From hard spheres dynamics to the linearized Boltzmann equation

Thierry Bodineau

Joint work with Isabelle Gallagher, Laure Saint-Raymond

Outline.

- Linearized Boltzmann equation \& acoustic equations
- \mathbb{L}^{2} - approach \& a mild version of local equilibrium
- Lanford's strategy \& pruning procedure
- Coupling with the Boltzmann hierarchy

Goal. Fluctuating Boltzmann equation

Microscopic scale : Newtonian dynamics

$$
Z_{N}(t)=\left(x_{i}(t), v_{i}(t)\right)_{i \leq N}
$$

Goal. Fluctuating Boltzmann equation

Microscopic scale : Newtonian dynamics

$$
Z_{N}(t)=\left(x_{i}(t), v_{i}(t)\right)_{i \leq N}
$$

Starting at equilibrium

$$
\frac{1}{N} \sum_{i=1}^{N} h\left(z_{i}(t)\right) \underset{N \rightarrow \infty}{\longrightarrow} \mathbb{E}(h)
$$

Goal. Fluctuating Boltzmann equation

Microscopic scale : Newtonian dynamics
$Z_{N}(t)=\left(x_{i}(t), v_{i}(t)\right)_{i \leq N}$

Starting at equilibrium

$$
\frac{1}{N} \sum_{i=1}^{N} h\left(z_{i}(t)\right) \underset{N \rightarrow \infty}{\longrightarrow} \mathbb{E}(h)
$$

Fluctuation field.

$\zeta^{N}\left(h, Z_{N}(t)\right)=\frac{1}{\sqrt{N}} \sum_{i=1}^{N} h\left(z_{i}(t)\right) \quad$ with $\quad \int h(x, v) M_{\beta}(v) d x d v=0$
Question. Dynamical fluctuations at equilibrium?

Diluted Gas of hard spheres

Gas of N hard spheres with deterministic Newtonian dynamics (elastic collisions).

Dimension : $\mathrm{d} \geq 2$
Periodic domain: $\mathrm{Td}^{\mathrm{d}}=[0,1]^{\mathrm{d}}$
Sphere radius $=\varepsilon$

\mathbf{T}^{d}

Boltzmann-Grad scaling

$$
N \varepsilon^{d-1}=\alpha
$$

Boltzmann-Grad scaling

- Volume covered by a particle $=t v \varepsilon^{d-1}$
- On average N particles per unit volume

On average, a particle has α collisions per unit of time

$$
N \times \varepsilon^{d-1} \equiv \alpha
$$

Hard Sphere dynamics

Gas of N hard spheres : $Z_{N}=\left\{\left(x_{i}(t), v_{i}(t)\right\}_{i \leq N}\right.$

$$
\frac{d x_{i}}{d t}=v_{i}, \quad \frac{d v_{i}}{d t}=0 \quad \text { as long as } \quad\left|x_{i}(t)-x_{j}(t)\right|>\varepsilon,
$$

and elastic collisions if $\left|x_{i}(t)-x_{j}(t)\right|=\varepsilon$

$$
\left\{\begin{array}{l}
v_{i}^{\prime}+v_{j}^{\prime}=v_{i}+v_{j} \\
\left|v_{j}^{\prime}\right|^{2}+\left|v_{j}^{\prime}\right|^{2}=\left|v_{i}\right|^{2}+\left|v_{j}\right|^{2}
\end{array}\right.
$$

Hard Sphere dynamics

Gas of N hard spheres : $Z_{N}=\left\{\left(x_{i}(t), v_{i}(t)\right\}_{i \leq N}\right.$

$$
\frac{d x_{i}}{d t}=v_{i}, \quad \frac{d v_{i}}{d t}=0 \quad \text { as long as } \quad\left|x_{i}(t)-x_{j}(t)\right|>\varepsilon,
$$

and elastic collisions if $\left|x_{i}(t)-x_{j}(t)\right|=\varepsilon$

$$
\left\{\begin{array}{l}
v_{i}^{\prime}+v_{j}^{\prime}=v_{i}+v_{j} \\
\left|v_{j}^{\prime}\right|^{2}+\left|v_{j}^{\prime}\right|^{2}=\left|v_{i}\right|^{2}+\left|v_{j}\right|^{2}
\end{array}\right.
$$

Liouville equation for the particle density $f_{N}\left(t, Z_{N}\right)$
in the phase space ${ }_{i=1}$

$$
\mathcal{D}_{\varepsilon}^{N}:=\left\{Z_{N} \in \mathbf{T}^{d N} \times \mathbb{R}^{d N} / \forall i \neq j, \quad\left|x_{i}-x_{j}\right|>\varepsilon\right\}
$$

with specular reflection on the boundary $\partial \mathcal{D}_{\varepsilon}^{N}$.

Initial Data

Equilibrium distribution

$$
M_{N, \beta}\left(Z_{N}\right)=\frac{1}{\mathcal{Z}_{N, \beta}} \exp \left(-\frac{\beta}{2} \sum_{i=1}^{N}\left|v_{i}\right|^{2}\right) \prod_{i \neq j} 1_{\left|x_{i}-x_{j}\right|>\varepsilon}
$$

Initial data :

$$
f_{N, \beta}^{0}\left(Z_{N}\right)=\left(\prod_{i=1}^{N} f^{0}\left(z_{i}\right)\right) M_{N, \beta}\left(Z_{N}\right)
$$

Density of a particle at time t :

$$
f_{N}^{(1)}\left(t, z_{1}\right)=\int d z_{2} \ldots d z_{N} f_{N}\left(t, z_{1}, z_{2}, \ldots, z_{N}\right)
$$

Question. Convergence

$$
f_{N}^{(1)}\left(t, z_{1}\right) \xrightarrow[\substack{N \rightarrow \infty \\ N \varepsilon \\ \varepsilon \\ d-1}]{?} f\left(t, z_{1}\right)
$$

Boltzmann equation

Theorem.

For chaotic initial data $f_{N}^{0}\left(Z_{N}\right) \simeq \prod_{i=1}^{N} f^{0}\left(z_{i}\right)$ the density of the particle system converges up to a time $\mathrm{t}>0$ to the solution of the Boltzmann equation when $N \rightarrow \infty, N \varepsilon^{d-1}=\alpha$
$\partial_{t} f+v \cdot \nabla_{x} f$

$$
=\alpha \iint_{\mathbf{S}^{d-1} \times \mathbb{R}^{d}}\left[f\left(v^{\prime}\right) f\left(v_{1}^{\prime}\right)-f(v) f\left(v_{1}\right)\right]\left(\left(v-v_{1}\right) \cdot \nu\right)_{+} d v_{1} d \nu
$$

with $v^{\prime}=v+\nu \cdot\left(v_{1}-v\right) \nu, \quad v_{1}^{\prime}=v_{1}-\nu \cdot\left(v_{1}-v\right) \nu$
[Lanford], [King], [Alexander], [Uchiyama], [Cercignani, Illner, Pulvirenti], [Simonella], [Gallagher, Saint-Raymond, Texier], [Pulvirenti, Saffirio, Simonella] ...

Boltzmann equation

Theorem.

For chaotic initial data $f_{N}^{0}\left(Z_{N}\right) \simeq \prod_{i=1}^{N} f^{0}\left(z_{i}\right)$ the density of the particle system converges up to a time $\mathrm{t}>0$ to the solution of the Boltzmann equation when $N \rightarrow \infty, N \varepsilon^{d-1}=\alpha$

$$
\partial_{t} f+v \cdot \nabla_{x} f
$$

$$
=\alpha \iint_{\mathbf{S}^{d-1} \times \mathbb{R}^{d}}\left[f\left(v^{\prime}\right) f\left(v_{1}^{\prime}\right)-f(v) f\left(v_{1}\right)\right]\left(\left(v-v_{1}\right) \cdot \nu\right)_{+} d v_{1} d \nu
$$

$$
\text { with } v^{\prime}=v+\nu \cdot\left(v_{1}-v\right) \nu, \quad v_{1}^{\prime}=v_{1}-\nu \cdot\left(v_{1}-v\right) \nu
$$

Lanford's strategy leads to a short time convergence which depends on f^{0}. The convergence time remains short even if initially the system starts from equilibrium !!!

