From hard spheres dynamics to the linearized Boltzmann equation

Thierry Bodineau

Joint work with Isabelle Gallagher, Laure Saint-Raymond

Outline.

- Linearized Boltzmann equation & acoustic equations
- \mathbb{L}^2 approach & a mild version of local equilibrium
- Lanford's strategy & pruning procedure
- Coupling with the Boltzmann hierarchy

Goal. Fluctuating Boltzmann equation

Microscopic scale : Newtonian dynamics

 $Z_N(t) = (x_i(t), v_i(t))_{i \le N}$

Goal. Fluctuating Boltzmann equation

Microscopic scale : Newtonian dynamics $Z_N(t) = (x_i(t), v_i(t))_{i \le N}$

Starting at equilibrium

 $\frac{1}{N} \sum_{i=1}^{N} h(z_i(t)) \xrightarrow[N \to \infty]{} \mathbb{E}(h)$

Goal. Fluctuating Boltzmann equation

Microscopic scale : Newtonian dynamics $Z_N(t) = (x_i(t), v_i(t))_{i \le N}$

Starting at equilibrium

Fluctuation field.

$$\zeta^{N}(h, Z_{N}(t)) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} h(z_{i}(t)) \quad \text{with} \quad \int h(x, v) M_{\beta}(v) dx dv = 0$$

Guestion. Dynamical fluctuations at equilibrium ?

Diluted Gas of hard spheres

Gas of N hard spheres with deterministic Newtonian dynamics (elastic collisions).

Dimension : $d \ge 2$ Periodic domain: $T^d = [0, 1]^d$ Sphere radius = ϵ

Boltzmann-Grad scaling

$$N\varepsilon^{d-1} = \alpha$$

Boltzmann-Grad scaling

- Volume covered by a particle $= tv\varepsilon^{d-1}$
- On average N particles per unit volume

On average, a particle has α collisions per unit of time

$$N \times \varepsilon^{d-1} \equiv \alpha$$

Hard Sphere dynamics

Gas of N hard spheres : $Z_N = \{(x_i(t), v_i(t))\}_{i \leq N}$

$$\frac{dx_i}{dt} = v_i, \quad \frac{dv_i}{dt} = 0 \quad \text{as long as } |x_i(t) - x_j(t)| > \varepsilon,$$

and elastic collisions if $|x_i(t) - x_j(t)| = \varepsilon$

$$\begin{cases} v'_i + v'_j = v_i + v_j \\ |v'_j|^2 + |v'_j|^2 = |v_i|^2 + |v_j|^2 \end{cases}$$

Hard Sphere dynamics

Gas of N hard spheres : $Z_N = \{(x_i(t), v_i(t))\}_{i \leq N}$

$$\frac{dx_i}{dt} = v_i, \quad \frac{dv_i}{dt} = 0 \quad \text{as long as} \quad |x_i(t) - x_j(t)| > \varepsilon,$$

and elastic collisions if $|x_i(t) - x_j(t)| = \varepsilon$

$$\begin{cases} v'_i + v'_j = v_i + v_j \\ |v'_j|^2 + |v'_j|^2 = |v_i|^2 + |v_j|^2 \end{cases}$$

Liouville equation for the particle density $f_N(t, Z_N)$

$$\partial_t f_N + \sum_{i=1}^N v_i \cdot \nabla_{x_i} f_N = 0$$

in the phase space

$$\mathcal{D}_{\varepsilon}^{N} := \left\{ Z_{N} \in \mathbf{T}^{dN} \times \mathbb{R}^{dN} / \forall i \neq j, \quad |x_{i} - x_{j}| > \varepsilon \right\}$$

with specular reflection on the boundary $\partial \mathcal{D}_{\varepsilon}^{N}$.

Initial Data

Equilibrium distribution

$$M_{N,\beta}(Z_N) = \frac{1}{\mathcal{Z}_{N,\beta}} \exp\left(-\frac{\beta}{2} \sum_{i=1}^N |v_i|^2\right) \prod_{i \neq j} 1_{|x_i - x_j| > \varepsilon}$$

Initial data :

$$f_{N,\beta}^0(Z_N) = \left(\prod_{i=1}^N f^0(z_i)\right) M_{N,\beta}(Z_N)$$

Density of a particle at time t :

$$f_N^{(1)}(t, z_1) = \int dz_2 \dots dz_N f_N(t, z_1, z_2, \dots, z_N)$$

Guestion. Convergence

$$f_N^{(1)}(t, z_1) \xrightarrow[N \to \infty]{N \to \infty} f(t, z_1)$$

Boltzmann equation

Theorem.

For chaotic initial data $f_N^0(Z_N) \simeq \prod_{i=1}^N f^0(z_i)$ the density of the particle system converges up to a time t >0 to the solution of the Boltzmann equation when $N \to \infty$, $N\varepsilon^{d-1} = \alpha$

$$\partial_t f + v \cdot \nabla_x f$$

= $\alpha \iint_{\mathbf{S}^{d-1} \times \mathbb{R}^d} [f(v')f(v'_1) - f(v)f(v_1)] \left((v - v_1) \cdot \nu \right)_+ dv_1 d\nu$

with
$$v' = v + \nu \cdot (v_1 - v) \nu$$
, $v'_1 = v_1 - \nu \cdot (v_1 - v) \nu$

[Lanford], [King], [Alexander], [Uchiyama], [Cercignani, Illner, Pulvirenti], [Simonella], [Gallagher, Saint-Raymond, Texier], [Pulvirenti, Saffirio, Simonella] ...

Boltzmann equation

Theorem.

For chaotic initial data $f_N^0(Z_N) \simeq \prod_{i=1}^N f^0(z_i)$ the density of the particle system converges up to a time t >0 to the solution of the Boltzmann equation when $N \to \infty$, $N\varepsilon^{d-1} = \alpha$

$$\partial_t f + v \cdot \nabla_x f$$

= $\alpha \iint_{\mathbf{S}^{d-1} \times \mathbb{R}^d} [f(v')f(v'_1) - f(v)f(v_1)] ((v - v_1) \cdot \nu)_+ dv_1 d\nu$

with
$$v' = v + \nu \cdot (v_1 - v) \nu$$
, $v'_1 = v_1 - \nu \cdot (v_1 - v) \nu$

Lanford's strategy leads to a short time convergence which depends on f^0 . The convergence time remains short even if initially the system starts from equilibrium !!!

