Ballisticity and Einstein relation in 1d Mott variable range hopping

Alessandra Faggionato

Department of Mathematics University La Sapienza

Joint work with N. Gantert and M. Salvi

Physical motivations

Phonon–assisted **electron transport in disordered solids** in the regime of strong Anderson localization (e.g. doped semiconductors)

•: impurities located at x_i E_i : energy mark associated to x_i $\{x_i\}$ and $\{E_i\}$ are random

Physical motivations

- Electrons are localized around impurities
- E_i = energy of electron around x_i
- $\bullet \ \eta \in \{0,1\}^{\mathbb{N}}$
- $\eta_i = \begin{cases} 1 & \text{there is electron around } x_i \\ 0 & \text{otherwise} \end{cases}$

Simple exclusion process with site disorder

• Probability rate for an electron to hop from x_i to x_j :

$$\exp\{-|x_i - x_j| - \beta\{E_j - E_i\}_+\}$$

- μ_{λ} : reversible product probability, $\mu_{\lambda}(\eta_i) = \frac{e^{-\beta(E_i \lambda)}}{1 + e^{-\beta(E_i \lambda)}}$
- Interesting regime: $\beta \to \infty$
- Independent particle approximation: probability rate for a jump $x_i \curvearrowright x_j$

$$\mu_{\lambda}(\eta_{i} = 1, \ \eta_{j} = 0) \exp\{-|x_{i} - x_{j}| - \beta\{E_{j} - E_{i}\}_{+}\}$$

$$\approx \exp\{-|x_{i} - x_{j}| - \frac{\beta}{2}(|E_{i} - \lambda| + |E_{j} - \lambda| + |E_{i} - E_{j}|)\}$$

- A. Miller, E. Abrahams, *Impurity Conduction at Low Concentrations*. Phys. Rev. **120**, 745-755 (1960)
- V. Ambegoakar, B. Halperin, J.S. Langer, *Hopping conductivity in disordered systems*. Phys. Rev. B 4, 2612–2620 (1971).

- $\{x_i\} = \mathbb{Z}^d$, nearest-neighbor jumps
- Hydrodynamic limit:
 F., Martinelli (PTRF 2003); Quastel (AP 2006)
- $\partial_t m = \nabla(D(m)\nabla m)$
- Quastel (AP 2006): $\lim_{m\to 0} D(m) = D(0)$, D(0) diffusion matrix random walk with jump rates obtained by a similar procedure

Continuous–time random walk X_t^{ξ}

Environment: $\xi = (\{x_i\}, \{E_i\})$

- $X_t^{\xi} \in \{x_i\},$
- $X_0^{\xi} = 0$,
- Given $x_i \neq x_j$, probability rate for a jump $x_i \curvearrowright x_j$ is

$$\mathbf{r}_{\mathbf{x_i},\mathbf{x_j}}(\xi) = \exp\left\{-|\mathbf{x_i} - \mathbf{x_j}| - \beta(|\mathbf{E_i}| + |\mathbf{E_j}| + |\mathbf{E_i} - \mathbf{E_j}|)\right\}$$

Variable range hopping

$$\mathbf{r_{x_i,x_i}}(\xi) = \exp\left\{-|\mathbf{x_i} - \mathbf{x_j}| - \beta(|\mathbf{E_i}| + |\mathbf{E_j}| + |\mathbf{E_i} - \mathbf{E_j}|)\right\}$$

- Low temperature regime: $\beta \to \infty$.
- Long jumps can become convenient if energetically nice

Mott-Efros-Shklovskii law

In $d \ge 2$ the contribution of long jumps dominates as $\beta \to \infty$

- For genuinely nearest neighbor random walk diffusion matrix $D(\beta) = O(e^{-c\beta})$
- Mott-Efros-Shklovskii law (for isotropic environment):

$$D(\beta) \sim \exp\left(-c\,\beta^{\frac{\alpha+1}{\alpha+1+d}}\right) \mathbb{1}$$

if
$$P(E_i \in [E, E + dE)) = c|E|^{\alpha}dE$$
, $\alpha \ge 0$.