Large time asymptotics

Equilibrium distribution

$$
M_{N, \beta}\left(Z_{N}\right)=\frac{1}{\mathcal{Z}_{N, \beta}} \exp \left(-\frac{\beta}{2} \sum_{i=1}^{N}\left|v_{i}\right|^{2}\right) \prod_{i \neq j} 1_{\left|x_{i}-x_{j}\right|>\varepsilon}
$$

Initial data for Lanford's theorem

$$
f_{N, \beta}^{0}\left(Z_{N}\right)=\left(\prod_{i=1}^{N} f^{0}\left(z_{i}\right)\right) M_{N, \beta}\left(Z_{N}\right)
$$

$$
\simeq \exp (N)
$$

Question.

Perturbation of the equilibrium distribution of order N

Fluctuation field.

$\zeta^{N}\left(h, Z_{N}(t)\right)=\frac{1}{\sqrt{N}} \sum_{i=1}^{N} h\left(z_{i}(t)\right) \quad$ with $\quad \int h(x, v) M_{\beta}(v) d x d v=0$
Covariance of the fluctuation field :
$\mathbb{E}\left(\zeta^{N}\left(g, Z_{N}(0)\right) \zeta^{N}\left(h, Z_{N}(t)\right)\right)$

$$
=\frac{1}{N} \int M_{N, \beta}\left(Z_{N}\right)\left(\sum_{i=1}^{N} g\left(z_{i}\right)\right)\left(\sum_{i=1}^{N} h\left(z_{i}(t)\right)\right)
$$

Fluctuation field.

$\zeta^{N}\left(h, Z_{N}(t)\right)=\frac{1}{\sqrt{N}} \sum_{i=1}^{N} h\left(z_{i}(t)\right) \quad$ with $\quad \int h(x, v) M_{\beta}(v) d x d v=0$
Covariance of the fluctuation field :
$\mathbb{E}\left(\zeta^{N}\left(g, Z_{N}(0)\right) \zeta^{N}\left(h, Z_{N}(t)\right)\right)$

$$
=\frac{1}{N} \int M_{N, \beta}\left(Z_{N}\right)\left(\sum_{i=1}^{N} g\left(z_{i}\right)\right)\left(\sum_{i=1}^{N} h\left(z_{i}(t)\right)\right)
$$

Symmetry

$$
=\int M_{N, \beta}\left(Z_{N}\right)\left(\sum_{i=1}^{N} g\left(z_{i}\right)\right) h\left(z_{1}(t)\right)
$$

Fluctuation field.

$$
\zeta^{N}\left(h, Z_{N}(t)\right)=\frac{1}{\sqrt{N}} \sum_{i=1}^{N} h\left(z_{i}(t)\right) \quad \text { with } \quad \int h(x, v) M_{\beta}(v) d x d v=0
$$

Covariance of the fluctuation field :
$\mathbb{E}\left(\zeta^{N}\left(g, Z_{N}(0)\right) \zeta^{N}\left(h, Z_{N}(t)\right)\right)$

$$
=\frac{1}{N} \int M_{N, \beta}\left(Z_{N}\right)\left(\sum_{i=1}^{N} g\left(z_{i}\right)\right)\left(\sum_{i=1}^{N} h\left(z_{i}(t)\right)\right)
$$

Symmetry

$$
=\int M_{N, \beta}\left(Z_{N}\right)\left(\sum_{i=1}^{N} g\left(z_{i}\right)\right) h\left(z_{1}(t)\right)
$$

Linearized Boltzmann equation

Response to a small perturbation

$\left(\partial_{t}+v \cdot \nabla_{x}\right) g=-\alpha \mathcal{L} g$,
$\mathcal{L} g(v):=\int M_{\beta}\left(v_{1}\right)\left(g(v)+g\left(v_{1}\right)-g\left(v^{\prime}\right)-g\left(v_{1}^{\prime}\right)\right)\left(\left(v_{1}-v\right) \cdot \nu\right)_{+} d \nu d v_{1}$

Linearized Boltzmann equation

Response to a small perturbation

$$
\begin{aligned}
& \left(\partial_{t}+v \cdot \nabla_{x}\right) g=-\alpha \mathcal{L} g \\
& \mathcal{L} g(v):=\int M_{\beta}\left(v_{1}\right)\left(g(v)+g\left(v_{1}\right)-g\left(v^{\prime}\right)-g\left(v_{1}^{\prime}\right)\right)\left(\left(v_{1}-v\right) \cdot \nu\right)_{+} d \nu d v_{1}
\end{aligned}
$$

Background

Linearized Boltzmann equation

Response to a small perturbation

$\left(\partial_{t}+v \cdot \nabla_{x}\right) g=-\alpha \mathcal{L} g$,
$\mathcal{L} g(v):=\int M_{\beta}\left(v_{1}\right)\left(g(v)+g\left(v_{1}\right)-g\left(v^{\prime}\right)-g\left(v_{1}^{\prime}\right)\right)\left(\left(v_{1}-v\right) \cdot \nu\right)_{+} d \nu d v_{1}$
Tagged particle

- perturbation of the tagged particle

Linearized Boltzmann equation

Response to a small perturbation

$\left(\partial_{t}+v \cdot \nabla_{x}\right) g=-\alpha \mathcal{L} g$,
$\mathcal{L} g(v):=\int M_{\beta}\left(v_{1}\right)\left(g(v)+g\left(v_{1}\right)-g\left(v^{\prime}\right)-g\left(v_{1}^{\prime}\right)\right)\left(\left(v_{1}-v\right) \cdot \nu\right)_{+} d \nu d v_{1}$
Tagged particle

- perturbation of the tagged particle
- perturbation of the background

Linearized Boltzmann equation

Response to a small perturbation

$\left(\partial_{t}+v \cdot \nabla_{x}\right) g=-\alpha \mathcal{L} g$,
$\mathcal{L} g(v):=\int M_{\beta}\left(v_{1}\right)\left(g(v)+g\left(v_{1}\right)-g\left(v^{\prime}\right)-g\left(v_{1}^{\prime}\right)\right)\left(\left(v_{1}-v\right) \cdot \nu\right)_{+} d \nu d v_{1}$

Tagged particle

A cloud of particles is modified.
On averaged the distribution of each background particle changes by an order :

$$
O\left(\frac{\alpha t}{N}\right)
$$

Linearized Boltzmann equation

Response to a small perturbation

$\left(\partial_{t}+v \cdot \nabla_{x}\right) g=-\alpha \mathcal{L} g$,
$\mathcal{L} g(v):=\int M_{\beta}\left(v_{1}\right)\left(g(v)+g\left(v_{1}\right)-g\left(v^{\prime}\right)-g\left(v_{1}^{\prime}\right)\right)\left(\left(v_{1}-v\right) \cdot \nu\right)_{+} d \nu d v_{1}$

Tagged particle

A cloud of particles is modified.
On averaged the distribution of each background particle changes by an order :

$$
O\left(\frac{\alpha t}{N}\right)
$$

Goal: Capture corrections $\simeq \frac{1}{N}$

Linearized Boltzmann equation

Perturbation of order 1 (tagged particle)
$f_{N}^{0}\left(Z_{N}\right)=M_{N, \beta}\left(Z_{N}\right) g_{0}\left(z_{1}\right) \longmapsto$ corrections of order $\simeq \frac{1}{N}$

