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Framework: stochastic interface dynamics

Interface dynamics modeled by (reversible or irreversible) Markov
chains with local update rules.
Typical questions:

• stationary states (for interface gradients)

• space-time correlations of height fluctuations

• hydrodynamic limit

• formation of shocks

• ...

Main object of this talk: (2 + 1)-dimensional models (related to
lozenge tilings) where these questions can be (partly) answered



Symmetric vs. asymmetric random dynamics
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p q q 6= p

For d = 1: Symmetric vs. Asymmetric Simple Exclusion Process
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In both SSEP/ASEP, Bernoulli(ρ) are invariant.
For p 6= q, irreversibility (particle flux).



Generalization to (2 + 1) dimensions
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Interlaced particle configurations



The “single-flip dynamics”
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“Analog” of Bernoulli measures: Ergodic Gibbs measures

• Choose ρ = (ρ1, ρ2, ρ3) with ρi ∈ (0, 1), ρ1 + ρ2 + ρ3 = 1.
There exists a unique translation invariant, ergodic Gibbs
measure πρ s.t. the density of horizontal, NW and NE
lozenges are ρ1, ρ2, ρ3.

• lozenge densities ρ ⇔ average interface slope sρ ∈ P.

• height function ∼ massless Gaussian field: if
∫
R2 ϕ(x)dx = 0,

ε2
∑
x

ϕ(εx)hx
ε→0−→

∫
ϕ(x)X (x)dx

with 〈X (x)X (y)〉 = − 1
2π2 log |x − y |.
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What is known for single-flip dynamics? p = q

• Gibbs states πρ are invariant (no surprise; reversibility)

• In domains of diameter L, mixing time polynomial in L. Under
conditions on domain shape, Tmix = O(L2+o(1)).
[P. Caputo, F. Martinelli, F. T., CMP ’12, B. Laslier, F. T., CMP ’15]

• Unknown: convergence to hydrodynamic limit after diffusive
space-time rescaling: t = τL2, x = ξL
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What is known for single-flip dynamics? p 6= q

• Stationary states: unknown. Presumably very different from
πρ. Numerical simulations [Forrest-Tang-Wolf Phys Rev A 1992] show t0.24...

growth of height fluctuations.

• non-explicit hydrodynamic limit (hyperbolic rescaling):

lim
L→∞

1

L
h(xL, tL) = φ(x , t) almost surely,

where φ is Hopf-Lax solution of

∂tφ+ V (∇φ) = 0

for some convex and unknown V (·).
Super-addivity method [Seppäläinen, Rezakhanlou]



What is known for single-flip dynamics? p 6= q

• Stationary states: unknown. Presumably very different from
πρ. Numerical simulations [Forrest-Tang-Wolf Phys Rev A 1992] show t0.24...

growth of height fluctuations.

• non-explicit hydrodynamic limit (hyperbolic rescaling):

lim
L→∞

1

L
h(xL, tL) = φ(x , t) almost surely,

where φ is Hopf-Lax solution of

∂tφ+ V (∇φ) = 0

for some convex and unknown V (·).
Super-addivity method [Seppäläinen, Rezakhanlou]



Part I: A growth process with longer jumps
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Dynamics well defined?

Particles can leave to ∞ in infinitesimal time
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An “integrable” growth process

The totally asymmetric process q = 1, p = 0 was introduced in A.
Borodin, P. L. Ferrari (CMP ’14).

For a special deterministic initial condition, certain space-time
correlations of particle occupations given by determinants:

P( particle at (xi , ti ), i ≤ N) = N × N determinant (1)
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An “integrable” growth process

This allowed Borodin-Ferrari to obtain various results:

• hydrodynamic limit:

lim
L→∞

1

L
h(xL, τL) = φ(x , τ),

where
∂τφ+ v(∇φ) = 0

•
√

log t Gaussian fluctuations:

1√
log L

[h(xL, τL)− Eh(xL, τL)]⇒ N (0, 1/(2π2))

• ...and convergence of local statistics to those of a Gibbs
measure.