- Rigorous lower/upper bounds: A.F. D.Spehner, H. Schulz-Baldes CMP (2006); A.F., P.Mathieu CMP (2008)
- M-E-S law concerns conductivity $\sigma(\beta)$. If Einstein relation is not violated, then $\sigma(\beta) = \beta D(\beta)$

Diffusive/Subdiffusive behavior

Theorem (A.F., P. Caputo AAP (2009))

- If $\mathbb{E}(e^{Z_0}) < \infty$, then quenched invariance principle and $c_1 \exp\{-\kappa_1 \beta\} \le D(\beta) \le c_2 \exp\{-\kappa_2 \beta\}$.
- If $\mathbb{E}(e^{Z_0}) = \infty$, then annealed invariance principle and $D(\beta) = 0$.

Einstein relation for random walks in random environment

- J. Lebowitz, H. Rost (SPA 1994)
- Tagged particle in a dynamical random environment with positive spectral gap: T. Komorowski, S. Olla (JSP 2005)
- Reversible diffusion in random environment: Gantert, Mathieu, Piatnitski (CPAM 2012)
- ...

Biased 1d Mott random walk

Joint work with N. Gantert, M. Salvi (2016)

Take $\lambda \in (0,1)$ and $u(\cdot,\cdot)$ bounded, symmetric

$$r_{x_i,x_j}^{\lambda}(\xi) = \exp\{-|x_i - x_j| + \lambda(x_j - x_i) - u(E_i, E_j)\}$$

Biased random walk $(X_t^{\xi,\lambda})_{t>0}$ is well defined.

Assumptions:

- (A1) The sequence $(Z_k, E_k)_{k \in \mathbb{Z}}$ is ergodic and stationary w.r.t. shifts;
- (A2) The expectation $\mathbb{E}(Z_0)$ is finite;
- (A3) There exists $\ell > 0$ satisfying $\mathbb{P}(Z_0 \geq \ell) = 1$.

Transience

Proposition

For \mathbb{P} -a.a. ξ the rw $X_t^{\xi,\lambda}$ is transient to the right:

•
$$\lim_{t\to\infty} X_t^{\xi,\lambda} = +\infty$$
 a.s.

Ballistic/Subballistic behavior

Theorem

• If $\mathbb{E}\left[e^{(1-\lambda)Z_0}\right] < \infty$, then for \mathbb{P} -a.a. ξ it holds

$$\lim_{t \to \infty} \frac{X_t^{\xi, \lambda}}{t} = v(\lambda) > 0 \qquad a.s.$$

• If $\mathbb{E}\left[e^{-(1+\lambda)Z_{-1}+(1-\lambda)Z_0}\right] = \infty$, then for \mathbb{P} -a.a. ξ it holds

$$\lim_{t \to \infty} \frac{X_t^{\xi, \lambda}}{t} = v(\lambda) = 0 \qquad a.s.$$

Comments

$$\begin{cases} \mathbb{E}\left[e^{(1-\lambda)Z_0}\right] < \infty \Rightarrow v(\lambda) > 0\\ \mathbb{E}\left[e^{-(1+\lambda)Z_{-1} + (1-\lambda)Z_0}\right] = \infty \Rightarrow v(\lambda) = 0 \end{cases}$$

• If $(Z_k)_{k\in\mathbb{Z}}$ are i.i.d., or in general if $\|\mathbb{E}(Z_{-1}|Z_0)\|_{\infty} < \infty$, then

$$\mathbb{E}\big[e^{(1-\lambda)Z_0}\big] < \infty \Longleftrightarrow v(\lambda) > 0$$

• Previous theorem holds for $\mathbf{Y}_{\mathbf{n}}^{\xi,\lambda}$ = jump process of $X_t^{\xi,\lambda}$ $p_{x_i,x_k}^{\lambda}(\xi) = \frac{r_{x_i,x_j}^{\lambda}(\xi)}{\sum_k r_{x_i,x_k}^{\lambda}(\xi)}$ probability for $Y_n^{\xi,\lambda}$ to $x_i \curvearrowright x_j$