Perturbation of order N (symmetric version)
$f_{N}^{0}\left(Z_{N}\right)=M_{N, \beta}\left(Z_{N}\right)\left(\sum_{i=1}^{N} g_{0}\left(z_{i}\right)\right) \Longrightarrow$ corrections of order $\simeq 1$
with $\int M_{\beta}(v) g_{0}(z) d z=0$
Question. Large time behavior of $f_{N}^{(1)}\left(t, z_{1}\right)$

Linearized Boltzmann equation
$g_{\alpha}\left(x_{1}, v_{1}, t\right)$
[van Beijeren, Lanford, Lebowitz, Spohn] (short time)

N particle
system system
$f_{N}^{(1)}\left(x_{1}, v_{1}, t\right)$

$$
\begin{gathered}
\alpha=N \varepsilon^{d-1} \\
N \rightarrow \infty
\end{gathered}
$$

Linearized Boltzmann

 equation$g_{\alpha}\left(x_{1}, v_{1}, t\right)$

N particle system
$f_{N}^{(1)}\left(x_{1}, v_{1}, t\right)$

$$
\begin{gathered}
\alpha=N \varepsilon^{d-1} \\
N \rightarrow \infty
\end{gathered}
$$

Linearized Boltzmann

 equation$$
g_{\alpha}\left(x_{1}, v_{1}, t\right)
$$

$\alpha \rightarrow \infty \quad$ [Bardos, Golse, Levermore]

Initially :

$$
\begin{aligned}
g(0, x, v) & :=\rho_{0}(x)+u_{0}(x) \cdot v+\frac{\beta|v|^{2}-d}{2} \theta_{0}(x) \\
g(t, x, v) & :=\rho(t, x)+u(t, x) \cdot v+\frac{\beta|v|^{2}-d}{2} \theta(t, x) \\
& \left\{\begin{array}{c}
\partial_{t} \rho+\nabla_{x} \cdot u=0 \\
\partial_{t} u+\nabla_{x}(\rho+\theta)=0 \\
\partial_{t} \theta+\nabla_{x} \cdot u=0
\end{array}\right.
\end{aligned}
$$

Acoustic equations

N particle system
$f_{N}^{(1)}\left(x_{1}, v_{1}, t\right)$

$$
\alpha=N \varepsilon
$$

$$
N \rightarrow \infty
$$

Linearized Boltzmann equation
$g_{\alpha}\left(x_{1}, v_{1}, t\right)$

Theorem [BGSR]

For $\mathrm{d}=2$, convergence for any $t>0$

Initially :

$$
\begin{aligned}
& g(0, x, v):=\rho_{0}(x)+u_{0}(x) \cdot v+\frac{\beta|v|^{2}-d}{2} \theta_{0}(x) \\
& g(t, x, v):=\rho(t, x)+u(t, x) \cdot v+\frac{\beta|v|^{2}-d}{2} \theta(t, x)
\end{aligned}
$$

Acoustic equations

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla_{x} \cdot u=0 \\
\partial_{t} u+\nabla_{x}(\rho+\theta)=0 \\
\partial_{t} \theta+\nabla_{x} \cdot u=0
\end{array}\right.
$$

N particle
 $\alpha=N \varepsilon$ system
 $N \rightarrow \infty$
 $f_{N}^{(1)}\left(x_{1}, v_{1}, t\right)$

Linearized Boltzmann equation
$g_{\alpha}\left(x_{1}, v_{1}, t\right)$

Theorem [BGSR]

For $\mathrm{d}=2$, convergence for any $t>0$

Initially :

$$
\begin{aligned}
& g(0, x, v):=\rho_{0}(x)+u_{0}(x) \cdot v+\frac{\beta|v|^{2}-d}{2} \theta_{0}(x) \\
& g(t, x, v):=\rho(t, x)+u(t, x) \cdot v+\frac{\beta|v|^{2}-d}{2} \theta(t, x)
\end{aligned}
$$

Acoustic equations

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla_{x} \cdot u=0 \\
\partial_{t} u+\nabla_{x}(\rho+\theta)=0 \\
\partial_{t} \theta+\nabla_{x} \cdot u=0
\end{array}\right.
$$

Fluctuation field.

$\zeta^{N}\left(h, Z_{N}(t)\right)=\frac{1}{\sqrt{N}} \sum_{i=1}^{N} h\left(z_{i}(t)\right) \quad$ with $\quad \int h(x, v) M_{\beta}(v) d x d v=0$
Consequence of the previous Theorem
Covariance of the fluctuation field :

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \mathbb{E}_{M_{N, \beta}} & \left(\zeta^{N}\left(h, Z_{N}(0)\right) \zeta^{N}\left(\tilde{h}, Z_{N}(t)\right)\right) \\
= & \int d z M_{\beta}(v) \exp \left(-t\left(v \cdot \nabla_{x}+\alpha \mathcal{L}\right)\right) h(z) \tilde{h}(z)
\end{aligned}
$$

Fluctuation field.

$\zeta^{N}\left(h, Z_{N}(t)\right)=\frac{1}{\sqrt{N}} \sum_{i=1}^{N} h\left(z_{i}(t)\right) \quad$ with $\quad \int h(x, v) M_{\beta}(v) d x d v=0$
Consequence of the previous Theorem
Covariance of the fluctuation field :

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \mathbb{E}_{M_{N, \beta}} & \left(\zeta^{N}\left(h, Z_{N}(0)\right) \zeta^{N}\left(\tilde{h}, Z_{N}(t)\right)\right) \\
= & \int d z M_{\beta}(v) \exp \left(-t\left(v \cdot \nabla_{x}+\alpha \mathcal{L}\right)\right) h(z) \tilde{h}(z)
\end{aligned}
$$

Guestion.

Convergence of the field to the Ornstein-Uhlenbeck process ?
[Spohn], [Rezakhanlou]

Derivation of the linearized Boltzmann equation

Step 1. Control of the collision operators

BBGKY hierarchy for the marginals

Evolution of the first marginal

$$
\left(\partial_{t}+v_{1} \cdot \nabla_{x_{1}}\right) f_{N}^{(1)}\left(t, z_{1}\right)=\alpha\left(C_{1,2} f_{N}^{(2)}\right)\left(t, z_{1}\right)
$$

Collision operator

$$
\begin{aligned}
\left(C_{1,2} f_{N}^{(2)}\right)\left(z_{1}\right) & :=\int_{\mathbf{S}^{d-1} \times \mathbb{R}^{d}} f_{N}^{(2)}\left(x_{1}, v_{1}^{\prime}, x_{1}+\varepsilon \nu, v_{2}^{\prime}\right)\left(\left(v_{2}-v_{1}\right) \cdot \nu\right)_{+} d \nu d v_{2} \\
& -\int_{\mathbf{S}^{d-1} \times \mathbb{R}^{d}} f_{N}^{(2)}\left(x_{1}, v_{1}, x_{1}+\varepsilon \nu, v_{2}\right)\left(\left(v_{2}-v_{1}\right) \cdot \nu\right)_{-} d \nu d v_{2}
\end{aligned}
$$