Large time asymptotics

Equilibrium distribution

$$M_{N,\beta}(Z_N) = \frac{1}{\mathcal{Z}_{N,\beta}} \exp\left(-\frac{\beta}{2} \sum_{i=1}^N |v_i|^2\right) \prod_{i \neq j} 1_{|x_i - x_j| > \varepsilon}$$

Initial data for Lanford's theorem

$$f_{N,\beta}^{0}(Z_{N}) = \left(\prod_{i=1}^{N} f^{0}(z_{i})\right) M_{N,\beta}(Z_{N}) \qquad \checkmark \qquad \simeq \exp(N)$$

Question.

Perturbation of the equilibrium distribution of order N

$$\zeta^{N}(h, Z_{N}(t)) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} h(z_{i}(t)) \quad \text{with} \quad \int h(x, v) M_{\beta}(v) dx dv = 0$$

Covariance of the fluctuation field :

$$\mathbb{E}\left(\zeta^{N}\left(g, Z_{N}(\mathbf{0})\right) \zeta^{N}\left(h, Z_{N}(t)\right)\right)$$
$$= \frac{1}{N} \int M_{N,\beta}(Z_{N}) \left(\sum_{i=1}^{N} g\left(z_{i}\right)\right) \left(\sum_{i=1}^{N} h\left(z_{i}(t)\right)\right)$$

$$\zeta^{N}(h, Z_{N}(t)) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} h(z_{i}(t)) \quad \text{with} \quad \int h(x, v) M_{\beta}(v) dx dv = 0$$

Covariance of the fluctuation field :

$$\mathbb{E}\left(\zeta^{N}(g, Z_{N}(0)) \zeta^{N}(h, Z_{N}(t))\right)$$

$$= \frac{1}{N} \int M_{N,\beta}(Z_{N}) \left(\sum_{i=1}^{N} g(z_{i})\right) \left(\sum_{i=1}^{N} h(z_{i}(t))\right)$$
Symmetry
$$= \int M_{N,\beta}(Z_{N}) \left(\sum_{i=1}^{N} g(z_{i})\right) h(z_{1}(t))$$

$$\zeta^{N}(h, Z_{N}(t)) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} h(z_{i}(t)) \quad \text{with} \quad \int h(x, v) M_{\beta}(v) dx dv = 0$$

Covariance of the fluctuation field :

$$\mathbb{E}\left(\zeta^{N}\left(g, Z_{N}(0)\right) \zeta^{N}\left(h, Z_{N}(t)\right)\right)$$

$$= \frac{1}{N} \int M_{N,\beta}(Z_{N}) \left(\sum_{i=1}^{N} g(z_{i})\right) \left(\sum_{i=1}^{N} h(z_{i}(t))\right)$$
Symmetry
$$= \int M_{N,\beta}(Z_{N}) \left(\sum_{i=1}^{N} g(z_{i})\right) h(z_{1}(t))$$
New initial data

Response to a small perturbation

$$(\partial_t + v \cdot \nabla_x)g = -\alpha \mathcal{L}g,$$

$$\mathcal{L}g(v) := \int M_\beta(v_1) \Big(g(v) + g(v_1) - g(v') - g(v'_1)\Big) \Big((v_1 - v) \cdot v\Big)_+ d\nu dv_1$$

Response to a small perturbation

$$\begin{aligned} (\partial_t + v \cdot \nabla_x)g &= -\alpha \mathcal{L}g, \\ \mathcal{L}g(v) &:= \int M_\beta(v_1) \Big(g(v) + g(v_1) - g(v') - g(v'_1) \Big) \Big((v_1 - v) \cdot v \Big)_+ d\nu dv_1 \\ \end{aligned}$$
Background

Response to a small perturbation

$$(\partial_t + v \cdot \nabla_x)g = -\alpha \mathcal{L}g,$$

$$\mathcal{L}g(v) := \int M_\beta(v_1) \Big(g(v) + g(v_1) - g(v') - g(v'_1)\Big) \Big((v_1 - v) \cdot v\Big)_+ d\nu dv_1$$

Tagged particle

• perturbation of the tagged particle

Response to a small perturbation

$$(\partial_t + v \cdot \nabla_x)g = -\alpha \mathcal{L}g,$$

$$\mathcal{L}g(v) := \int M_\beta(v_1) \Big(g(v) + g(v_1) - g(v') - g(v'_1)\Big) \Big((v_1 - v) \cdot v\Big)_+ d\nu dv_1$$

Tagged particle

- perturbation of the tagged particle
- perturbation of the background

Response to a small perturbation

$$(\partial_t + v \cdot \nabla_x)g = -\alpha \mathcal{L}g,$$

$$\mathcal{L}g(v) := \int M_\beta(v_1) \Big(g(v) + g(v_1) - g(v') - g(v'_1)\Big) \Big((v_1 - v) \cdot v\Big)_+ d\nu dv_1$$

Tagged particle

A cloud of particles is modified.

On averaged the distribution of each background particle changes by an order : $O\left(\frac{\alpha t}{N}\right)$

Response to a small perturbation

$$(\partial_t + v \cdot \nabla_x)g = -\alpha \mathcal{L}g,$$

$$\mathcal{L}g(v) := \int M_\beta(v_1) \Big(g(v) + g(v_1) - g(v') - g(v'_1)\Big) \Big((v_1 - v) \cdot v\Big)_+ d\nu dv_1$$

Tagged particle

A cloud of particles is modified.