- $\mathbf{Y}_{\mathbf{n}}^{\xi,\lambda}$: discrete time random walk
- $p_{x_i,x_k}^{\lambda}(\xi)$: probability to jump from x_i to x_k
- $\varphi_{\lambda}(\xi) = \sum_{k} x_{k} p_{0,x_{k}}^{\lambda}(\xi)$ local drift

Theorem

Suppose that $\mathbb{E}\left[e^{(1-\lambda)Z_0}\right] < \infty$. The environment viewed from $Y_n^{\xi,\lambda}$ has an invariant ergodic distribution \mathbb{Q}_{λ} mutually absolutely continuous w.r.t. \mathbb{P} ,

$$v_Y(\lambda) = \mathbb{Q}_{\lambda} \big[\varphi_{\lambda} \big] \quad and \quad v_X(\lambda) = \frac{v_Y(\lambda)}{\mathbb{Q}_{\lambda} \Big[1/(\sum_k r_{0,x_k}^{\lambda}) \Big]}$$

True also for
$$\lambda = 0$$
: $d\mathbb{Q}_0 = \frac{\sum_k r_{0,x_k}}{\mathbb{E}[\sum_k r_{0,x_k}]} d\mathbb{P}$ reversible, $v_Y(0) = v_X(0) = 0$

Warning

When $\lambda = 0$, λ is understood: $r_{x_i,x_j}(\xi)$, $p_{x_i,x_k}(\xi)$, X_t^{ξ} , Y_n^{ξ}

Cut-off

- ρ : positive integer
- Consider $Y_n^{\xi,\lambda}$, and suppress jumps of length larger than ρ .
- $\mathbb{Q}_{\lambda}^{(\rho)}$: invariant ergodic distribution for the new random walk, absolutely continuous w.r.t. \mathbb{P} .
- Probabilistic representation of $\frac{d\mathbb{Q}_{\lambda}^{(\rho)}}{d\mathbb{P}}$.
- $\mathbb{Q}_{\lambda}^{(\rho)}$ weakly converges to \mathbb{Q}_{λ} .
- F. Comets, S. Popov, AIHP 48, 721–744 (2012)

Estimates on the Radon-Nykodim derivative $\frac{dQ}{d\Omega}$

Proposition

Suppose that for some $p \ge 2$ it holds $\mathbb{E}[e^{pZ_0}] < +\infty$. Fix $\lambda_0 \in (0,1)$. Then

$$\sup_{\lambda \in (0,\lambda_0)} \left\| \frac{d\mathbb{Q}_{\lambda}}{d\mathbb{Q}_0} \right\|_{L^p(\mathbb{Q}_0)} < \infty$$

Continuity of $\mathbb{Q}_{\lambda}(f)$ at $\lambda = 0$

Theorem

Suppose that $\mathbb{E}(e^{pZ_0}) < \infty$ for some $p \geq 2$ and let q be the coniugate exponent, i.e. q satisfies $\frac{1}{p} + \frac{1}{q} = 1$. If $f \in L^q(\mathbb{Q}_0)$, then $f \in L^1(\mathbb{Q}_\lambda)$ for $\lambda \in (0,1)$ and

$$\lim_{\lambda \to 0} \mathbb{Q}_{\lambda}(f) = \mathbb{Q}_{0}(f)$$

$\partial_{\lambda=0}\mathbb{Q}_{\lambda}(f)$

- $\tau_{x_k}\xi$: environment translated to make x_k the new origin
- $\mathbb{L}_0 f(\xi) = \sum_k p_{0,x_k} [f(\tau_{x_k} \xi) f(\xi)]$ for $f \in L^2(\mathbb{Q}_0)$
- $f \in L^2(\mathbb{Q}_0) \cap H_{-1}$: there exists C > 0 such that

$$|\langle f, g \rangle| \le C \langle g, -\mathbb{L}_0 g \rangle^{1/2} \quad \forall g \in \mathcal{D}(\mathbb{L}_0)$$

Above $\langle \cdot, \cdot \rangle$ is the scalar product in $L^2(\mathbb{Q}_0)$.