BBGKY hierarchy for the marginals

Evolution of the first marginal
$\left(\partial_{t}+v_{1} \cdot \nabla_{x_{1}}\right) f_{N}^{(1)}\left(t, z_{1}\right)=\alpha\left(C_{1,2} f_{N}^{(2)}\right)\left(t, z_{1}\right)$
Collision operator

$$
\begin{aligned}
\left(C_{1,2} f_{N}^{(2)}\right)\left(z_{1}\right) & :=\int_{\mathbf{S}^{d-1} \times \mathbb{R}^{d}} f_{N}^{(2)}\left(x_{1}, v_{1}^{\prime}, x_{1}+\varepsilon \nu, v_{2}^{\prime}\right)\left(\left(v_{2}-v_{1}\right) \cdot \nu\right)_{+} d \nu d v_{2} \\
& -\int_{\mathbf{S}^{d-1} \times \mathbb{R}^{d}} f_{N}^{(2)}\left(x_{1}, v_{1}, x_{1}+\varepsilon \nu, v_{2}\right)\left(\left(v_{2}-v_{1}\right) \cdot \nu\right)_{-} d \nu d v_{2}
\end{aligned}
$$

Hope : Propagation of chaos

$$
f_{N}^{(2)}\left(x_{1}, v_{1}, x_{1}+\varepsilon \nu, v_{2}\right) \simeq f_{N}^{(1)}\left(x_{1}, v_{1}\right) f_{N}^{(1)}\left(x_{1}+\varepsilon \nu, v_{2}\right)
$$

Consequence: Boltzmann equation

$$
\partial_{t} f+v \cdot \nabla_{x} f=\iint\left[f\left(v^{\prime}\right) f\left(v_{1}^{\prime}\right)-f(v) f\left(v_{1}\right)\right]\left(\left(v-v_{1}\right) \cdot \nu\right)_{+} d v_{1} d \nu
$$

BBGKY hierarchy for the marginals

For $s<N$ and on $\mathcal{D}_{\varepsilon}^{s}=\left\{Z_{s}=\left(x_{i}, v_{i}\right)_{i \leq s}|\quad i \neq j, \quad| x_{i}-x_{j} \mid>\varepsilon\right\}$

$$
\left(\partial_{t}+\sum_{i=1}^{s} v_{i} \cdot \nabla_{x_{i}}\right) f_{N}^{(s)}\left(t, Z_{s}\right)=\alpha\left(C_{s, s+1} f_{N}^{(s+1)}\right)\left(t, Z_{s}\right)
$$

where the collision term is defined by

$$
\begin{aligned}
& \left(C_{s, s+1} f_{N}^{(s+1)}\right)\left(Z_{s}\right) \\
& :=\frac{(N-s) \varepsilon^{d-1}}{\alpha} \sum_{i=1}^{s} \int_{\mathbf{s}^{d-1} \times \mathbb{R}^{d}} f_{N}^{(s+1)}\left(\ldots, x_{i}, v_{i}^{\prime}, \ldots, x_{i}+\varepsilon \nu, v_{s+1}^{\prime}\right)\left(\left(v_{s+1}-v_{i}\right) \cdot \nu\right)_{+} d \nu d v_{s+1} \\
& -\frac{(N-s) \varepsilon^{d-1}}{\alpha} \sum_{i=1}^{s} \int_{\mathbf{s}^{d-1} \times \mathbb{R}^{d}} f_{N}^{(s+1)}\left(\ldots, x_{i}, v_{i}, \ldots, x_{i}+\varepsilon \nu, v_{s+1}\right)\left(\left(v_{s+1}-v_{i}\right) \cdot \nu\right)_{-} d \nu d v_{s+1}
\end{aligned}
$$

where \mathbf{S}^{d-1} denotes the unit sphere in \mathbb{R}^{d}.

Duhamel formula

Denote by \mathbf{S}_{s} the semi-group associated to free transport in $\mathcal{D}_{\varepsilon}^{s}$

Duhamel Formula

$$
f_{N}^{(1)}(t)=\mathbf{S}_{1}(t) f_{N}^{(1)}(0)+\alpha \int_{0}^{t} \mathbf{S}_{1}\left(t-t_{1}\right) C_{1,2} f_{N}^{(2)}\left(t_{1}\right) d t_{1}
$$

Iterated Duhamel formula

$$
f_{N}^{(1)}(t)=\sum_{n=0}^{N-1} \alpha^{n} Q_{1,1+n}(t) f_{N}^{(1+n)}(0)
$$

Idea: Use the initial with randomness

$$
\begin{array}{r}
Q_{s, s+n}(t):=\int_{0}^{t} \int_{0}^{t_{1}} \ldots \\
\int_{0}^{t_{n-1}} d t_{n} \ldots d t_{1} \mathbf{S}_{s}\left(t-t_{1}\right) C_{s, s+1} \\
\mathbf{S}_{s+1}\left(t_{1}-t_{2}\right) C_{s+1, s+2} \ldots \mathbf{S}_{s+n}\left(t_{n}\right)
\end{array}
$$

Duhamel formula

$$
f_{N}^{(1)}(t)=\sum_{n=0}^{N-1} \alpha^{n} Q_{1,1+n}(t) f_{N}^{(1+n)}(0)
$$

with

$$
\begin{aligned}
Q_{s, s+n}(t):=\int_{0}^{t} \int_{0}^{t_{1}} \ldots & \int_{0}^{t_{n-1}} d t_{n} \ldots d t_{1} \mathbf{S}_{s}\left(t-t_{1}\right) C_{s, s+1} \\
& \mathbf{S}_{s+1}\left(t_{1}-t_{2}\right) C_{s+1, s+2} \ldots \mathbf{S}_{s+n}\left(t_{n}\right)
\end{aligned}
$$

Duhamel formula

$$
f_{N}^{(1)}(t)=\sum_{n=0}^{N-1} \alpha^{n} Q_{1,1+n}(t) f_{N}^{(1+n)}(0)
$$

with

$$
\begin{aligned}
Q_{s, s+n}(t):=\int_{0}^{t} \int_{0}^{t_{1}} \ldots & \int_{0}^{t_{n-1}} d t_{n} \ldots d t_{1} \mathbf{S}_{s}\left(t-t_{1}\right) C_{s, s+1} \\
& \mathbf{S}_{s+1}\left(t_{1}-t_{2}\right) C_{s+1, s+2} \ldots \mathbf{S}_{s+n}\left(t_{n}\right)
\end{aligned}
$$

Interpretation as a collision tree

- Transport operator
- Addition of a particle to the tree after each collision

Issue : convergence of the series when N diverges

$$
f_{N}^{(1)}(t)=\sum_{n=0}^{N-1} \alpha^{n} Q_{1,1+n}(t) f_{N}^{(1+n)}(0)
$$

Continuity estimates for the collision operators

Weighted norms
$\left\|f_{k}\right\|_{\varepsilon, k, \beta}:=\sup _{Z_{k} \in \mathcal{D}_{\varepsilon}^{k}}\left|f_{k}\left(Z_{k}\right) \exp \left(\frac{\beta}{2} \sum_{i=1}^{k}\left|v_{i}\right|^{2}\right)\right|<\infty$
Collision operators estimates

$$
\left\|Q_{s, s+n}(t) f_{s+n}\right\|_{\varepsilon, s, \beta / 2} \leq e^{s-1}\left(C_{d}(\beta) t\right)^{n}\left\|f_{s+n}\right\|_{\varepsilon, s+n, \beta}
$$

Issue : convergence of the series when N diverges

$$
f_{N}^{(1)}(t)=\sum_{n=0}^{N-1} \alpha^{n} Q_{1,1+n}(t) f_{N}^{(1+n)}(0)
$$

Series is only controlled for short times t and small α

Continuity estimates for the collision operators

Weighted norms
$\left\|f_{k}\right\|_{\varepsilon, k, \beta}:=\sup _{Z_{k} \in \mathcal{D}_{\varepsilon}^{k}}\left|f_{k}\left(Z_{k}\right) \exp \left(\frac{\beta}{2} \sum_{i=1}^{k}\left|v_{i}\right|^{2}\right)\right|<\infty$
Collision operators estimates

$$
\left\|Q_{s, s+n}(t) f_{s+n}\right\|_{\varepsilon, s, \beta / 2} \leq e^{s-1}\left(C_{d}(\beta) t\right)^{n}\left\|f_{s+n}\right\|_{\varepsilon, s+n, \beta}
$$

Issue : convergence of the series when N diverges

Series is only controlled for short times t and small α

Continuity estimates for the collision operators

Weighted norms
$\left\|f_{k}\right\|_{\varepsilon, k, \beta}:=\sup _{Z_{k} \in \mathcal{D}_{\varepsilon}^{k}}\left|f_{k}\left(Z_{k}\right) \exp \left(\frac{\beta}{2} \sum_{i=1}^{k}\left|v_{i}\right|^{2}\right)\right|<\infty$
Collision operators estimates

$$
\left\|Q_{s, s+n}(t) f_{s+n}\right\|_{\varepsilon, s, \beta / 2} \leq e^{s-1}\left(C_{d}(\beta) t\right)^{n}\left\|f_{s+n}\right\|_{\varepsilon, s+n, \beta}
$$

Removing large collision trees?

