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Outline

1) Symmetric case: how KMP is connected to other processes
SIP, BEP (via so-called thermalization), and how this leads
immediately to a one-parameter family KMP(α).

2) Duality of KMP (and all other dualities between the models
of this family) follows from self-duality of SIP(α).

3) Self-duality of SIP(α) in turn follows from its algebraic
structure and consequent symmetries (commuting operators):
the generator of SIP is the co-product of the Casimir in
U (SU(1, 1)) (in a discrete representation).
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4) To find the “correct asymmetric SIP(α) (ASIP(q, α)), this
algebraic construction has now to be performed in
Uq(SU(1, 1)). Built in the construction are symmetries and
self-duality (comparable to Schütz self-duality of ASEP).

5) From ASIP(q, α) with weak asymmetry q = 1− σ
N , we find a

“diffusion limit” (many particle limit) called ABEP(q, α).

6) This ABEP(q, α) process then yields AKMP(σ, α) via
thermalization. The AKMP(σ, α) has the same dual as
KMP(α), all the asymmetry is put into the duality function.
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The KMP process

The KMP (Kipnis, Marchioro, Presutti, J. Stat. Phys. 1982)
process on a (finite) graph (S ,E ) is a Markov process
{X (t), t ≥ 0} on [0,∞)S (energies associated to vertices)
described as follows

1. Every edge is selected with rate 1 (independently for different
edges)

2. If the edge e = (ij), i , j ∈ S is selected, then the energies xi , xj
associated to the vertices of the edge are replaced by

ε(xi + xj), (1− ε)(xi + xj)

with ε uniformly distributed on [0, 1] (every time of updating
independently chosen).
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The discrete KMP process

The dKMP process on a (finite) graph (S ,E ) is a Markov process
{η(t), t ≥ 0} on [0,∞)S (particle numbers associated to vertices)
described as follows

1. Every edge is selected with rate 1 (independently for different
edges)

2. If the edge e = (ij), i , j ∈ S is selected, then the particle
numbers ηi , ηj associated to the vertices of the edge are
replaced by

ke , ηi + ηj − ke

where ke is (discrete) uniformly distributed on
{0, 1, 2, . . . , ηi + ηj} (every time of updating independently
chosen).
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Duality of KMP and dKMP

Putting

D(η, x) =
∏
i∈S

xηii
ηi !

We have the duality

EdKMP
η D(η(t), x) = EKMP

x D(η,X (t))

Which implies e.g.

EKMP
x (Xi (t)) =

∑
j

pt(i , j)xj

where pt(i , j) is the transition probability for continuous-time rate
1 simple random walk on (S ,E ).
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Self-duality of dKMP

The dKMP is self-dual: putting

D(ξ, η) =
∏
i∈S

ηi !Γ(1)

(ηi − ξi )!Γ(1 + ξi )
=
∏
i

(
ηi
ξi

)
We have

EdKMP
ξ D(ξ(t), η) = EdKMP

η D(ξ, η(t))
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Further relations between dKMP and KMP

I The KMP is the “many particle limit” of dKMP. Taking
ηi = bxiNc in dKMP and denoting ηNt its time-evolution
under dKMP, we have, when N →∞

ηN(t)

N
→ X (t)

with Xi (0) = xi
I The duality between dKMP and KMP can thus be derived

from the self-duality of dKMP via

lim
N→∞

1

Nξi

(
bxiNc
ξi

)
=

xξii
ξi !
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A one-parameter family of KMP models

Given α > 0 we define KMP(α) as the Markov process
{X (t), t ≥ 0} on [0,∞)S (energies associated to vertices)
described as follows

1. Every edge is selected with rate 1 (independently for different
edges)

2. If the edge e = (ij), i , j ∈ S is selected, then the energies xi , xj
associated to the vertices of the edge are replaced by

ε(xi + xj), (1− ε)(xi + xj)

with ε Beta(α, α) distributed on [0, 1] (every time of updating
independently chosen).
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The discrete KMP process
The dKMP(α) process on a (finite) graph (S ,E ) is a Markov
process {η(t), t ≥ 0} on [0,∞)S (particle numbers associated to
vertices) described as follows