We want to treat “generic” initial conditions.
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The stationary process

Theorem 1 [F. T., Ann. Probab. 2017+]

• Dynamics well defined if initial spacings grow sublinearly at
infinity.

• The Gibbs measures πρ are stationary.

• One has
Eπρ(h(x , t)− h(x , 0)) = (q − p)tv

with v(ρ) < 0

• and fluctuations grow
√

logarithmically:

lim sup
t→∞

Pπρ(|h(x , t)− h(x , 0)− (q − p)tv | ≥ A
√

log t)
A→∞→ 0.

(simplified/improved result in [S. Chhita, P. L. Ferrari, F.T.
’17])
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Comments on the velocity function

• in principle, v(ρ) is given by infinite sum of determinants

• v(ρ) is explicit, C∞ in the interior of P, singular on ∂P:

v(∇φ) = − 1

π

sin(π∂x1φ) sin(π∂x2φ)

sin(π(1− ∂x1φ− ∂x2φ))

• Explicit computation shows that the Hessian of v(ρ) has
signature (+,−).

• Theorem 1 extends to a growth model on domino tilings of
the plane [S. Chhita, P. L. Ferrari ’15, Chhita-Ferrari-F.T. ’17]
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A hydrodynamic limit

Theorem 2 [M. Legras, F. T., arXiv ’17]
Totally asymmetric case: p = 0, q = 1.
• If the initial condition approximates a smooth profile:

lim
L

1

L
h(xL) = φ0(x)

with ∇φ0(x) ∈
◦
P, then

lim
L

1

L
h(xL, tL) = φ(x , t), t ≤ Tshocks

where φ(x , 0) = φ0(x) and ∂tφ+ v(∇φ) = 0.

• convergence to viscosity solution for t > Tshocks if initial profile
is convex.
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Remarks on the hydrodynamic limit

• v(·) has singularities

(Recall: v(∇φ) = − 1

π

sin(π∂x1φ) sin(π∂x2φ)

sin(π(1− ∂x1φ− ∂x2φ))
)

• v(·) neither concave nor convex. Theorem cannot be obtained
by sub/super-additivity

• Borodin-Ferrari initial condition: characteristics do not cross,
classical solution for all times. General initial condition:
singularities appear in finite time.



Remarks on the hydrodynamic limit

• v(·) has singularities

(Recall: v(∇φ) = − 1

π

sin(π∂x1φ) sin(π∂x2φ)

sin(π(1− ∂x1φ− ∂x2φ))
)

• v(·) neither concave nor convex. Theorem cannot be obtained
by sub/super-additivity

• Borodin-Ferrari initial condition: characteristics do not cross,
classical solution for all times. General initial condition:
singularities appear in finite time.



Remarks on the hydrodynamic limit

• v(·) has singularities

(Recall: v(∇φ) = − 1

π

sin(π∂x1φ) sin(π∂x2φ)

sin(π(1− ∂x1φ− ∂x2φ))
)

• v(·) neither concave nor convex. Theorem cannot be obtained
by sub/super-additivity

• Borodin-Ferrari initial condition: characteristics do not cross,
classical solution for all times. General initial condition:
singularities appear in finite time.



A heuristic link with 2D KPZ equation

One expects (in some sense) height fluctuations in stationary state
πρ to be described by

∂th(t, x) = ∆h(t, x) +∇h(t, x) · Qρ∇h(t, x) + Ẇ (t, x)

with Ẇ a space-time noise and Qρ the Hessian of v(ρ).
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A heuristic link with 2D KPZ equation

Recall:

• for the single-flip dynamics, v(·) unknown but convex:
signature of Qρ is (+,+). “Isotropic KPZ equation”

• B-F dynamics. From explicit form of v(·), signature of Qρ is
(+,−). “Anisotropic KPZ equation”



A heuristic link with 2D KPZ equation

Wolf [PRL ’91] predicted:

• Anisotropic case: non-linearity irrelevant, fluctuations grow
∼ √log t as if Qρ = 0 (Stochastic Heat Equation).
Supported by Theorem 1

Results in the same line: Gates-Westcott model
[Prähofer-Spohn ’97]