Stopping the series at intermediate times

Removing large collision trees ?

Stopping the series at
 intermediate times

Guestions:

- Deriving uniform controls in time
- A priori estimates on the particle system

Step 2.

\mathbb{L}^{2} estimates and
 a mild version of local equilibrium

A priori estimates

Initial data of order N :

$$
f_{N}^{0}\left(Z_{N}\right)=M_{N, \beta}\left(Z_{N}\right)\left(\sum_{i=1}^{N} g_{0}\left(z_{i}\right)\right)
$$

No uniform bonds in L^{∞} :

$$
\left|f_{N}^{(s)}\left(t, Z_{s}\right)\right| \leq N C^{s} M_{\beta}^{\otimes s}\left(Z_{s}\right)\left\|g_{0}\right\|_{L^{\infty}}
$$

A priori estimates

Initial data of order N :

$$
f_{N}^{0}\left(Z_{N}\right)=M_{N, \beta}\left(Z_{N}\right)\left(\sum_{i=1}^{N} g_{0}\left(z_{i}\right)\right)
$$

No uniform bonds in L^{∞} :

$$
\left|f_{N}^{(s)}\left(t, Z_{s}\right)\right| \leq N C^{s} M_{\beta}^{\otimes s}\left(Z_{s}\right)\left\|g_{0}\right\|_{L^{\infty}}
$$

L^{2} bounds are preserved in time

$$
\int d Z_{N} M_{N, \beta}\left(Z_{N}\right)\left(\frac{f_{N}^{0}\left(Z_{N}\right)}{M_{N, \beta}\left(Z_{N}\right)}\right)^{2} \leq C N
$$

A priori estimates

Initial data of order N :

$$
f_{N}^{0}\left(Z_{N}\right)=M_{N, \beta}\left(Z_{N}\right)\left(\sum_{i=1}^{N} g_{0}\left(z_{i}\right)\right)
$$

No uniform bonds in L^{∞} :

$$
\left|f_{N}^{(s)}\left(t, Z_{s}\right)\right| \leq N C^{s} M_{\beta}^{\otimes s}\left(Z_{s}\right)\left\|g_{0}\right\|_{L^{\infty}}
$$

L^{2} bounds are preserved in time

$$
\int M_{\beta}(z) g_{0}(z) d z=0
$$

$$
\int d Z_{N} M_{N, \beta}\left(Z_{N}\right)\left(\frac{f_{N}^{0}\left(Z_{N}\right)}{M_{N, \beta}\left(Z_{N}\right)}\right)^{2} \leq C N
$$

A priori estimates

Initial data of order N :

$$
f_{N}^{0}\left(Z_{N}\right)=M_{N, \beta}\left(Z_{N}\right)\left(\sum_{i=1}^{N} g_{0}\left(z_{i}\right)\right)
$$

No uniform bonds in L^{∞} :

$$
\left|f_{N}^{(s)}\left(t, Z_{s}\right)\right| \leq N C^{s} M_{\beta}^{\otimes s}\left(Z_{s}\right)\left\|g_{0}\right\|_{L^{\infty}}
$$

L^{2} bounds are preserved in time

$$
\int M_{\beta}(z) g_{0}(z) d z=0
$$

$$
\begin{aligned}
& \int d Z_{N} M_{N, \beta}\left(Z_{N}\right)\left(\frac{f_{N}^{0}\left(Z_{N}\right)}{M_{N, \beta}\left(Z_{N}\right)}\right)^{2} \leq C N \\
& \Rightarrow \quad \int d Z_{N} M_{N, \beta}\left(Z_{N}\right)\left(\frac{f_{N}\left(t, Z_{N}\right)}{M_{N, \beta}\left(Z_{N}\right)}\right)^{2} \leq C N
\end{aligned}
$$

L^{2} estimates are more natural for the linearized operator

New strategy L^{2} estimates on the collision kernel

$$
C_{1,2}^{+} f_{N}^{(2)}\left(z_{1}\right)=\int f_{N}^{(2)}\left(x_{1}, v_{1}^{\prime}, x_{1}+\varepsilon \nu, v_{2}^{\prime}\right)\left(\left(v_{2}-v_{1}\right) \cdot \nu\right)_{+} d \nu d v_{2}
$$

A dimension is missing for L^{2} estimates

New strategy L^{2} estimates on the collision kernel

$$
C_{1,2}^{+} f_{N}^{(2)}\left(z_{1}\right)=\int f_{N}^{(2)}\left(x_{1}, v_{1}^{\prime}, x_{1}+\varepsilon \nu, v_{2}^{\prime}\right)\left(\left(v_{2}-v_{1}\right) \cdot \nu\right)_{+} d \nu d v_{2}
$$

A dimension is missing for L^{2} estimates

$\left|\int d z_{1} \int_{0}^{T} d \tau C_{1,2}^{+} \mathbf{S}_{2}(\tau) f_{N}^{(2)}\right| \leq C \sqrt{\frac{T}{\varepsilon}}\left\|f_{N}^{(2)}\right\|_{L^{2}}$ bad estimate

Additional time dimension

New strategy L^{2} estimates on the collision kernel

$$
C_{1,2}^{+} f_{N}^{(2)}\left(z_{1}\right)=\int f_{N}^{(2)}\left(x_{1}, v_{1}^{\prime}, x_{1}+\varepsilon \nu, v_{2}^{\prime}\right)\left(\left(v_{2}-v_{1}\right) \cdot \nu\right)_{+} d \nu d v_{2}
$$

A dimension is missing for L^{2} estimates

$\left|\int d z_{1} \int_{0}^{T} d \tau C_{1,2}^{+} \mathbf{S}_{2}(\tau) f_{N}^{(2)}\right| \leq C \sqrt{\frac{T}{\varepsilon}}\left\|f_{N}^{(2)}\right\|_{L^{2}}$ bad estimate

Additional time dimension

$$
\frac{1}{\varepsilon} \int_{0}^{\epsilon} d r \varphi(r) \leq\left\{\begin{array}{l}
\|\varphi\|_{L^{\infty}} \\
\frac{1}{\sqrt{\varepsilon}}\|\varphi\|_{L^{2}}
\end{array}\right.
$$

Difficulties to estimate the collision kernel

1 / Divergence of the L^{2} estimates

$$
\left|\int d z_{1} \int_{0}^{T} d \tau C_{1,2}^{+} \mathbf{S}_{2}(\tau) f_{N}^{(2)}\right| \leq C \sqrt{T N}\left\|f_{N}^{(2)}\right\|_{L^{2}}
$$

Difficulties to estimate the collision kernel

$1 /$ Divergence of the L^{2} estimates

$$
\left|\int d z_{1} \int_{0}^{T} d \tau C_{1,2}^{+} \mathbf{S}_{2}(\tau) f_{N}^{(2)}\right| \leq C \sqrt{T N}\left\|f_{N}^{(2)}\right\|_{L^{2}}
$$

