get then $\sqrt{\langle \psi(T)^2 \rangle} = O(\sqrt{\log T})$ as wished.

Ideas III: Invariance on the torus

For simplicity, p = 1, q = 0.

Stationary measure π^L_{ρ} : uniform measure with fraction ρ_i of lozenges of type i=1,2,3.

Ideas III: Invariance on the torus

For simplicity, p = 1, q = 0.

Stationary measure π_{ρ}^L : uniform measure with fraction ρ_i of lozenges of type i=1,2,3.

Call I_n^+ set of available positions above/below for particle n.

$$[\pi_{\rho}^{L}\mathcal{L}](\sigma) = \frac{1}{N_{\rho}^{L}} \left[\sum_{n} |I_{n}^{+}| - \sum_{n} |I_{n}^{-}| \right]$$

Ideas III: Invariance on the torus

For simplicity, p = 1, q = 0.

Stationary measure π^L_{ρ} : uniform measure with fraction ρ_i of lozenges of type i=1,2,3.

Call I_n^+ set of available positions above/below for particle n.

$$[\pi_{\rho}^{L}\mathcal{L}](\sigma) = \frac{1}{N_{\rho}^{L}} [\sum_{n} |I_{n}^{+}| - \sum_{n} |I_{n}^{-}|] = 0$$

Ideas III: From the torus to the infinite graph

Difficulty: show that "information does not propagate instantaneously" \Longrightarrow coupling between torus dynamics and infinite volume dynamics

Ideas III: From the torus to the infinite graph

Difficulty: show that "information does not propagate instantaneously" \Longrightarrow coupling between torus dynamics and infinite volume dynamics

Key fact:

Lemma: The probability of seeing an inter-particle gap $\geq \log R$ within distance R from the origin before time 1 is $O(R^{-K})$ for every K.

One can generalize the model: rates depend on a parameter $r \in [0,1)$ and (in a special way) on the distances between a particle and its six neighbors

rate =
$$\frac{(1-r^{B-1})(1-r^D)}{1-r^{C+1}}$$

r=0: back to Borodin — Ferrari dyn.

One can generalize the model: rates depend on a parameter $r \in [0,1)$ and (in a special way) on the distances between a particle and its six neighbors

Theorem 3 [Corwin-Toninelli, ECP 2016]: explicit stationary measure of Gibbs type.

For $r=e^{-\varepsilon}\to 1$, with $1/\varepsilon$ rescaling of time and particle distances, particle positions z_p have Gaussian fluctuations.

Theorem 4 [Borodin-Corwin-Toninelli, CMP 2016+]:

$$\varepsilon(z_p(t/\varepsilon)-z_p(0))\to Vt$$

and

$$\sqrt{\varepsilon}(z_p(t/\varepsilon)-z_p(0)-\varepsilon^{-1}Vt)\to \xi_p(t)$$

and $\xi_p(t)$ (\Leftrightarrow height fluctuations w.r.t. deterministically growing profile) solve a linear system of SDEs.

In that limit, space-time correlations can be computed:

$$\mathbb{E}\left[\xi_{x,t}\;\xi_{y,s}\right] - \mathbb{E}\left[\xi_{x,t}\right]\mathbb{E}\left[\xi_{y,s}\right]$$

Along a special direction $U \in \mathbb{R}^2$ ("characteristics")

$$\mathbb{E}\left[\xi_{\frac{tU}{\delta}+\frac{x}{\sqrt{\delta}},\frac{t}{\delta}}\,\,\xi_{\frac{sU}{\delta}+\frac{y}{\sqrt{\delta}},\frac{s}{\delta}}\right] - \mathbb{E}\left[\xi_{\frac{tU}{\delta}+\frac{x}{\sqrt{\delta}},\frac{t}{\delta}}\right]\mathbb{E}\left[\xi_{\frac{sU}{\delta}+\frac{y}{\sqrt{\delta}},\frac{s}{\delta}}\right]$$

tends as $\delta \to 0$ to C(s,t,x-y), the space-time correlation of the 2d SHE

$$\partial_t h = \Delta h + \dot{W}, \quad h(0,x) = 0.$$

For all other directions U', correlations ≈ 0 if $t - s \gg \sqrt{t}$.

Remark: A similar behavior expected for growth models in the Anisotropic KPZ class. E.g. the Borodin-Ferrari dynamics.