• Isotropic case: non-linearity relevant, fluctuations grow like tν ,
some non-trivial exponent ν > 0.
simulations: ν ≈ 0.24

• Joint work with A. Borodin and I. Corwin [CMP 2017+]: a
variant of the (2 + 1)-d growth process in the AKPZ class for
which convergence to the stochastic heat equation can be
proven
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Part II: Back to the reversible process

We expect: if the initial condition approximates smooth profile,

lim
L

1

L
h(xL) = φ0(x)

then

lim
L

1

L
h(xL, tL2) = φ(x , t)

with

∂tφ = µ(∇φ)
2∑

i ,j=1

σi ,j(∇φ)∂2
xi ,xj

φ.

µ > 0: mobility. {σi ,j}: positive symmetric matrix, Hessian of
surface tension.



In general (e.g. single-flip dyn) not possible to compute µ explicitly

One exception (for d > 1 interfaces): Ginzburg-Landau model with
symmetric convex potential.
Funaki-Spohn ’97: hydrodynamic limit with µ(∇φ) ≡ 1
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A reversible process with longer jumps

rate = 1
length of jump

[Luby-Randall-Sinclair, SIAM J. Comput. ’01, D. Wilson, Ann. Appl. Probab. ’04]

Linear response theory:

µ(ρ) = πρ(f (η))−
∫ ∞

0
dt πρ(g(η(t))g(η(0))
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Summation by parts:

µ(ρ) = πρ(f (η))−
�������������∫ ∞

0
dt πρ(g(η(t))g(η(0))

Explicit calculation of πρ(f ) gives:

µ(ρ) =
1

π

sin(πρ1) sin(πρ2)

sin(π(1− ρ1 − ρ2))

[B. Laslier, F. T., Ann. H. Poincaré 2017+]

NB same as velocity function v(·) of the long-jump growth
process: Einstein relation
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A (diffusive) hydrodynamic limit

Theorem 3 [B. Laslier, F. T., arXiv ’17]
On the torus, convergence to the limit PDE:∥∥∥∥h(·, L2t)

L
− φ(·, t)

∥∥∥∥2

2

:=
1

L2
E
∑
x

∣∣∣∣h(xL, tL2)

L
− φ(x , t)

∣∣∣∣2 L→∞→ 0

with φ solution of

∂tφ = µ(∇φ)
2∑

i ,j=1

σi ,j(∇φ)∂2
xi ,xj

φ.

Proof via H−1 method (Yau, Funaki-Spohn).

Non-trivial fact: PDE contracts L2 distance between solutions
(would be trivial if µ(·) ≡ 1).
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Conclusions

• single-flip version of both reversible and irreversible process
are too hard (no gradient condition/no known stationary
measures)...

• ...but “natural” longer-jump versions can be analyzed in detail
(some “integrable structure” behind)

• Caveat: for the growth process, long-jump and single-flip
versions are in two different universality classes (AKPZ/KPZ)

• presumably, results and methods extend to a class of 2d
growth processes introduced by Borodin-Ferrari, Petrov,
Borodin-Bufetov-Olshanski...
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Thanks!



Ideas I: Comparison with the Hammersley process (HP)

Seppäläinen ’96: if spacing between particle 1 and n is o(n2), then
dynamics well defined.

Lozenge dynamics ∼ infinite set of coupled Hammersley processes.
Comparison: lozenges move less than HP particles
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Ideas II: Fluctuations
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Let QΛ(t) =
∑
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〈QΛ(t)〉 = 〈
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|V (x , ↑) ∩ Λ|〉, 〈·〉 := Eπρ .
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Ideas II: Fluctuations
Similarly, one can prove

d

dt
〈(QΛ(t)−〈QΛ(t)〉)2〉 ≤

√
〈(QΛ(t)− 〈QΛ(t)〉)2〉L

√
log L+O(L2)

so that
〈(QΛ(T )− 〈QΛ(T )〉)2〉 = O(T 2L2 log L).



