Hydrodynamics of the N-BBM process

Anna De Masi, Pablo A. Ferrari, Errico Presutti, Nahuel Soprano-Loto

Institut Henri Poincaré, June 2017

Brunet and Derrida N branching particles in \mathbb{R} with selection:

 discrete time.Particle at x dies and creates random offsprings around x.
Select the rightmost N particles.
iterate

Pascal Maillard studied the N-BBM process.
N particles move as independent Brownian motions in \mathbb{R}, each particle, at rate 1 , creates a new particle at its current position.

At each branching time, the left-most particle is removed.
The number N of particles is then conserved.

Brunet Derrida (1997) Shift in the velocity of a front due to a cutoff PRE Brunet, Derrida, Mueller, Munier (2006). Noisy traveling waves: effect of selection on genealogies. $\mathrm{EPL}+(06)+(07)$
Bérard, Gouéré (2010) Brunet-Derrida behavior of branching-selection particle systems on the line CMP.

Bérard, Maillard (2014) The limiting process of N-BRW with polynomial tails EJP.

Durrett, Remenik (2011) Brunet-Derrida particle systems, free boundary problems and Wiener-Hopf equations AOP.

Derrida, Shi (2017) Large deviations for the BBM in presence of selection or coalescence Preprint.

Julien Berestycki, Brunet, Derrida (2017) Exact solution and precise asymptotics of a Fisher-KPP type front ArXiv

Hydrodynamics

Density ρ with left boundary $L_{0}=\arg \max _{a} \int_{a}^{\infty} \rho(x) d x>-\infty$
Time zero: iid continuous random variables with density ρ.
$X_{t}:=$ set of positions of N-BBM particles at time t.

Theorem 1. [Existence]
For every $t \geq 0$, there is a density function $\psi(\cdot, t): \mathbb{R} \rightarrow \mathbb{R}^{+}$such that,

$$
\lim _{N \rightarrow \infty} \frac{\left|X_{t} \cap[a, \infty)\right|}{N}=\int_{a}^{\infty} \psi(r, t) d r, \quad \text { a.s. and in } L^{1} .
$$

for any $a \in \mathbb{R}$.

Free boundary problem.

Density ρ with left boundary $L_{0}=\arg \max _{a} \int_{a}^{\infty} \rho(x) d x>-\infty$
Find $\left(\left(u(r, t), L_{t}\right): r \in \mathbb{R}, t \in[0, T]\right)$ such that:

$$
\begin{aligned}
& u_{t}=\frac{1}{2} u_{r r}+u, \quad \text { in }\left(L_{t},+\infty\right) \\
& u(r, 0)=\rho(r) ; \\
& u\left(L_{t}, t\right)=0, \quad \int_{L_{t}}^{\infty} u(r, t) d r=1 .
\end{aligned}
$$

If one finds a continuous function L_{t} such that

$$
e^{t} P\left(L_{s} \leq B_{s}^{\rho}, 0 \leq s \leq t\right)=1, \quad t \geq 0
$$

where B_{s}^{ρ} is BM with random initial position $B_{0}^{\rho} \sim \rho$, then

$$
\int \varphi(r) u(r, t) d r=e^{t} E\left(\varphi\left(B_{t}^{\rho}\right) \mathbf{1}\left\{L_{s} \leq B_{s}^{\rho}, 0 \leq s \leq t\right\}\right)
$$

Theorem 2. If L_{t} is a continuous function such that

$$
\left(\left(u(r, t), L_{t}\right): t \in[0, T]\right.
$$

is a solution of the free boundary problem, then the hydrodynamic limit ψ coincides with u :

$$
\begin{equation*}
\psi(\cdot, t)=u(\cdot, t), \quad t \in[0, T] . \tag{1}
\end{equation*}
$$

Lee (2017) proved that if $\rho \in C_{c}^{2}\left(\left[L_{0}, \infty\right)\right)$ and $\rho_{L_{0}}^{\prime}=2$ then there exist $T>0$ and a solution (u, L) of the free boundary problem with the following properties:

- $\left\{L_{t}: t \in[0, T]\right\}$ is in $C^{1}[0, T], L_{t=0}=L_{0}$
- $u \in C\left(D_{L, T}\right) \cap C^{2,1}\left(D_{L, T}\right)$, where $D_{L, T}=\left\{(r, t): L_{t}<r, 0<t<T\right\}$.