Difficulty to control multiple collisions.

$$
\begin{array}{r}
Q_{s, s+n}(t):=\int_{0}^{t} \int_{0}^{t_{1}} \ldots \int_{0}^{t_{n-1}} d t_{n} \ldots d t_{1} \mathbf{S}_{s}\left(t-t_{1}\right) C_{s, s+1} \\
\\
\mathbf{S}_{s+1}\left(t_{1}-t_{2}\right) C_{s+1, s+2} \ldots \mathbf{S}_{s+n}\left(t_{n}\right)
\end{array}
$$

$$
\left|Q_{1,1+n} f_{N}^{(1+n)}\right| \leq C(T N)^{n / 2}\left\|f_{N}^{(1+n)}\right\|_{L^{2}}
$$

Difficulties to estimate the collision kernel

$1 /$ Divergence of the L^{2} estimates

$$
\left|\int d z_{1} \int_{0}^{T} d \tau C_{1,2}^{+} \mathbf{S}_{2}(\tau) f_{N}^{(2)}\right| \leq C \sqrt{T N}\left\|f_{N}^{(2)}\right\|_{L^{2}}
$$

Difficulty to control multiple collisions.
$Q_{s, s+n}(t):=\int_{0}^{t} \int_{0}^{t_{1}} \ldots \int_{0}^{t_{n-1}} d t_{n} \ldots d t_{1} \mathbf{S}_{s}\left(t-t_{1}\right) C_{s, s+1}$

$$
\mathbf{S}_{s+1}\left(t_{1}-t_{2}\right) C_{s+1, s+2} \ldots \mathbf{S}_{s+n}\left(t_{n}\right)
$$

$\left|Q_{1,1+n} f_{N}^{(1+n)}\right| \leq C(T N)^{n / 2}\left\|f_{N}^{(1+n)}\right\|_{L^{2}}$

Collision operators estimates

$$
\left\|Q_{s, s+n}(t) f_{s+n}\right\|_{\varepsilon, s, \beta / 2} \leq e^{s-1}\left(C_{d}(\beta) t\right)^{n}\left\|f_{s+n}\right\|_{\varepsilon, s+n, \beta}
$$

Difficulties to estimate the collision kernel

1/ Divergence of the L^{2} estimates

$$
\left|\int d z_{1} \int_{0}^{T} d \tau C_{1,2}^{+} \mathbf{S}_{2}(\tau) f_{N}^{(2)}\right| \leq C \sqrt{T N}\left\|f_{N}^{(2)}\right\|_{L^{2}}
$$

Difficulty to control multiple collisions.
$Q_{s, s+n}(t):=\int_{0}^{t} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{n-1}} d t_{n} \ldots d t_{1} \mathbf{S}_{s}\left(t-t_{1}\right) C_{s, s+1}$

$$
\mathbf{S}_{s+1}\left(t_{1}-t_{2}\right) C_{s+1, s+2} \ldots \mathbf{S}_{s+n}\left(t_{n}\right)
$$

$\left|Q_{1,1+n} f_{N}^{(1+n)}\right| \leq C(T N)^{n / 2}\left\|f_{N}^{(1+n)}\right\|_{L^{2}}$
Disaster ! even for short time

Collision operators estimates

$$
\left\|Q_{s, s+n}(t) f_{s+n}\right\|_{\varepsilon, s, \beta / 2} \leq e^{s-1}\left(C_{d}(\beta) t\right)^{n}\left\|f_{s+n}\right\|_{\varepsilon, s+n, \beta}
$$

Difficulties to estimate the collision kernel

2/ Recollisions
Given a collision tree :
$\int d z_{1} \int_{0}^{t} d t_{2} \int_{0}^{t_{2}} d t_{3} \mathbf{S}_{1}\left(t-t_{1}\right) C_{1,2}^{+} \mathbf{S}_{2}\left(t_{2}-t_{3}\right) C_{1,2}^{+} \mathbf{S}_{3}\left(t_{3}\right) f_{N}^{(3)}\left(Z_{3}(0)\right)$
Use the change of variables
$\left(z_{1},\left(t_{2}, \nu_{2}, v_{2}\right),\left(t_{3}, \nu_{3}, v_{3}\right)\right) \rightarrow Z_{3}(0)$
to recover $\left\|f_{N}^{(3)}\right\|_{L_{1}}$

Difficulties to estimate the collision kernel

2/ Recollisions
Given a collision tree :
$\int d z_{1} \int_{0}^{t} d t_{2} \int_{0}^{t_{2}} d t_{3} \mathbf{S}_{1}\left(t-t_{1}\right) C_{1,2}^{+} \mathbf{S}_{2}\left(t_{2}-t_{3}\right) C_{1,2}^{+} \mathbf{S}_{3}\left(t_{3}\right) f_{N}^{(3)}\left(Z_{3}(0)\right)$

Use the change of variables
$\left(z_{1},\left(t_{2}, \nu_{2}, v_{2}\right),\left(t_{3}, \nu_{3}, v_{3}\right)\right) \rightarrow Z_{3}(0)$
to recover $\left\|f_{N}^{(3)}\right\|_{L_{1}}$

Problem. This mapping is not bijective

One has to control the recollisions.

A mild version of local equilibrium

L^{2} estimates would be fine if

$$
f_{N}^{(s)}\left(t, Z_{s}\right)=M_{\beta}^{\otimes s}\left(V_{s}\right) \sum_{i=1}^{s} g\left(t, z_{i}\right)
$$

A mild version of local equilibrium

L^{2} estimates would be fine if

$$
f_{N}^{(s)}\left(t, Z_{s}\right)=M_{\beta}^{\otimes s}\left(V_{s}\right) \sum_{i=1}^{s} g\left(t, z_{i}\right)
$$

Key : L^{2} control of the higher order correlations at any time

$$
f_{N}^{(s)}\left(t, Z_{s}\right)=M_{\beta}^{\otimes s}\left(V_{s}\right) \sum_{m=1}^{s} \sum_{\sigma \in \mathfrak{G}_{s}^{m}} g_{N}^{m}\left(t, Z_{\sigma}\right)
$$

with $\left\|g_{N}^{m}(t)\right\|_{L_{\beta}^{2}} \leq \frac{C}{\sqrt{N^{m-1}}}\left\|g_{\alpha, 0}\right\|_{L_{\beta}^{2}}$

A mild version of local equilibrium

L^{2} estimates would be fine if

$$
f_{N}^{(s)}\left(t, Z_{s}\right)=M_{\beta}^{\otimes s}\left(V_{s}\right) \sum_{i=1}^{s} g\left(t, z_{i}\right)
$$

Key : L^{2} control of the higher order correlations at any time

$$
f_{N}^{(s)}\left(t, Z_{s}\right)=M_{\beta}^{\otimes s}\left(V_{s}\right) \sum_{m=1}^{s} \sum_{\sigma \in \mathfrak{G}_{s}^{m}} g_{N}^{m}\left(t, Z_{\sigma}\right)
$$

with $\left\|g_{N}^{m}(t)\right\|_{L_{\beta}^{2}} \leq \frac{C}{\sqrt{N^{m-1}}}\left\|g_{\alpha, 0}\right\|_{L_{\beta}^{2}}$
Consequence of the
L^{2} a priori bound

Proof : exchangeability of the measure.