Ideas II: Fluctuations
Similarly, one can prove

d

dt
〈(QΛ(t)−〈QΛ(t)〉)2〉 ≤

√
〈(QΛ(t)− 〈QΛ(t)〉)2〉L

√
log L+O(L2)

so that
〈(QΛ(T )− 〈QΛ(T )〉)2〉 = O(T 2L2 log L).



Ideas II: Fluctuations

Recall
〈(QΛ(T )− 〈QΛ(T )〉)2〉 = O(T 2L2 log L).

If L = 1, we get the (useless) bound
√
〈ψ(T )2〉 = O(T ).

How to do better?

Neglecting the small (logarithmic) fluctuations in πρ, we have
QΛ(T )− 〈QΛ(T )〉 ≈ L2ψ(T ).

If we choose L = T we get then
√
〈ψ(T )2〉 = O(

√
logT ) as

wished.
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Ideas III: Invariance on the torus

For simplicity, p = 1, q = 0.

Stationary measure πLρ : uniform measure with fraction ρi of
lozenges of type i = 1, 2, 3.

Call I+
n set of available positions above/below for particle n.

[πLρL](σ) =
1

NL
ρ

[
∑
n

|I+
n | −

∑
n

|I−n |] = 0



Ideas III: Invariance on the torus

For simplicity, p = 1, q = 0.

Stationary measure πLρ : uniform measure with fraction ρi of
lozenges of type i = 1, 2, 3.

Call I+
n set of available positions above/below for particle n.

[πLρL](σ) =
1

NL
ρ

[
∑
n

|I+
n | −

∑
n

|I−n |]

= 0



Ideas III: Invariance on the torus

For simplicity, p = 1, q = 0.

Stationary measure πLρ : uniform measure with fraction ρi of
lozenges of type i = 1, 2, 3.

Call I+
n set of available positions above/below for particle n.

[πLρL](σ) =
1

NL
ρ

[
∑
n

|I+
n | −

∑
n

|I−n |] = 0



Ideas III: From the torus to the infinite graph

Difficulty: show that “information does not propagate
instantaneously” =⇒ coupling between torus dynamics and infinite
volume dynamics

Key fact:
Lemma: The probability of seeing an inter-particle gap ≥ logR
within distance R from the origin before time 1 is O(R−K ) for
every K .
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Towards the Stochastic Heat Equation
One can generalize the model: rates depend on a parameter
r ∈ [0, 1) and (in a special way) on the distances between a
particle and its six neighbors

rate = (1−rB−1)(1−rD)
1−rC+1

r = 0 : back to Borodin− Ferrari dyn.

Theorem 3 [Corwin-Toninelli, ECP 2016]: explicit stationary
measure of Gibbs type.
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Towards the Stochastic Heat Equation

For r = e−ε → 1, with 1/ε rescaling of time and particle distances,
particle positions zp have Gaussian fluctuations.

Theorem 4 [Borodin-Corwin-Toninelli, CMP 2016+]:

ε(zp(t/ε)− zp(0))→ Vt

and √
ε(zp(t/ε)− zp(0)− ε−1Vt)→ ξp(t)

and ξp(t) (⇔ height fluctuations w.r.t. deterministically growing
profile) solve a linear system of SDEs.



Towards the Stochastic Heat Equation

In that limit, space-time correlations can be computed:

E [ξx ,t ξy ,s ]− E [ξx ,t ]E [ξy ,s ]



Towards the Stochastic Heat Equation

Along a special direction U ∈ R2 (“characteristics”)

E
[
ξ tU

δ
+ x√

δ
, t
δ
ξ sU

δ
+ y√

δ
, s
δ

]
− E

[
ξ tU

δ
+ x√

δ
, t
δ

]
E
[
ξ sU

δ
+ y√

δ
, s
δ

]
tends as δ → 0 to C (s, t, x − y), the space-time correlation of the
2d SHE

∂th = ∆h + Ẇ , h(0, x) = 0.

For all other directions U ′, correlations ≈ 0 if t − s �
√
t.

Remark: A similar behavior expected for growth models in the
Anisotropic KPZ class. E.g. the Borodin-Ferrari dynamics.