General strategy

We use a kind of Trotter-Kato approximation as upper and lower bounds.
Durrett and Remenik upperbound for the Brunet-Derrida model. Leftmost particle motion is increasing: natural lower bounds.

Upper and lower bounds method was used in several papers:

- De Masi, F and Presutti (2015) Symmetric simple exclusion process with free boundaries. PTRF
- Carinci, De Masi, Giardinà, and Presutti (2016) Free boundary problems in PDEs and particle systems. SpringerBriefs in Mathematical Physics.

We introduce labelled versions of the processes and a coupling of trajectories to prove the lowerbound.

Ranked BBM, a tool Let $\left(Z_{0}^{1}, \ldots, Z_{0}^{N}\right)$ BBM initial positions. $B_{0}^{i, 1}=Z_{0}^{i}$, iid with density ρ.
N_{t}^{i} : is the size of the i th BBM family.
$B_{t}^{i, j}$: is the j-th member of the i-th family at time $t, 1 \leq j \leq N_{t}^{i}$. birth-time order.
$\mathrm{BBM}: \quad Z_{t}=\left\{B_{t}^{i, j}: 1 \leq j \leq N_{t}^{i}, 1 \leq i \leq N\right\}$
$B_{[0, t]}^{i, j}$ trajectory coincides with ancestors before birth.
(i, j) is the rank of the j th particle of i-family

N-BBM as subset of BBM

Let $X_{0}=Z_{0}, \tau_{0}=0$
τ_{n} branching times of BBM.

$$
\begin{aligned}
X_{t} & :=\left\{B_{t}^{i, j}: B_{\tau_{n}}^{i, j} \geq L_{\tau_{n}}, \text { for all } \tau_{n} \leq t\right\} \\
L_{\tau_{n}} & :=\text { defined iteratively such that }\left|X_{t}\right|=N \text { for all } t
\end{aligned}
$$

X_{t} has the law of N-BBM.

Stochastic barriers.

Fix $\delta>0$

$$
X_{0}^{\delta, \pm}=Z_{0} .
$$

The upper barrier. Post-selection at time $k \delta$.

$$
\begin{aligned}
X_{k \delta}^{\delta,+} & :=N \text { rightmost }\left\{B_{k \delta}^{i, j}: B_{(k-1) \delta}^{i, j} \in X_{(k-1) \delta}^{\delta,+}\right\} \\
L_{k \delta}^{\delta,+} & :=\min X_{k \delta}^{\delta,+}
\end{aligned}
$$

The number of particles in $X_{k \delta}^{\delta,+}$ is exactly N for all k.

The lower barrier.

Pre selection at time $(k-1) \delta$.
Select maximal number of rightmost particles at time $(k-1) \delta$ keeping no more than N particles at time $k \delta$.

$$
\begin{aligned}
& L_{(k-1) \delta}^{\delta,-}:=\text { cutting point at time }(k-1) \delta \\
& X_{k \delta}^{\delta,-} \\
&:=\left\{B_{k \delta}^{i, j}: B_{(k-1) \delta}^{i, j} \in X_{(k-1) \delta}^{\delta,-} \cap\left[L_{(k-1) \delta}^{\delta,-}, \infty\right)\right\}
\end{aligned}
$$

Only entire families of particles at time $(k-1) \delta$ are kept at time $k \delta$.
The number of particles in $X_{k \delta}^{\delta,-}$ is $N-O(1)$.

Mass transport partial order

$$
X \preccurlyeq Y \quad \text { if and only if } \quad|X \cap[a, \infty)| \leq|Y \cap[a, \infty)| \quad \forall a \in \mathbb{R} .
$$

Proposition 3. Coupling $\left(\left(\hat{X}_{k \delta}^{\delta,-}, \hat{X}_{k \delta}, \hat{X}_{k \delta}^{\delta,+}\right): k \geq 0\right)$ such that

$$
\hat{X}_{k \delta}^{\delta,-} \preccurlyeq \hat{X}_{k \delta} \preccurlyeq \hat{X}_{k \delta}^{\delta,+}, \quad k \geq 0 .
$$

$\hat{X}_{t}^{\delta,-}$ is a subset of \hat{Z}_{t}, a BBM with the same law as Z_{t}.