Local equilibrium \& the \mathbb{L}^{2} estimates

$$
f_{N}^{(s)}\left(t, Z_{s}\right)=M_{\beta}^{\otimes s}\left(V_{s}\right) \sum_{m=1}^{s} \sum_{\sigma \in \mathfrak{G}_{s}^{m}} g_{N}^{m}\left(t, Z_{\sigma}\right)
$$

$$
\left\|g_{N}^{m}(t)\right\|_{L_{\beta}^{2}} \leq \frac{C}{\sqrt{N^{m-1}}}\left\|g_{\alpha, 0}\right\|_{L_{\beta}^{2}}
$$

Local equilibrium \& the \mathbb{L}^{2} estimates

$$
f_{N}^{(s)}\left(t, Z_{s}\right)=M_{\beta}^{\otimes s}\left(V_{s}\right) \sum_{m=1}^{s} \sum_{\sigma \in \mathfrak{G}_{s}^{m}} g_{N}^{m}\left(t, Z_{\sigma}\right)
$$

$$
\left\|g_{N}^{m}(t)\right\|_{L_{\beta}^{2}} \leq \frac{C}{\sqrt{N^{m-1}}}\left\|g_{\alpha, 0}\right\|_{L_{\beta}^{2}}
$$

$$
\left|Q_{1, m} f_{N}^{(m)}\right| \leq C \sqrt{(T N)^{m-1}}\left\|f_{N}^{(m)}\right\|_{L^{2}}
$$

Local equilibrium \& the \mathbb{L}^{2} estimates

$$
f_{N}^{(s)}\left(t, Z_{s}\right)=M_{\beta}^{\otimes s}\left(V_{s}\right) \sum_{m=1}^{s} \sum_{\sigma \in \mathfrak{G}_{s}^{m}} g_{N}^{m}\left(t, Z_{\sigma}\right)
$$

$$
\begin{aligned}
& \left\|g_{N}^{m}(t)\right\|_{L_{\beta}^{2}} \leq \frac{C}{\sqrt{N^{m-1}}}\left\|g_{\alpha, 0}\right\|_{L_{\beta}^{2}} \\
& \left|Q_{1, m} f_{N}^{(m)}\right| \leq C \sqrt{(T N)^{m-1}}\left\|f_{N}^{(m)}\right\|_{L^{2}}
\end{aligned}
$$

Local equilibrium \& the \mathbb{L}^{2} estimates

$$
\begin{aligned}
& f_{N}^{(s)}\left(t, Z_{s}\right)=M_{\beta}^{\otimes s}\left(V_{s}\right) \sum_{m=1}^{s} \sum_{\sigma \in \mathfrak{G}_{s}^{m}} g_{N}^{m}\left(t, Z_{\sigma}\right) \\
& \left\|g_{N}^{m}(t)\right\|_{L_{\beta}^{2}} \leq \frac{C}{\sqrt{N^{m-1}}}\left\|g_{\alpha, 0}\right\|_{L_{\beta}^{2}} \text { exact balance } \\
& \left|Q_{1, m} f_{N}^{(m)}\right| \leq C \sqrt{(T N)^{m-1}}\left\|f_{N}^{(m)}\right\|_{L^{2}}
\end{aligned}
$$

The \mathbb{L}^{2} estimates can be used to truncate the series at any time thanks to the decomposition of the measure.

Pruning procedure

Decompose : $\quad[0, t]=\bigcup_{k=1}^{K}[(k-1) \tau, k \tau]$ for some $\tau>0$

Good collision trees.

Less than $n_{k}=2^{k}$ collisions during $[(K-k) \tau,(K-k+1) \tau]$

In each time interval $[(K-k) \tau,(K-k+1) \tau]$ the \mathbb{L}^{2} decomposition is used to estimate the cost of too many collisions

Pruning procedure

Decompose : $\quad[0, t]=\bigcup_{k=1}^{K}[(k-1) \tau, k \tau]$ for some $\tau>0$

Good collision trees.

Less than $n_{k}=2^{k}$ collisions during $[(K-k) \tau,(K-k+1) \tau]$

In each time interval $[(K-k) \tau,(K-k+1) \tau]$ the \mathbb{L}^{2} decomposition is used to estimate the cost of too many collisions

Pruning procedure

$f_{N}^{(1)}(t)=\sum_{j_{1}=0}^{2} \ldots \sum_{j_{K}=0}^{2^{K}} \alpha^{J_{k}-1} Q_{1, J_{1}}(\tau) Q_{J_{1}, J_{2}}(\tau) \ldots Q_{J_{K-1}, J_{K}}(\tau) f_{N}^{0\left(J_{K}\right)}+R_{N}^{K}(t)$
with $\quad J_{\ell}=1+j_{1}+\cdots+j_{\ell}$

- The main contribution is given by the good collision trees with $j_{k} \leq 2^{k}$ during the time interval $[(K-k) \tau,(K-k+1) \tau]$
- The contribution of the large trees $R_{N}^{K}(t)$ is controlled in \mathbb{L}^{2}

$$
\left\|R_{N}^{K}(t)\right\|_{\mathbb{L}^{2}} \leq C_{\alpha} \sqrt{\frac{t^{4}}{K}}
$$

\Rightarrow If t is large, then K has to be very large and τ very small.

Pruning procedure

$$
f_{N}^{(1)}(t)=\sum_{j_{1}=0}^{2} \cdots \sum_{j_{K}=0}^{2^{K}} \alpha^{J_{K}-1} Q_{1, J_{1}}(\tau) Q_{J_{1}, J_{2}}(\tau) \ldots Q_{J_{K-1}, J_{K}}(\tau) f_{N}^{0\left(J_{K}\right)}+R_{N}^{K}(t)
$$

with $J_{\ell}=1+j_{1}+\cdots+j_{\ell}$

- The main contribution is given by the good collision trees with $j_{k} \leq 2^{k}$ during the time interval $[(K-k) \tau,(K-k+1) \tau]$
- The contribution of the large trees $R_{N}^{K}(t)$ is controlled in \mathbb{L}^{2}

$$
\left\|R_{N}^{K}(t)\right\|_{\mathbb{L}^{2}} \leq C_{\alpha} \sqrt{\frac{t^{4}}{K}}
$$

\Rightarrow If t is large, then K has to be very large and τ very small.
\mathbb{L}^{∞} controls are required for multiple recollisions ...

Derivation of the
 linearized Boltzmann equation

Step 3. Comparison with the Boltzmann hierarchy

Boltzmann hierarchy

For $s \geq 1$ and $Z_{s} \in \mathbf{T}^{d s} \times \mathbb{R}^{d s}$

$$
\left(\partial_{t}+\sum_{i=1}^{s} v_{i} \cdot \nabla_{x_{i}}\right) g^{(s)}\left(t, Z_{s}\right)=\alpha\left(C_{s, s+1}^{0}\right) g^{(s+1)}\left(t, Z_{s}\right)
$$

where the collision term is defined by

$$
\begin{aligned}
& \left(C_{s, s+1}^{0} g^{(s+1)}\right)\left(Z_{s}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\left(|N| H| | g|\nmid \nmid| /\left|/|/| q \sum_{i=1}^{s} \int_{s^{d-1} \times \mathbb{R}^{d}} g^{(s+1)}\left(\ldots, x_{i}, v_{i}, \ldots, x_{i} \# t \mid \psi \psi, v_{s+1}\right)\left(\left(v_{s+1}-v_{i}\right) \cdot \nu\right)_{-} d \nu d v_{s+1}\right.\right.
\end{aligned}
$$

This is the limit hierarchy when $\varepsilon \rightarrow 0$ and $N \rightarrow \infty$.