On averaged the distribution of each background particle changes by an order : $O\left(\frac{\alpha t}{N}\right)$

Goal: Capture corrections \simeq

Perturbation of order 1 (tagged particle)

$$f_N^0(Z_N) = M_{N,\beta}(Z_N) g_0(z_1)$$
 corrections of order $\simeq \frac{1}{N}$

Perturbation of order N (symmetric version)

$$f_N^0(Z_N) = M_{N,\beta}(Z_N) \left(\sum_{i=1}^N g_0(z_i)\right) \longrightarrow \text{ corrections of order} \simeq 1$$

with
$$\int M_{\beta}(v)g_0(z)dz = 0$$

Question. Large time behavior of $f_N^{(1)}(t, z_1)$

[van Beijeren, Lanford, Lebowitz, Spohn] (short time)

$$\begin{array}{ll} \begin{array}{l} \mathbf{N} \text{ particle} \\ \text{system} \\ f_N^{(1)}(x_1, v_1, t) \end{array} & \stackrel{\alpha}{\longrightarrow} \infty \end{array} \begin{array}{l} \begin{array}{l} \text{Linearized Boltzmann} \\ \text{equation} \\ g_\alpha(x_1, v_1, t) \end{array} \\ \alpha \rightarrow \infty \end{array} \begin{array}{l} \begin{array}{l} \text{Imearized Boltzmann} \\ \text{equation} \\ g_\alpha(x_1, v_1, t) \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \alpha \rightarrow \infty \end{array} \end{array} \begin{array}{l} \begin{array}{l} \text{[Bardos, Golse, Levermore]} \end{array} \\ \text{Initially :} \end{array} \\ \begin{array}{l} g(0, x, v) \coloneqq \rho_0(x) + u_0(x) \cdot v + \frac{\beta |v|^2 - d}{2} \theta_0(x) \\ g(t, x, v) \coloneqq \rho(t, x) + u(t, x) \cdot v + \frac{\beta |v|^2 - d}{2} \theta(t, x) \end{array} \\ \begin{array}{l} \begin{array}{l} \partial_t \rho + \nabla_x \cdot u = 0 \\ \partial_t u + \nabla_x (\rho + \theta) = 0 \\ \partial_t \theta + \nabla_x \cdot u = 0 \end{array} \end{array} \end{array}$$

N particle system $f_N^{(1)}(x_1, v_1, t)$

$$\frac{\alpha}{N \to \infty}$$

Linearized Boltzmann equation $g_{\alpha}(x_1, v_1, t)$

Theorem [BGSR]

For d = 2, convergence for any t > 0

Initially :

$$g(0, x, v) := \rho_0(x) + u_0(x) \cdot v + \frac{\beta |v|^2 - d}{2} \theta_0(x)$$

$$g(t,x,v) := \rho(t,x) + u(t,x) \cdot v + \frac{\beta |v|^2 - d}{2} \theta(t,x)$$

$$\begin{cases} \partial_t \rho + \nabla_x \cdot u = 0\\ \partial_t u + \nabla_x (\rho + \theta) = 0\\ \partial_t \theta + \nabla_x \cdot u = 0 \end{cases}$$

$$\zeta^{N}(h, Z_{N}(t)) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} h(z_{i}(t)) \quad \text{with} \quad \int h(x, v) M_{\beta}(v) dx dv = 0$$
Consequence of the

Covariance of the fluctuation field :

previous Theorem

$$\lim_{N \to \infty} \mathbb{E}_{M_{N,\beta}} \left(\zeta^N(h, Z_N(0)) \zeta^N(\tilde{h}, Z_N(t)) \right)$$

= $\int dz \, M_\beta(v) \exp\left(-t(v \cdot \nabla_x + \alpha \mathcal{L}) \right) h(z) \, \tilde{h}(z)$

$$\begin{split} \zeta^{N}(h, Z_{N}(t)) &= \frac{1}{\sqrt{N}} \sum_{i=1}^{N} h(z_{i}(t)) \quad \text{with} \quad \int h(x, v) M_{\beta}(v) dx dv = 0 \\ \text{Covariance of the fluctuation field :} \quad \begin{array}{l} \text{Consequence of the previous Theorem} \\ \lim_{N \to \infty} \mathbb{E}_{M_{N,\beta}} \left(\zeta^{N}(h, Z_{N}(0)) \zeta^{N}(\tilde{h}, Z_{N}(t)) \right) \end{split}$$

$$= \int dz \, M_{\beta}(v) \exp\left(-t(v \cdot \nabla_x + \alpha \mathcal{L})\right) h(z) \, \tilde{h}(z)$$

Question.

Convergence of the field to the Ornstein-Uhlenbeck process ?

[Spohn], [Rezakhanlou]

Derivation of the linearized Boltzmann equation

Step 1. Control of the collision operators

BBGKY hierarchy for the marginals

Evolution of the first marginal

$$(\partial_t + v_1 \cdot \nabla_{x_1}) f_N^{(1)}(t, z_1) = \alpha (C_{1,2} f_N^{(2)})(t, z_1)$$

Collision operator

$$(C_{1,2}f_N^{(2)})(z_1) := \int_{\mathbf{S}^{d-1}\times\mathbb{R}^d} f_N^{(2)}(x_1, v_1', x_1 + \varepsilon\nu, v_2') \Big((v_2 - v_1) \cdot \nu \Big)_+ d\nu dv_2 - \int_{\mathbf{S}^{d-1}\times\mathbb{R}^d} f_N^{(2)}(x_1, v_1, x_1 + \varepsilon\nu, v_2) \Big((v_2 - v_1) \cdot \nu \Big)_- d\nu dv_2$$

BBGKY hierarchy for the marginals

Evolution of the first marginal

$$(\partial_t + v_1 \cdot \nabla_{x_1}) f_N^{(1)}(t, z_1) = \alpha (C_{1,2} f_N^{(2)})(t, z_1)$$

Collision operator

$$(C_{1,2}f_N^{(2)})(z_1) := \int_{\mathbf{S}^{d-1}\times\mathbb{R}^d} f_N^{(2)}(x_1, v_1', x_1 + \varepsilon\nu, v_2') \Big((v_2 - v_1) \cdot \nu \Big)_+ d\nu dv_2 - \int_{\mathbf{S}^{d-1}\times\mathbb{R}^d} f_N^{(2)}(x_1, v_1, x_1 + \varepsilon\nu, v_2) \Big((v_2 - v_1) \cdot \nu \Big)_- d\nu dv_2$$

Hope : Propagation of chaos

$$f_N^{(2)}(x_1, v_1, x_1 + \varepsilon \nu, v_2) \simeq f_N^{(1)}(x_1, v_1) f_N^{(1)}(x_1 + \varepsilon \nu, v_2)$$