1. Every edge is selected with rate 1 (independently for different
edges)

2. If the edge e = (ij), i , j ∈ S is selected, then the particle
numbers ηi , ηj associated to the vertices of the edge are
replaced by

ke , ηi + ηj − ke

where ke is (discrete) Beta(α, α) binomial distributed on
{0, 1, 2, . . . , ηi + ηj} (every time of updating independently
chosen). Beta Binomial is defined via

P(ke = n) =

(
ηi + ηj

n

)
E(pn(1− p)ηi+ηj−n)

where E is w.r.t. p according to Beta(α, α) distribution.
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Self-duality of dKMP(α)

The dKMP(α) is also self-dual: putting

D(ξ, η) =
∏
i∈S

ηi !Γ(α)

(ηi − ξi )!Γ(α + ξi )

then we have

EdKMP(α)
ξ D(ξ(t), η) = EdKMP(α)

η D(ξ, η(t))

from this we can derive, as before, duality of KMP(α) and
dKMP(α) with

D(η, x) =
∏
i

xηii Γ(α)

Γ(α + ηi )
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Thermalization

For a process on X S (X = [0,∞) or X = N) with generator of type

L =
∑
e∈E

Le

we define its thermalization as

T (L) := L =
∑
e∈E

Le

with
Le f = lim

t→∞
(etLe − I )f

Notice that this is a kind of projection, i.e.,

T (T (L)) = T (L)
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Relation between SIP(α) and dKMP(α)

In the SIP(α) only one particle jumps at a time and a particle hops
from i to j (if ij ∈ E ) at rate

r(ηi , ηj) = ηi (α + ηj)

So the generator reads

LSIP(α) =
∑

e=ij∈E

[
r(ηi , ηj)(f (ηij)− f (η)) + r(ηj , ηi )(f (ηji )− f (η))

]
We then have

LdKMP(α) = T (LSIP(α))

i.e., dKMP(α) is the thermalization of SIP(α).
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Self-duality of SIP(α)

D(ξ, η) =
∏
i∈S

ηi !Γ(α)

(ηi − ξi )!Γ(α + ξi )

then we have

ESIP(α)
ξ D(ξ(t), η) = ESIP(α)

η D(ξ, η(t))

This self-duality is the “source” duality from which all the others
follow (by taking many particle limits or thermalizations)
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Brownian energy process BEP(α)

If one takes the many particle limit ηi = bNxic in the SIP(α) we
obtain a process of diffusion type with generator

LBEP(α) =
∑

ij=e∈E

[
xixj(∂i − ∂j)2 − 2α(xi − xj)(∂i − ∂j)

]
From self-duality of SIP(α), one infers duality of this process with
SIP(α) with

D(η, x) =
∏
i∈S

xηii Γ(α)

Γ(α + ηi )

Moreover, the thermalization of this process is the process
KMP(α).
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Self-duality and symmetries

The self-duality of SIP(α) follows from its algebraic structure. The
self-duality of a process with generator L can (in most cases) be
summarized via

LleftD(ξ, η) = LrightD(ξ, η)

We denote this by L −→D L In the finite state space case this
relation reads in matrix form

LD = DLT
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The following fact connects symmetries with self-duality functions:
if S commutes with L, i.e., if

[S , L] = SL− LS = 0

then
L −→D L

implies
L −→SleftD L

i.e., from a given self-duality function and a symmetry one can
produce a new self-duality function.
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A “cheap” self-duality function is given by

Dcheap(ξ, η) =
1

µ(ξ)
δξ,η

where µ is a reversible measure. Other, more useful self-dualities
can then be made by acting with symmetries on this one (provided
we have symmetries). In this sense, self-duality can be viewed as a
generalization of reversibility (from diagonal to non-diagonal D).
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Symmetries of the SIP generator

The single edge generator of SIP(α) is[
r(ηi , ηj)(f (ηij)− f (η)) + r(ηj , ηi )(f (ηji )− f (η))

]
where we remind r(k, n) = k(α + n). In order to discover its
symmetries, we have to go to its algebraic structure
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We introduce the following operators working on functions
f : N→ R.