Deterministic barriers. $u \in L^{1}\left(\mathbb{R}, \mathbb{R}_{+}\right)$.
Gaussian kernel: $\quad G_{t} u(a):=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi t}} e^{-(a-r)^{2} / 2 t} u(r) d r$.

$$
e^{t} G_{t} \rho \text { solves } u_{t}=\frac{1}{2} u_{r r}+u \text { with initial } \rho .
$$

Cut operator C_{m} is defined by

$$
C_{m} u(a):=u(a) \mathbf{1}\left\{\int_{a}^{\infty} u(r) d r \leq m\right\}
$$

so that $C_{m} u$ has total mass $m \wedge\|u\|_{1}$.

For $\delta>0$ and $k \in \mathbb{N}$, define the upper and lower barriers:

$$
\begin{aligned}
& S_{0}^{\delta, \pm} \rho:=\rho \quad \text { Initial condition } \\
& S_{k \delta}^{\delta,+} \rho:=\left(C_{1}\left(e^{\delta} G_{\delta}\right)\right)^{k} \rho \quad \text { (diffuse \& grow) }+ \text { cut; } \\
& S_{k \delta}^{\delta,-} \rho:=\left(\left(e^{\delta} G_{\delta}\right) C_{e^{-\delta}}\right)^{k} \rho \quad \text { cut }+ \text { (diffuse \& grow) }
\end{aligned}
$$

We have $\left\|S_{k \delta}^{\delta, \pm} \rho\right\|_{1}=\|\rho\|_{1}=1$ for all k.

Hydrodynamics of δ-barriers

We prove that for fixed δ
the stochastic barriers converge to the macroscopic barriers:
Theorem 4. Conditions of Theorem 1 and fixed δ :

$$
\lim _{N \rightarrow \infty} \frac{\left|X_{k \delta}^{\delta, \pm} \cap[r, \infty)\right|}{N}=\int_{a}^{\infty} S_{k \delta}^{\delta, \pm} \rho, \quad \text { a.s. and in } L^{1}
$$

The same is true for the coupling marginals $\hat{X}_{k \delta}^{\delta, \pm}$.

Convergence of macroscopic barriers

Partial order: Take $u, v: \mathbb{R} \rightarrow \mathbb{R}^{+}$and denote

$$
u \preccurlyeq v \quad \text { iff } \quad \int_{a}^{\infty} u \leq \int_{a}^{\infty} v \quad \forall a \in \mathbb{R}
$$

Fix t and take diadic $\delta=t 2^{-n}$. We prove

- $S_{t}^{\delta,-} \rho$ is increasing and $S_{t}^{\delta,+} \rho$ decreasing in n (diadics).
- $\left\|S_{t}^{\delta,+} \rho-S_{t}^{\delta,-} \rho\right\|_{1} \leq c \delta$.
- There exists a continuous function ψ such that for any $t>0$,

$$
\lim _{n \rightarrow \infty}\left\|S_{t}^{\delta, \pm} \rho-\psi(\cdot, t)\right\|_{1}=0
$$

Sketch of proof of Theorem 1

By coupling $\hat{X}_{t}^{\delta,-} \preccurlyeq \hat{X}_{t} \preccurlyeq \hat{X}_{t}^{\delta,+}$.
Convergences in the sense of the Theorem 1 :
$N \rightarrow \infty$:
The stochastic barriers $\hat{X}_{t}^{\delta, \pm}$ converge to the macroscopic barriers $S_{t}^{\delta, \pm}$.
$\delta \rightarrow 0$:
The macroscopic barriers converge to a function ψ, along diadics $\delta \rightarrow 0$.
Corollary:
N-BBM \hat{X}_{t} converge to ψ as $N \rightarrow \infty$.
This is Theorem 1.

Sketch of proof of Theorem 2

We show that for continuous L_{t}, the solution u of the free boundary problem is in between the barriers:

$$
S_{k \delta}^{\delta,-} \rho \preccurlyeq u(\cdot, k \delta) \preccurlyeq S_{k \delta}^{\delta,+} \rho .
$$

Here we use the Brownian representation of the solution.

Proof of Pre-selection inequalities.