Consequence: Boltzmann equation

$$\partial_t f + v \cdot \nabla_x f = \iint \left[f(v') f(v_1') - f(v) f(v_1) \right] \left((v - v_1) \cdot \nu \right)_+ dv_1 d\nu$$

BBGKY hierarchy for the marginals

For
$$s < N$$
 and on $\mathcal{D}_{\varepsilon}^{s} = \{Z_{s} = (x_{i}, v_{i})_{i \leq s} \mid i \neq j, |x_{i} - x_{j}| > \varepsilon\}$

$$(\partial_t + \sum_{i=1}^s v_i \cdot \nabla_{x_i}) f_N^{(s)}(t, Z_s) = \alpha (C_{s,s+1} f_N^{(s+1)})(t, Z_s)$$

where the collision term is defined by

$$\begin{split} &(\mathcal{C}_{s,s+1}f_{N}^{(s+1)})(Z_{s})\\ &:=\frac{(N-s)\varepsilon^{d-1}}{\alpha}\sum_{i=1}^{s}\int_{\mathbf{S}^{d-1}\times\mathbb{R}^{d}}f_{N}^{(s+1)}(\ldots,x_{i},v_{i}^{\prime},\ldots,x_{i}+\varepsilon\nu,v_{s+1}^{\prime})\Big((v_{s+1}-v_{i})\cdot\nu\Big)_{+}d\nu dv_{s+1}\\ &-\frac{(N-s)\varepsilon^{d-1}}{\alpha}\sum_{i=1}^{s}\int_{\mathbf{S}^{d-1}\times\mathbb{R}^{d}}f_{N}^{(s+1)}(\ldots,x_{i},v_{i},\ldots,x_{i}+\varepsilon\nu,v_{s+1})\Big((v_{s+1}-v_{i})\cdot\nu\Big)_{-}d\nu dv_{s+1}\end{split}$$

where \mathbf{S}^{d-1} denotes the unit sphere in \mathbb{R}^d .

Duhamel formula

Denote by \mathbf{S}_s the semi-group associated to free transport in $\mathcal{D}^s_{\varepsilon}$

Duhamel Formula

$$f_N^{(1)}(t) = \mathbf{S}_1(t) f_N^{(1)}(0) + \alpha \int_0^t \mathbf{S}_1(t-t_1) C_{1,2} f_N^{(2)}(t_1) dt_1,$$

Iterated Duhamel formula

$$f_N^{(1)}(t) = \sum_{n=0}^{N-1} \alpha^n Q_{1,1+n}(t) f_N^{(1+n)}(0)$$
Idea: Use the initial

with

randomness

$$Q_{s,s+n}(t) := \int_0^t \int_0^{t_1} \dots \int_0^{t_{n-1}} dt_n \dots dt_1 \mathbf{S}_s(t-t_1) C_{s,s+1}$$
$$\mathbf{S}_{s+1}(t_1-t_2) C_{s+1,s+2} \dots \mathbf{S}_{s+n}(t_n)$$

Duhamel formula

$$f_N^{(1)}(t) = \sum_{n=0}^{N-1} \alpha^n Q_{1,1+n}(t) f_N^{(1+n)}(0)$$

with
$$Q_{s,s+n}(t) := \int_0^t \int_0^{t_1} \dots \int_0^{t_{n-1}} dt_n \dots dt_1 \mathbf{S}_s(t-t_1) C_{s,s+1}$$
$$\mathbf{S}_{s+1}(t_1 - t_2) C_{s+1,s+2} \dots \mathbf{S}_{s+n}(t_n)$$
Duhamel formula

$$f_N^{(1)}(t) = \sum_{n=0}^{N-1} \alpha^n Q_{1,1+n}(t) f_N^{(1+n)}(0)$$

with
$$Q_{s,s+n}(t) := \int_0^t \int_0^{t_1} \dots \int_0^{t_{n-1}} dt_n \dots dt_1 \mathbf{S}_s(t-t_1) C_{s,s+1}$$
$$\mathbf{S}_{s+1}(t_1-t_2) C_{s+1,s+2} \dots \mathbf{S}_{s+n}(t_n)$$

Interpretation as a collision tree

- Transport operator
- Addition of a particle to the tree after each collision

Issue : convergence of the series when N diverges

$$f_N^{(1)}(t) = \sum_{n=0}^{N-1} \alpha^n Q_{1,1+n}(t) f_N^{(1+n)}(0)$$

Continuity estimates for the collision operators

Weighted norms $\|f_k\|_{\varepsilon,k,\beta} := \sup_{Z_k \in \mathcal{D}_{\varepsilon}^k} \left| f_k(Z_k) \exp\left(\frac{\beta}{2} \sum_{i=1}^k |v_i|^2\right) \right| < \infty$

$$\left\| Q_{s,s+n}(t)f_{s+n} \right\|_{\varepsilon,s,\beta/2} \le e^{s-1} \left(C_d(\beta)t \right)^n \| f_{s+n} \|_{\varepsilon,s+n,\beta}$$

Issue : convergence of the series when N diverges

$$f_N^{(1)}(t) = \sum_{n=0}^{N-1} \alpha^n Q_{1,1+n}(t) f_N^{(1+n)}(0)$$

Series is only controlled for short times t and small α

Continuity estimates for the collision operators

Weighted norms $\|f_k\|_{\varepsilon,k,\beta} := \sup_{Z_k \in \mathcal{D}_{\varepsilon}^k} \left| f_k(Z_k) \exp\left(\frac{\beta}{2} \sum_{i=1}^k |v_i|^2\right) \right| < \infty$

$$\left\| Q_{s,s+n}(t)f_{s+n} \right\|_{\varepsilon,s,\beta/2} \le e^{s-1} \left(C_d(\beta)t \right)^n \| f_{s+n} \|_{\varepsilon,s+n,\beta}$$

Series is only controlled for short times t and small α

Continuity estimates for the collision operators

Weighted norms $\|f_k\|_{\varepsilon,k,\beta} := \sup_{Z_k \in \mathcal{D}_{\varepsilon}^k} \left| f_k(Z_k) \exp\left(\frac{\beta}{2} \sum_{i=1}^k |v_i|^2\right) \right| < \infty$

$$\left\| Q_{s,s+n}(t)f_{s+n} \right\|_{\varepsilon,s,\beta/2} \le e^{s-1} \left(C_d(\beta)t \right)^n \| f_{s+n} \|_{\varepsilon,s+n,\beta}$$

Removing large collision trees ?