K+f (n) = (α + n)f (n + 1)

K−f (n) = nf (n − 1)

K 0f (n) =
(
α
2 + n

)
f (n) (1)

These operators K+,K−,K 0 satisfy

[K±,K 0] = ±K±, [K+,K−] = 2K 0 (2)

These are the commutation relations of the dual algebra of
U (SU(1, 1)) (the commutation relations of U (SU(1, 1)) being the
same with opposite signs, i.e. [K 0,K±] = ±K±, [K−,K+] = 2K 0).
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In terms of these operators the single edge generator of SIP(α)
reads

L12 = K+
1 K−2 + K−1 K+

2 − 2K 0
1K

0
2 +

α2

2
(3)

This operator L12 is naturally related to a distinguished central
element of U (SU(1, 1),

C = (K 0)2 − 1

2
(K+K− + K−K+) (4)

the so-called Casimir element. This is the reason that this operator
has many symmetries.
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First we define the co-product on the generating elements: for
u ∈ {+,−, 0}

∆(Ku) = Ku ⊗ I + I ⊗ Ku = Ku
1 + Ku

2 (5)

and extend ∆ to a homomorphism between the algebras A and
A ⊗A . ∆ : A → A ⊗A is then called coproduct. It has the
property (co-associativity)

(∆⊗ I )∆ = (I ⊗∆)∆

which allows to consider iterated coproducts, e.g.,
∆2 : A → A ⊗A ⊗A

∆2(Ku) = (∆⊗ I )∆(Ku) = Ku
1 + Ku

2 + Ku
3 , u ∈ {−,+, 0}
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We have

∆(−C ) = (K+
1 K−2 + K+

2 K−1 )− 2K 0
1K

0
2 − C1 − C2 (6)

As a consequence, the generator L12 commutes with ∆(A) for
every algebra-element (because C is central and ∆ preserves
commutators). In particular L12 commutes with

Ku
1 + Ku

2 , u ∈ {0,+,−}

These symmetries are responsible for the self-duality of SIP(α):

D = eK
+
1 +K+

2 Dcheap

Taking the exponential is natural because we want factorized (over
vertices) self-dualities.
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Summary so far

I The generator (on two edges) of the SIP(α) is the coproduct
applied to the Casimir operator (in the discrete
representation).

I As a consequence, the generator (on two edges) of the SIP(α)
has many commuting elements (symmetries).

I The self-duality of SIP(α) follows immediately from the

application of a symmetry (eK
+
1 +K+

2 ) on a trivial self-duality
function coming from the reversible product measure.

I All dualities and self-dualities of processes related to SIP(α)
(BEP(α), dKMP(α), KMP(α)) follow from this self-duality of
SIP(α), and taking limits and or thermalizations.
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The asymmetric inclusion process
Now we start from deformed algebra Uq(SU(1, 1)) with
commutation relations

[K+,K−] = −[2K 0]q, [K
0,K±] = ±K±

0 < q < 1 is the parameter tuning the asymmetry. q-numbers are
defined via

[n]q =
qn − q−n

q − q−1

The Casimir element of Uq(SU(1, 1)) is given by

C = [K 0]q[K 0 − 1]q − K+K−

and the coproduct on the generating elements is given by

∆(K±) = K± ⊗ q−K
0

+ qK
0 ⊗ K±

∆(K 0) = K 0 ⊗ I + I ⊗ K 0

iterated coproducts via

∆n = (∆⊗ I )(∆n−1)
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We now have to start from the q-deformed version Uq(SU(1, 1)),
and apply the same strategy:

I Copy the coproduct of the Casimir along the edges (i , i + 1)
of the finite graph {1, 2, . . . , L}. This gives an operator of the
form

H =
L−1∑
i=1

hi ,i+1

which is not yet a Markov generator, but of the form

Hg = Lg − ϕg

i.e., a Markov generator minus a multiplication operator.