Rank order

$$
\begin{equation*}
(i, j) \prec\left(i^{\prime}, j^{\prime}\right) \text { if and only if } B_{0}^{i, 1}<B_{0}^{i^{\prime}, 1} \text { or } i=i^{\prime} \text { and } j<j^{\prime} . \tag{2}
\end{equation*}
$$

N rank-selected BBM:

$$
Y_{t}:=\left\{B_{t}^{i, j}:\left|\left\{B_{t}^{i^{\prime}, j^{\prime}}:(i, j) \prec\left(i^{\prime}, j^{\prime}\right)\right\}\right|<N\right\},
$$

We have $X_{\delta}^{\delta,-} \subset Y_{\delta}$, which in turn implies

$$
X_{\delta}^{\delta,-} \preceq Y_{\delta} .
$$

Labeled $N-B B M$.

$$
\left(X_{t}^{1}, \ldots, X_{t}^{N}\right) \in \mathbb{R}^{N}
$$

X_{t}^{ℓ} is just a labelling of N-BBM as function of $\left(B_{[0, t]}^{i, j}: i, j\right)$:
When one of the Brownian particles branches at time s, identify
$X_{s-}^{n}:=$ the branching particle
$X_{s-}^{m}:=$ the position of the leftmost particle (to be erased)
At time s put
$X_{s}^{m}=X_{s-}^{n}$
X_{t}^{m} will follow the newborn Brownian particle until next branching.

Labeled rank-selected $N-B B M$.

$$
\left(\left(Y_{t}^{1}, \sigma_{t}^{1}\right), \ldots,\left(Y_{t}^{N}, \sigma_{t}^{N}\right)\right) \in\left(\mathbb{R} \times \mathbb{N}^{2}\right)^{N}
$$

Y_{t}^{ℓ} is a labelling of the rank-selected N-BBM Y_{t}.
σ_{t}^{ℓ} tracks the rank of the Y^{ℓ}-particles in the Y-tree.
When one of the Brownian particles branches at time s, identify
$Y_{s-}^{n}:=$ the branching particle, $\sigma_{s-}^{n}=(i, j)$
$Y_{s-}^{h}:=$ lowest ranked Y-particle (to be erased)
At time s put
$Y_{s}^{h}=Y_{s-}^{n}$ and this particle will follow now the newborn Brownian particle $\sigma_{s}^{h}=\left(i, M_{s-}^{i}+1\right)$ (youngest new element of the Y^{i} branching family)

Coupling. $\left(X_{t}^{1}, \ldots, X_{t}^{N}\right),\left(\left(Y_{t}^{1}, \sigma_{t}^{1}\right) \ldots\left(Y_{t}^{N}, \sigma_{t}^{N}\right)\right)$
Between branchings $X_{t}^{\ell}-Y_{t}^{\ell}$ and σ_{t}^{ℓ} are constant.
s branching time for X process.
X_{s-}^{n} and Y_{s-}^{n} branching particles.
$\sigma_{s-}^{n}=(i, j)$ rank of Y-branching particle
$X_{s-}^{m}:=$ leftmost X-particle (to be erased).
$Y_{s-}^{h}:=$ lowest-rank Y-particle (to be erased).
At time s put
$X_{s}^{m}=X_{s-}^{n}, Y_{s}^{h}=Y_{s-}^{m}, Y_{s}^{m}=Y_{s-}^{n}$
X_{s}^{m} and Y_{s}^{m} will follow now the (same) newborn Brownian particle $\sigma_{s}^{h}=\sigma_{s-}^{n}, \sigma_{s}^{m}=\left(i, M_{s-}^{i}+1\right)$ (youngest new element of the branching family)

Relative positions of particles at branching time s.

Coupling between $\underline{x}(t)$ and $(\underline{y}(t), \underline{\sigma}(t))$. When $n=m$ only the h-th Y-particle jumps to Y_{s-}^{n}.
When $n=h$ only the m-th X-particle jumps to X_{s-}^{h}.
Perform two cases simultaneously.

The coupling satisfies

$$
Y_{t}^{\ell} \leq X_{t}^{\ell}, \quad \text { for all } t, \ell
$$

Hence

$$
\hat{X}_{\delta}^{\delta,-} \preceq \hat{Y}_{t} \preceq X_{t}, \quad \text { a.s. }
$$

$M_{t}^{i}:=$ size of Y_{0}^{i} family at time t.

The post-selection process

N-BBM X_{t} is a subset of the BBM Z_{t}.
$X_{\delta}^{\delta,+}=N$ right-most Z-particles at time δ. Hence,

$$
X_{\delta} \preceq X_{\delta}^{\delta,+} .
$$

Domination We have proven the dominations

$$
\hat{X}_{k \delta}^{\delta,-} \preceq X_{k \delta} \preceq \hat{X}_{k \delta}^{\delta,+} .
$$

for $k=1$. Iterate to obtain the same for all k.
Construct the coupling for each time interval and then the Brownian tree \hat{B} containing $\hat{Y}_{k \delta} \supset \hat{X}_{k \delta}^{\delta,-}$.