Removing large collision trees ?

Questions :

- Deriving uniform controls in time
- A priori estimates on the particle system

Step 2.

\mathbb{L}^2 estimates and a mild version of local equilibrium

Initial data of order N :

$$f_N^0(Z_N) = M_{N,\beta}(Z_N) \left(\sum_{i=1}^N g_0(\boldsymbol{z_i})\right)$$

No uniform bonds in L^{∞} :

$$\left|f_N^{(s)}(t, Z_s)\right| \le N \ C^s M_\beta^{\otimes s}(Z_s) \ \|g_0\|_{L^\infty}$$

Initial data of order N :

$$f_N^0(Z_N) = M_{N,\beta}(Z_N) \left(\sum_{i=1}^N g_0(\boldsymbol{z_i})\right)$$

No uniform bonds in L^{∞} :

$$\left|f_N^{(s)}(t, Z_s)\right| \le N C^s M_\beta^{\otimes s}(Z_s) \|g_0\|_{L^\infty}$$

 L^2 bounds are preserved in time

$$\int dZ_N M_{N,\beta}(Z_N) \left(\frac{f_N^0(Z_N)}{M_{N,\beta}(Z_N)}\right)^2 \le CN$$

Initial data of order N :

$$f_N^0(Z_N) = M_{N,\beta}(Z_N) \left(\sum_{i=1}^N g_0(\boldsymbol{z_i})\right)$$

No uniform bonds in L^{∞} :

$$\left|f_N^{(s)}(t, Z_s)\right| \le N \ C^s M_\beta^{\otimes s}(Z_s) \ \|g_0\|_{L^\infty}$$

 L^2 bounds are preserved in time

$$\int M_{\beta}(z)g_0(z)dz = 0$$

$$\int dZ_N M_{N,\beta}(Z_N) \left(\frac{f_N^0(Z_N)}{M_{N,\beta}(Z_N)}\right)^2 \le CN$$

Initial data of order N :

$$f_N^0(Z_N) = M_{N,\beta}(Z_N) \left(\sum_{i=1}^N g_0(\boldsymbol{z_i})\right)$$

No uniform bonds in L^{∞} :

$$\left|f_N^{(s)}(t, Z_s)\right| \le N \ C^s M_\beta^{\otimes s}(Z_s) \ \|g_0\|_{L^\infty}$$

$$\begin{aligned}
\int M_{\beta}(z)g_{0}(z)dz &= 0\\
\int dZ_{N}M_{N,\beta}(Z_{N}) \left(\frac{f_{N}^{0}(Z_{N})}{M_{N,\beta}(Z_{N})}\right)^{2} \leq CN\\
\Rightarrow \quad \int dZ_{N}M_{N,\beta}(Z_{N}) \left(\frac{f_{N}(t,Z_{N})}{M_{N,\beta}(Z_{N})}\right)^{2} \leq CN
\end{aligned}$$

 L^2 estimates are more natural for the linearized operator

New strategy L^2 estimates on the collision kernel

$$C_{1,2}^+ f_N^{(2)}(z_1) = \int f_N^{(2)}(x_1, v_1', x_1 + \varepsilon \nu, v_2') \Big((v_2 - v_1) \cdot \nu \Big)_+ d\nu dv_2$$

A dimension is missing for L^2 estimates

New strategy L^2 estimates on the collision kernel

$$C_{1,2}^{+}f_{N}^{(2)}(z_{1}) = \int f_{N}^{(2)}(x_{1}, v_{1}', x_{1} + \varepsilon\nu, v_{2}') \Big((v_{2} - v_{1}) \cdot \nu \Big)_{+} d\nu dv_{2}$$
A dimension is missing for L^{2} estimates
$$\int dz_{1} \int_{0}^{T} d\tau C_{1,2}^{+} \mathbf{S}_{2}(\tau) f_{N}^{(2)} \Big| \leq C \sqrt{\frac{T}{\varepsilon}} \|f_{N}^{(2)}\|_{L^{2}}$$
bad estimate
Additional time dimension

New strategy L^2 estimates on the collision kernel

$$C_{1,2}^{+}f_{N}^{(2)}(z_{1}) = \int f_{N}^{(2)}(x_{1}, v_{1}', x_{1} + \varepsilon\nu, v_{2}') \Big((v_{2} - v_{1}) \cdot \nu \Big)_{+} d\nu dv_{2}$$
A dimension is missing for L^{2} estimates
$$\int dz_{1} \int_{0}^{T} d\tau C_{1,2}^{+} \mathbf{S}_{2}(\tau) f_{N}^{(2)} \Big| \leq C \sqrt{\frac{T}{\varepsilon}} \|f_{N}^{(2)}\|_{L^{2}}$$
bad estimate
Additional time dimension

 $\frac{1}{\varepsilon} \int_0^{\epsilon} dr \, \varphi(r) \leq \begin{cases} \|\varphi\|_{L^{\infty}} \\ \frac{1}{\sqrt{\varepsilon}} \|\varphi\|_{L^2} \end{cases}$

Singular domain of integration

1/ Divergence of the L^2 estimates

$$\left| \int dz_1 \int_0^T d\tau C_{1,2}^+ \mathbf{S}_2(\tau) f_N^{(2)} \right| \le C \sqrt{TN} \| f_N^{(2)} \|_{L^2}$$

1/ Divergence of the L^2 estimates

$$\left| \int dz_1 \int_0^T d\tau C_{1,2}^+ \mathbf{S}_2(\tau) f_N^{(2)} \right| \le C \sqrt{TN} \| f_N^{(2)} \|_{L^2}$$

Difficulty to control multiple collisions.