Frank Redig The asymmetric KMP model



I Turn the Hamiltonian operator thus obtained into a generator
via a “ground-state transformation”: if Hef = 0 (positive
groundstate) then

L g = e−fH(ef g)

is a Markov generator. The symmetries of H are in one-to-one
correspondence with the symmetries of L .

I The analogue of the “exponential symmetries” e
∑

i K
u
i are a

well-chosen q-deformed exponential of ∆(L−1)(Ku). These
symmetries then yield the self-dualities of the process with
generator L
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Explicitly, we have the generator of SIP(q, α) is given by

L =
∑
i

Li ,i+1

with

Li ,i+1f (η) = qηi−ηi+1+(α−1)[ηi ]q[α + ηi+1]q(f (ηi ,i+1)− f (η))

+ qηi−ηi+1−(α−1)[ηi+1]q[α + ηi ]q(f (ηi+1,i )− f (η))

This process is self-dual with self-duality functions

D(ξl1,...,ln , η) =
q−2α

∑n
m=1 lm−n2

qα − q−α

n∏
m=1

(q2Nlm (η) − q2Nlm+1(η))

where ξl1,...,ln denotes the configuration with particles at the n
different location l1, . . . , lm, and

Ni (η) =
L∑
j=i

ηj

is the number of particles to the right of i .
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The ABEP(σ, α)

Now we take the limit q = 1− σ
N (weak asymmetry), ηi = bNxic

(many particles) in the ASIP(q, α) and we find a diffusion (in limit
N →∞) process called ABEP(σ, α) with generator

L =
L−1∑
i=1

Li ,i+1

Li ,i+1 =
1

4σ2
(
1− e−2σxi

) (
e2σxi+1 − 1

)
(∂i − ∂i+1)2

− 1

2σ

((
1− e−2σxi

) (
e2σxi+1 − 1

)
+ 2α(2− e−2σxi − e2σxi+1)

)
×(∂i − ∂i+1)
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Duality of ABEP(σ, α)

I From the self-duality of ASIP(q, α) we obtain duality between
ABEP(σ, α) and SIP(α) with duality functions

Dσ(ξ, x) =
L∏

i=1

Γ(α)

Γ(α + ξi )

(
e−2σEi+1(x) − e−2σEi (x)

2σ

)ξi

with Ei (x) =
∑L

j=i xi is the total energy to the right of i .

I i.e., in the dual process, the asymmetry is disappearing, and
the only trace of the asymmetry is in the duality function.

I So this is an example of a truly bulk-asymmetric process dual
to a symmetric process.

Example

EABEP(σ,α)
x (e−2σJi (x(t))) =

∑
k

pt(i , k)e−2σ(Ek (x)−Ei (x))
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The AKMP(σ, α)

The AKMP(σ, α) is then defined as the thermalization of
ABEP(σ, α) This gives the following process: the energies of every
edge are (at rate 1) updated according to

(xi , xi+1)→ (B(xi+xi+1)
σ (xi + xi+1), (1− B(xi+xi+1)

σ )(xi + xi+1))

with BE
σ a random variable on [0, 1] with probability density

fBE
σ

= C−1E ,σ,αe
2σEw ((e2σEw − 1)(1− e−2σE(1−w)))α−1

CE ,σ,α =

∫ 1

0
e2σEw ((e2σEw − 1)(1− e−2σE(1−w)))α−1dw

which is the asymmetric analogue of the Beta(α, α) distribution in
KMP(α).
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This AKMP(σ, α) is dual to the dKMP(α) with the duality
functions

Dσ(ξ, x) =
L∏

i=1

Γ(α)

Γ(α + ξi )

(
e−2σEi+1(x) − e−2σEi (x)

2σ

)ξi
Two open questions

I For SIP(α) we can characterize all self-duality functions
among which there are also orthogonal polynomials
(Franceschini, Giardinà; R., Sau). Can this be done also in the
asymmetric case?

I Are there “correct” reservoirs for ABEP(σ, α) (or
AKMP(σ, α)) such that the dual has absorbing boundaries?
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Thanks for your attention !
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