$\partial_{\lambda=0}\mathbb{Q}_{\lambda}(f)$

Theorem

Suppose $\mathbb{E}(e^{pZ_0}) < \infty$ for some p > 2.

Then, for any $f \in H_{-1} \cap L^2(\mathbb{Q}_0)$, $\partial_{\lambda=0}\mathbb{Q}_{\lambda}(f)$ exists.

Moreover:

$$\partial_{\lambda=0} \mathbb{Q}_{\lambda}(f) = \begin{cases} \mathbb{Q}_0 \left[\sum_{k \in \mathbb{Z}} p_{0,x_k} (x_k - \varphi) h \right] \\ -\text{Cov}(N^f, N^{\varphi}) \end{cases}$$

Representation of $\partial_{\lambda=0}\mathbb{Q}_{\lambda}(f)$ by forms

- Homogenization theory
- M measure on $\Omega \times \mathbb{Z}$

$$M(u) = \mathbb{Q}_0 \left[\sum_k p_{0,x_k} u(\xi, k) \right], \qquad u(\xi, k) \text{ Borel, bounded}$$

- $L^2(M)$: square integrable forms
- Potential form:

$$\nabla g(\xi, k) := g(\tau_k \xi) - g(\xi), \qquad g \in L^2(\mathbb{Q}_0)$$

- Given $\varepsilon > 0$ let $g_{\varepsilon} \in L^2(\mathbb{Q}_0)$ solve $(\varepsilon \mathbb{L}_0)g_{\varepsilon} = f$
- Kipnis-Varadhan [CMP, 1986]: $\nabla g_{\varepsilon} \to h$ in $L^2(M)$

Representation of $\partial_{\lambda=0}\mathbb{Q}_{\lambda}(f)$ by forms

- Given $\varepsilon > 0$ let $g_{\varepsilon} \in L^2(\mathbb{Q}_0)$ solve $(\varepsilon \mathbb{L}_0)g_{\varepsilon} = f$
- Kipnis–Varadhan: $\nabla g_{\varepsilon} \to h$ in $L^2(M)$

$$\partial_{\lambda=0}\mathbb{Q}_{\lambda}(f) = \mathbb{Q}_0\left[\sum_{k\in\mathbb{Z}} p_{0,x_k}(x_k - \varphi)h\right]$$

Representation of $\partial_{\lambda=0}\mathbb{Q}_{\lambda}(f)$ as covariance

 $(\xi_n)_{n=0,1,2,\dots}$ environment viewed from Y_n^{ξ} By Kipnis–Varadhan

$$\frac{1}{\sqrt{n}} \left(\sum_{j=0}^{n-1} f(\xi_j), \sum_{j=0}^{n-1} \varphi(\xi_j) \right) \stackrel{n \to \infty}{\to} (N^f, N^{\varphi})$$

 (N^f, N^{φ}) gaussian 2d vector

$$\partial_{\lambda=0}\mathbb{Q}_{\lambda}(f) = -\operatorname{Cov}(N^f, N^{\varphi})$$

- N. Gantert, X. Guo, J. Nagel; Einstein relation and steady states for the random conductance model.
- P. Mathieu, A. Piatnitski; Steady states, fluctuationdissipation theorems and homogenization for diffusions in a random environment with finite range of dependence

- D_X : diffusion coefficient of X_t^{ξ}
- D_Y : diffusion coefficient of Y_n^{ξ}

Theorem

Suppose $\mathbb{E}(e^{pZ_0}) < \infty$ for some p > 2. Then the Einstein relation holds:

$$\partial_{\lambda=0}v_Y(\lambda) = D_Y$$
 and $\partial_{\lambda=0}v_X(\lambda) = D_X$

Workshop "Random motion in random media". Eurandom 2015. S. Olla's talk

Most recent papers

A. Faggionato, M. Salvi, N. Gantert

- The velocity of 1d Mott variable-range hopping with external field. AIHP. To appear. Available online
- Einstein relation for 1d Mott variable range hopping. Forthcoming