$$Q_{s,s+n}(t) := \int_0^t \int_0^{t_1} \dots \int_0^{t_{n-1}} dt_n \dots dt_1 \mathbf{S}_s(t-t_1) C_{s,s+1}$$
$$\mathbf{S}_{s+1}(t_1-t_2) C_{s+1,s+2} \dots \mathbf{S}_{s+n}(t_n)$$

$$Q_{1,1+n}f_N^{(1+n)} \le C(TN)^{n/2} \|f_N^{(1+n)}\|_{L^2}$$

1/ Divergence of the L^2 estimates

$$\left| \int dz_1 \int_0^T d\tau C_{1,2}^+ \mathbf{S}_2(\tau) f_N^{(2)} \right| \le C \sqrt{TN} \| f_N^{(2)} \|_{L^2}$$

Difficulty to control multiple collisions.

$$Q_{s,s+n}(t) := \int_0^t \int_0^{t_1} \dots \int_0^{t_{n-1}} dt_n \dots dt_1 \mathbf{S}_s(t-t_1) C_{s,s+1}$$
$$\mathbf{S}_{s+1}(t_1-t_2) C_{s+1,s+2} \dots \mathbf{S}_{s+n}(t_n)$$

$$\left|Q_{1,1+n}f_N^{(1+n)}\right| \le C(TN)^{n/2} \|f_N^{(1+n)}\|_{L^2}$$

$$\left\|Q_{s,s+n}(t)f_{s+n}\right\|_{\varepsilon,s,\beta/2} \le e^{s-1} \left(C_d(\beta)t\right)^n \|f_{s+n}\|_{\varepsilon,s+n,\beta}$$

1/ Divergence of the L^2 estimates

$$\left| \int dz_1 \int_0^T d\tau C_{1,2}^+ \mathbf{S}_2(\tau) f_N^{(2)} \right| \le C \sqrt{TN} \| f_N^{(2)} \|_{L^2}$$

Difficulty to control multiple collisions.

$$Q_{s,s+n}(t) := \int_0^t \int_0^{t_1} \dots \int_0^{t_{n-1}} dt_n \dots dt_1 \mathbf{S}_s(t-t_1) C_{s,s+1}$$
$$\mathbf{S}_{s+1}(t_1-t_2) C_{s+1,s+2} \dots \mathbf{S}_{s+n}(t_n)$$

$$\left|Q_{1,1+n}f_N^{(1+n)}\right| \le C(TN)^{n/2} \|f_N^{(1+n)}\|_{L^2}$$

Disaster ! even for short time

$$\left\|Q_{s,s+n}(t)f_{s+n}\right\|_{\varepsilon,s,\beta/2} \le e^{s-1} \left(C_d(\beta)t\right)^n \|f_{s+n}\|_{\varepsilon,s+n,\beta}$$

2/ Recollisions

Given a collision tree :

$$\int dz_1 \int_0^t dt_2 \int_0^{t_2} dt_3 \, \mathbf{S}_1(t-t_1) C_{1,2}^+ \, \mathbf{S}_2(t_2-t_3) C_{1,2}^+ \, \mathbf{S}_3(t_3) f_N^{(3)} \left(Z_3(0) \right)$$

Use the change of variables

$$(z_1, (t_2, \nu_2, \nu_2), (t_3, \nu_3, \nu_3)) \to Z_3(0)$$

to recover $||f_N^{(3)}||_{L_1}$

2/ Recollisions

Given a collision tree :

$$\int dz_1 \int_0^t dt_2 \int_0^{t_2} dt_3 \, \mathbf{S}_1(t-t_1) C_{1,2}^+ \, \mathbf{S}_2(t_2-t_3) C_{1,2}^+ \, \mathbf{S}_3(t_3) f_N^{(3)} \left(Z_3(0) \right)$$

Use the change of variables $(z_1, (t_2, \nu_2, \nu_2), (t_3, \nu_3, \nu_3)) \rightarrow Z_3(0)$ to recover $\|f_N^{(3)}\|_{L_1}$

Problem. This mapping is not bijective

One has to control the recollisions.

A mild version of local equilibrium

 L^2 estimates would be fine if

$$f_N^{(s)}(t, Z_s) = M_\beta^{\otimes s}(V_s) \sum_{i=1}^s g(t, z_i)$$

A mild version of local equilibrium

 L^2 estimates would be fine if

$$f_N^{(s)}(t, Z_s) = M_\beta^{\otimes s}(V_s) \sum_{i=1}^s g(t, z_i)$$

Key : L^2 control of the higher order correlations at **any** time

$$f_N^{(s)}(t, Z_s) = M_\beta^{\otimes s}(V_s) \sum_{m=1}^s \sum_{\sigma \in \mathfrak{S}_s^m} g_N^m(t, Z_\sigma)$$

with
$$\|g_N^m(t)\|_{L^2_\beta} \le \frac{C}{\sqrt{N^{m-1}}} \|g_{\alpha,0}\|_{L^2_\beta}$$

A mild version of local equilibrium

 L^2 estimates would be fine if

$$f_N^{(s)}(t, Z_s) = M_\beta^{\otimes s}(V_s) \sum_{i=1}^s g(t, z_i)$$

Key : L^2 control of the higher order correlations at **any** time

$$f_N^{(s)}(t, Z_s) = M_\beta^{\otimes s}(V_s) \sum_{m=1}^s \sum_{\sigma \in \mathfrak{S}_s^m} g_N^m(t, Z_\sigma)$$

with $\|g_N^m(t)\|_{L^2_\beta} \leq \frac{C}{\sqrt{N^{m-1}}} \|g_{\alpha,0}\|_{L^2_\beta}$ Consequence of the L^2 a priori bound

Proof : exchangeability of the measure.

$$f_N^{(s)}(t, Z_s) = M_\beta^{\otimes s}(V_s) \sum_{m=1}^s \sum_{\sigma \in \mathfrak{S}_s^m} g_N^m(t, Z_\sigma)$$

$$\|g_N^m(t)\|_{L^2_\beta} \le \frac{C}{\sqrt{N^{m-1}}} \|g_{\alpha,0}\|_{L^2_\beta}$$

$$f_N^{(s)}(t, Z_s) = M_\beta^{\otimes s}(V_s) \sum_{m=1}^s \sum_{\sigma \in \mathfrak{S}_s^m} g_N^m(t, Z_\sigma)$$

$$\|g_N^m(t)\|_{L^2_\beta} \le \frac{C}{\sqrt{N^{m-1}}} \|g_{\alpha,0}\|_{L^2_\beta}$$

$$\left|Q_{1,m}f_N^{(m)}\right| \le C\sqrt{(TN)^{m-1}} \|f_N^{(m)}\|_{L^2}$$

$$f_N^{(s)}(t, Z_s) = M_\beta^{\otimes s}(V_s) \sum_{m=1}^s \sum_{\sigma \in \mathfrak{S}_s^m} g_N^m(t, Z_\sigma)$$

$$f_N^{(s)}(t, Z_s) = M_\beta^{\otimes s}(V_s) \sum_{m=1}^s \sum_{\sigma \in \mathfrak{S}_s^m} g_N^m(t, Z_\sigma)$$

The \mathbb{L}^2 estimates can be used to truncate the series at any time thanks to the decomposition of the measure.