Boltzmann hierarchy

For $s \geq 1$ and $Z_{s} \in \mathbf{T}^{d s} \times \mathbb{R}^{d s}$

$$
\left(\partial_{t}+\sum_{i=1}^{s} v_{i} \cdot \nabla_{x_{i}}\right) g^{(s)}\left(t, Z_{s}\right)=\alpha\left(C_{s, s+1}^{0}\right) g^{(s+1)}\left(t, Z_{s}\right)
$$

Iterated Duhamel formula

$$
g^{(1)}(t)=\sum_{n=0}^{\infty} \alpha^{n} Q_{1,1+n}^{0}(t) g^{(1+n)}(0)
$$

Explicit solution :

$$
g^{(s)}(t)=\left(\sum_{i=1}^{s} g_{\alpha}\left(t, z_{1}\right)\right) \prod_{i=2}^{s} M_{\beta}\left(v_{i}\right)
$$

with $g_{\alpha}\left(t, z_{1}\right) M_{\beta}\left(v_{1}\right)$ solution of the Linearized Boltzman equation

Comparing the BBGKY and Boltzmann hierarchies

As $N \rightarrow \infty$ in the scaling $N \varepsilon^{d-1}=\alpha$,

$$
\left|\left(f_{N}^{0(s)}-g^{0(s)}\right) \prod_{i \neq j} 1_{\left|x_{i}-x_{j}\right|>\varepsilon}\right| \leq C^{s} \varepsilon \alpha \mu M_{\beta}^{\otimes s}
$$

for the initial distributions

$$
\begin{aligned}
f_{N}^{0}\left(Z_{N}\right) & =M_{N, \beta}\left(Z_{N}\right)\left(\sum_{i=1}^{N} g_{0}\left(z_{i}\right)\right), \quad \text { Microscopic dynamics } \\
g^{0(s)}\left(Z_{s}\right) & =\left(\prod_{i=1}^{s} M_{\beta}\left(v_{i}\right)\right)\left(\sum_{i=1}^{N} g_{0}\left(z_{i}\right)\right), \quad \text { Boltzmann hierarchy }
\end{aligned}
$$

Main Goal

$$
\left\|f_{N}^{(1)}-g^{(1)}\right\|_{L^{2}\left([0, t] \times \mathbf{T}^{d} \times \mathbb{R}^{d}\right)} \rightarrow 0, \quad \text { as } N \rightarrow \infty
$$

Comparing the truncated hierarchies

$$
\begin{aligned}
f_{N}^{(1, K)}(t) & =\sum_{j_{1}=0}^{2} \cdots \sum_{j_{K}=0}^{2^{K}} \alpha^{J_{K}} Q_{1, J_{1}}(\tau) Q_{J_{1}, J_{2}}(\tau) \ldots Q_{J_{K-1}, J_{K}}(\tau) f_{N}^{0\left(J_{K}\right)} \\
g^{(1, K)}(t) & =\sum_{j_{1}=0}^{2} \ldots \sum_{j_{K}=0}^{2^{K}} \alpha^{J_{K}} Q_{1, J_{1}}^{0}(\tau) Q_{J_{1}, J_{2}}^{0}(\tau) \ldots Q_{J_{K-1}, J_{K}}^{0}(\tau) g^{0\left(J_{K}\right)}
\end{aligned}
$$

Geometric interpretation of the collisions operators:

Backward dynamics

Coupling the hierarchies

Comparing the truncated hierarchies

$$
\begin{aligned}
f_{N}^{(1, K)}(t) & =\sum_{j_{1}=0}^{2} \cdots \sum_{j_{K}=0}^{2^{K}} \alpha^{J_{K}} Q_{1, J_{1}}(\tau) Q_{J_{1}, J_{2}}(\tau) \ldots Q_{J_{K-1}, J_{K}}(\tau) f_{N}^{0\left(J_{K}\right)} \\
g^{(1, K)}(t) & =\sum_{j_{1}=0}^{2} \ldots \sum_{j_{K}=0}^{2^{K}} \alpha^{J_{K}} Q_{1, J_{1}}^{0}(\tau) Q_{J_{1}, J_{2}}^{0}(\tau) \ldots Q_{J_{K-1}, J_{K}}^{0}(\tau) g^{0\left(J_{K}\right)}
\end{aligned}
$$

Geometric interpretation of the collisions operators:

Backward dynamics

Coupling the hierarchies

Comparing the truncated hierarchies

$$
\begin{aligned}
f_{N}^{(1, K)}(t) & =\sum_{j_{1}=0}^{2} \cdots \sum_{j_{K}=0}^{2^{K}} \alpha^{J_{K}} Q_{1, J_{1}}(\tau) Q_{J_{1}, J_{2}}(\tau) \ldots Q_{J_{K-1}, J_{K}}(\tau) f_{N}^{0\left(J_{K}\right)} \\
g^{(1, K)}(t) & =\sum_{j_{1}=0}^{2} \ldots \sum_{j_{K}=0}^{2^{K}} \alpha^{J_{K}} Q_{1, J_{1}}^{0}(\tau) Q_{J_{1}, J_{2}}^{0}(\tau) \ldots Q_{J_{K-1}, J_{K}}^{0}(\tau) g^{0\left(J_{K}\right)}
\end{aligned}
$$

Geometric interpretation of the collisions operators:

Backward dynamics

Coupling the hierarchies

Comparing the truncated hierarchies

$$
\begin{aligned}
f_{N}^{(1, K)}(t) & =\sum_{j_{1}=0}^{2} \cdots \sum_{j_{K}=0}^{2^{K}} \alpha^{J_{K}} Q_{1, J_{1}}(\tau) Q_{J_{1}, J_{2}}(\tau) \ldots Q_{J_{K-1}, J_{K}}(\tau) f_{N}^{0\left(J_{K}\right)} \\
g^{(1, K)}(t) & =\sum_{j_{1}=0}^{2} \ldots \sum_{j_{K}=0}^{2^{K}} \alpha^{J_{K}} Q_{1, J_{1}}^{0}(\tau) Q_{J_{1}, J_{2}}^{0}(\tau) \ldots Q_{J_{K-1}, J_{K}}^{0}(\tau) g^{0\left(J_{K}\right)}
\end{aligned}
$$

Geometric interpretation of the collisions operators:

Backward dynamics

Coupling the hierarchies

Removing the recollisions

BBGKY and Boltzmann trajectories can be coupled if there are no recollisions

Up to a small set of velocities, the pseudotrajectories have no recollisions.

The cost of 1 recollision is bounded by $\varepsilon|\log \varepsilon|^{3}$

Removing the recollisions

BBGKY and Boltzmann trajectories can be coupled if there are no recollisions

Up to a small set of velocities, the pseudotrajectories have no recollisions.

The cost of 1 recollision is bounded by $\varepsilon|\log \varepsilon|^{3}$

Not enough to control the divergence in N

Removing the recollisions

BBGKY and Boltzmann trajectories can be coupled if there are no recollisions

Up to a small set of velocities, the pseudotrajectories have no recollisions.

The cost of 1 recollision is bounded by $\varepsilon|\log \varepsilon|^{3}$

Not enough to control the divergence in N

Main Difficulty

The cost of observing at least 2 recollisions is less than ε.

Removing the recollisions

BBGKY and Boltzmann trajectories can be coupled if there are no recollisions

Up to a small set of velocities, the pseudotrajectories have no recollisions.

The cost of 1 recollision is bounded by $\varepsilon|\log \varepsilon|^{3}$

Not enough to control the divergence in N

$$
N \varepsilon^{d-1}=\alpha
$$

Main Difficulty

The cost of observing at least 2 recollisions is less than ε.

Conclusion

Deterministic dynamics of a diluted hard-sphere gas :

- Covariance of the fluctuation field at large times
- Linearized Boltzmann equation \& acoustic equations

Conclusion

Deterministic dynamics of a diluted hard-sphere gas :

- Covariance of the fluctuation field at large times
- Linearized Boltzmann equation \& acoustic equations

Open problems.

- Linearized Boltzmann equation in dimension 3
- Fluctuating Boltzmann equation [Spohn]