Decompose : $[0, t] = \bigcup_{k=1}^{K} [(k-1)\tau, k\tau]$ for some $\tau > 0$

Good collision trees.

Less than $n_k = 2^k$ collisions during $[(K - k)\tau, (K - k + 1)\tau]$

In each time interval $[(K - k)\tau, (K - k + 1)\tau]$ the \mathbb{L}^2 decomposition is used to estimate the cost of too many collisions

Decompose : $[0, t] = \bigcup_{k=1}^{K} [(k-1)\tau, k\tau]$ for some $\tau > 0$

Good collision trees.

Less than $n_k = 2^k$ collisions during $[(K - k)\tau, (K - k + 1)\tau]$

In each time interval $[(K - k)\tau, (K - k + 1)\tau]$ the \mathbb{L}^2 decomposition is used to estimate the cost of too many collisions

$$\begin{split} f_{N}^{(1)}(t) &= \sum_{j_{1}=0}^{2} \dots \sum_{j_{K}=0}^{2^{K}} \alpha^{J_{k}-1} Q_{1,J_{1}}(\tau) Q_{J_{1},J_{2}}(\tau) \dots Q_{J_{K-1},J_{K}}(\tau) f_{N}^{0(J_{K})} + \mathcal{R}_{N}^{K}(t) \\ \text{with} \quad J_{\ell} &= 1 + j_{1} + \dots + j_{\ell} \end{split}$$

- The main contribution is given by the good collision trees with $j_k \leq 2^k$ during the time interval $[(K - k)\tau, (K - k + 1)\tau]$
- The contribution of the large trees $R_N^K(t)$ is controlled in \mathbb{L}^2

$$\|R_N^K(t)\|_{\mathbb{L}^2} \leq C_lpha \sqrt{rac{t^4}{K}}$$

 \Rightarrow If t is large, then K has to be very large and τ very small.

$$f_{N}^{(1)}(t) = \sum_{j_{1}=0}^{2} \dots \sum_{j_{K}=0}^{2^{K}} \alpha^{J_{k}-1} Q_{1,J_{1}}(\tau) Q_{J_{1},J_{2}}(\tau) \dots Q_{J_{K-1},J_{K}}(\tau) f_{N}^{0(J_{K})} + R_{N}^{K}(t)$$

with $J_{\ell} = 1 + j_{1} + \dots + j_{\ell}$

- The main contribution is given by the good collision trees with $j_k \leq 2^k$ during the time interval $[(K - k)\tau, (K - k + 1)\tau]$
- The contribution of the large trees $R_N^K(t)$ is controlled in \mathbb{L}^2

$$\|R_N^K(t)\|_{\mathbb{L}^2} \leq C_lpha \sqrt{rac{t^4}{K}}$$

 \Rightarrow If t is large, then K has to be very large and τ very small.

 \mathbb{L}^∞ controls are required for multiple recollisions ...

Derivation of the linearized Boltzmann equation

Step 3. Comparison with the Boltzmann hierarchy

Boltzmann hierarchy

For $s \geq 1$ and $Z_s \in \mathbf{T}^{ds} imes \mathbb{R}^{ds}$

$$(\partial_t + \sum_{i=1}^s v_i \cdot \nabla_{x_i}) g^{(s)}(t, Z_s) = \alpha (C_{s,s+1}^0) g^{(s+1)}(t, Z_s)$$

where the collision term is defined by

$$(C_{s,s+1}^{0}g^{(s+1)})(Z_{s})$$

$$:= (N////s) \notin (\overline{D}_{i=1}^{s} \int_{\mathbf{S}^{d-1} \times \mathbb{R}^{d}} g^{(s+1)}(\dots, x_{i}, v_{i}^{*}, \dots, x_{i} \not \not \not \in \mathcal{U}, v_{s+1}^{*}) ((v_{s+1} - v_{i}) \cdot \nu)_{+} d\nu dv_{s+1}$$

$$- (N///s) \notin (\overline{D}_{i=1}^{s} \int_{\mathbf{S}^{d-1} \times \mathbb{R}^{d}} g^{(s+1)}(\dots, x_{i}, v_{i}, \dots, x_{i} \not \not \in \mathcal{U}, v_{s+1}) ((v_{s+1} - v_{i}) \cdot \nu)_{-} d\nu dv_{s+1}$$

This is the **limit** hierarchy when $\varepsilon \to 0$ and $N \to \infty$.

Boltzmann hierarchy

For $s \geq 1$ and $Z_s \in \mathbf{T}^{ds} imes \mathbb{R}^{ds}$

$$(\partial_t + \sum_{i=1}^s v_i \cdot \nabla_{x_i}) \mathbf{g}^{(s)}(t, Z_s) = \alpha (C_{s,s+1}^0) \mathbf{g}^{(s+1)}(t, Z_s)$$

Iterated Duhamel formula

$$\mathbf{g}^{(1)}(t) = \sum_{n=0}^{\infty} \alpha^n Q_{1,1+n}^{\mathbf{0}}(t) \mathbf{g}^{(1+n)}(0)$$

Explicit solution :

$$\mathbf{g}^{(s)}(t) = \left(\sum_{i=1}^{s} g_{\alpha}(t, \mathbf{z}_{1})\right) \prod_{i=2}^{s} M_{\beta}(v_{i})$$

with $g_{\alpha}(t, \mathbf{z_1})M_{\beta}(\mathbf{v_1})$ solution of the **Linearized Boltzman** equation

Comparing the BBGKY and Boltzmann hierarchies

As $N \to \infty$ in the scaling $N \varepsilon^{d-1} = \alpha$,

$$\left(f_N^{0(s)} - g^{0(s)}\right) \prod_{i \neq j} 1_{|x_i - x_j| > \varepsilon} \left| \le C^s \varepsilon \alpha \ \mu \ M_\beta^{\otimes s}\right|$$

for the initial distributions

$$f_N^0(Z_N) = M_{N,\beta}(Z_N) \left(\sum_{i=1}^N g_0(z_i)\right),$$

Microscopic dynamics

$$g^{0(s)}(Z_s) = \left(\prod_{i=1}^s M_{\beta}(v_i)\right) \left(\sum_{i=1}^N g_0(z_i)\right),$$

Boltzmann hierarchy

Main Goal

$$\|f_N^{(1)} - g^{(1)}\|_{L^2([0,t] imes \mathbf{T}^d imes \mathbb{R}^d)} o 0$$
, as $N o \infty$

Comparing the truncated hierarchies

$$f_{N}^{(1,K)}(t) = \sum_{j_{1}=0}^{2} \dots \sum_{j_{K}=0}^{2^{K}} \alpha^{J_{K}} Q_{1,J_{1}}(\tau) Q_{J_{1},J_{2}}(\tau) \dots Q_{J_{K-1},J_{K}}(\tau) f_{N}^{0(J_{K})}$$
$$g^{(1,K)}(t) = \sum_{j_{1}=0}^{2} \dots \sum_{j_{K}=0}^{2^{K}} \alpha^{J_{K}} Q_{1,J_{1}}^{0}(\tau) Q_{J_{1},J_{2}}^{0}(\tau) \dots Q_{J_{K-1},J_{K}}^{0}(\tau) g^{0(J_{K})}$$

Geometric interpretation of the collisions operators:

Comparing the truncated hierarchies

$$f_{N}^{(1,K)}(t) = \sum_{j_{1}=0}^{2} \dots \sum_{j_{K}=0}^{2^{K}} \alpha^{J_{K}} Q_{1,J_{1}}(\tau) Q_{J_{1},J_{2}}(\tau) \dots Q_{J_{K-1},J_{K}}(\tau) f_{N}^{0(J_{K})}$$
$$g^{(1,K)}(t) = \sum_{j_{1}=0}^{2} \dots \sum_{j_{K}=0}^{2^{K}} \alpha^{J_{K}} Q_{1,J_{1}}^{0}(\tau) Q_{J_{1},J_{2}}^{0}(\tau) \dots Q_{J_{K-1},J_{K}}^{0}(\tau) g^{0(J_{K})}$$

Geometric interpretation of the collisions operators:

Comparing the truncated hierarchies

$$f_{N}^{(1,K)}(t) = \sum_{j_{1}=0}^{2} \dots \sum_{j_{K}=0}^{2^{K}} \alpha^{J_{K}} Q_{1,J_{1}}(\tau) Q_{J_{1},J_{2}}(\tau) \dots Q_{J_{K-1},J_{K}}(\tau) f_{N}^{0(J_{K})}$$
$$g^{(1,K)}(t) = \sum_{j_{1}=0}^{2} \dots \sum_{j_{K}=0}^{2^{K}} \alpha^{J_{K}} Q_{1,J_{1}}^{0}(\tau) Q_{J_{1},J_{2}}^{0}(\tau) \dots Q_{J_{K-1},J_{K}}^{0}(\tau) g^{0(J_{K})}$$

Geometric interpretation of the collisions operators:

Comparing the truncated hierarchies

$$f_{N}^{(1,K)}(t) = \sum_{j_{1}=0}^{2} \dots \sum_{j_{K}=0}^{2^{K}} \alpha^{J_{K}} Q_{1,J_{1}}(\tau) Q_{J_{1},J_{2}}(\tau) \dots Q_{J_{K-1},J_{K}}(\tau) f_{N}^{0(J_{K})}$$
$$g^{(1,K)}(t) = \sum_{j_{1}=0}^{2} \dots \sum_{j_{K}=0}^{2^{K}} \alpha^{J_{K}} Q_{1,J_{1}}^{0}(\tau) Q_{J_{1},J_{2}}^{0}(\tau) \dots Q_{J_{K-1},J_{K}}^{0}(\tau) g^{0(J_{K})}$$

Geometric interpretation of the collisions operators:

BBGKY and Boltzmann trajectories can be coupled if there are no recollisions

Up to a small set of velocities, the pseudotrajectories have no recollisions.

The cost of 1 recollision is bounded by $\varepsilon |\log \varepsilon|^3$

BBGKY and Boltzmann trajectories can be coupled if there are no recollisions

Up to a small set of velocities, the pseudotrajectories have no recollisions.

The cost of 1 recollision is bounded by $\varepsilon |\log \varepsilon|^3$

Not enough to control the divergence in N

BBGKY and Boltzmann trajectories can be coupled if there are no recollisions

Up to a small set of velocities, the pseudotrajectories have no recollisions.

The cost of 1 recollision is bounded by $\varepsilon |\log \varepsilon|^3$

Not enough to control the divergence in N

Main Difficulty

The cost of observing at least 2 recollisions is less than ε .

BBGKY and Boltzmann trajectories can be coupled if there are no recollisions

 $N\varepsilon^{d-1} = \alpha$

Up to a small set of velocities, the pseudotrajectories have no recollisions.

The cost of 1 recollision is bounded by $\varepsilon |\log \varepsilon|^3$

Not enough to control the divergence in N

Main Difficulty

The cost of observing at least 2 recollisions is less than $\hat{\varepsilon}$.

Conclusion

Deterministic dynamics of a diluted hard-sphere gas :

- Covariance of the fluctuation field at large times
- Linearized Boltzmann equation & acoustic equations

Conclusion

Deterministic dynamics of a diluted hard-sphere gas :

- Covariance of the fluctuation field at large times
- Linearized Boltzmann equation & acoustic equations

Open problems.

- Linearized Boltzmann equation in dimension 3
- Fluctuating Boltzmann equation [Spohn]