Similarly construct Brownian tree containing $\hat{X}_{k \delta}^{\delta,+}$.

Construct new BBM process $\hat{B}_{[0, t]}$ by
Attaching independent BBM to loose branches of \hat{Y}_{t}.
Proposition 5. $\hat{B}_{[0, t]}$ has the same law as the $B B M B_{[0, t]}$ and

$$
\hat{Y}_{t}:=\left\{\hat{B}_{t}^{i, j}:\left|\left\{\hat{B}_{t}^{i^{\prime}, j^{\prime}}:(i, j) \prec\left(i^{\prime}, j^{\prime}\right)\right\}\right|<N\right\}
$$

is the rank selected process associated to $\hat{B}_{[0, t]}$.
The rightmost families with up to N total particles coincide

$$
\hat{N}_{t}^{i}=M_{t}^{i} \text { if } \sum_{j} N_{t}^{j} \mathbf{1}\left\{B_{0}^{j, 1} \geq B_{0}^{i, 1}\right\} \leq N
$$

Hydrodynamic limit for the barriers

Macroscopic left boundaries
For $\delta>0$ and $\ell \leq k$ denote

$$
\begin{align*}
L_{\ell \delta}^{\delta,+} & =\sup _{r}\left\{\int_{-\infty}^{r} S_{\ell \delta}^{\delta,+} \rho\left(r^{\prime}\right) d r^{\prime}=0\right\} \\
L_{\ell \delta}^{\delta,-} & :=\sup _{r}\left\{\int_{-\infty}^{r} S_{\ell \delta}^{\delta,-} \rho\left(r^{\prime}\right) d r^{\prime}<1-e^{-\delta}\right\} . \tag{1}
\end{align*}
$$

Brownian representation of macroscopic barriers:
$B_{[0, t]}=\left(B_{s}: s \in[0, t]\right)$ Brownian motion with
B_{0}, random variable with density ρ.
Lemma 6. For test function $\varphi \in L^{\infty}(\mathbb{R})$ and $t>0$,

$$
\begin{aligned}
& \int \varphi S_{k \delta}^{\delta,+} \rho=e^{k \delta} E\left[\varphi\left(B_{k \delta}\right) \mathbf{1}\left\{B_{\ell \delta}>L_{\ell \delta}^{\delta,+}: 1 \leq \ell \leq k\right\}\right] \\
& \int \varphi S_{k \delta}^{\delta,-} \rho=e^{k \delta} E\left[\varphi\left(B_{k \delta}\right) \mathbf{1}\left\{B_{\ell \delta}>L_{\ell \delta}^{\delta,-}: 0 \leq \ell \leq k-1\right\}\right]
\end{aligned}
$$

Generic LLN over trajectories of BBM
Let $B_{0}^{i, 1}$ iid with density ρ.
N_{t}^{i} size at time t of the i-th BBM family. $E N_{t}^{i}=e^{t}$.
Proposition 7. Let g be bounded. Then

$$
\begin{equation*}
\mu_{t}^{N} g:=\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N_{t}^{i}} g\left(B_{[0, t]}^{i, j}\right) \underset{N \rightarrow \infty}{\longrightarrow} e^{t} E g\left(B_{[0, t]}\right), \quad \text { a.s. and in } L^{1} . \tag{0}
\end{equation*}
$$

a.s. and in L^{1}.

Proof. By the many-to-one Lemma we have

$$
\begin{equation*}
E \mu_{t}^{N} g=E N_{t} E g\left(B_{[0, t]}\right)=e^{t} E g\left(B_{[0, t]}\right) \tag{1}
\end{equation*}
$$

The variance of $\mu_{t}^{N} g$ is order $1 / N$, by family independence.

Corollary 8 (Hydrodynamics of the BBM).

$$
\begin{align*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N_{t}^{i}} \varphi\left(B_{t}^{i, j}\right) & =e^{t} E \varphi\left(B_{t}\right) \quad \text { a.s. and in } L^{1} . \\
& =e^{t} \int \varphi(r) G_{t} \rho(r) d r \tag{2}
\end{align*}
$$

Proof of Hydrodynamics for barriers

Proof of Theorem 4 BBM representation of stochastic barriers:

$$
\begin{aligned}
& \pi_{k \delta}^{N, \delta,+} \varphi=\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N_{k \delta}^{i}} \varphi\left(B_{k \delta}^{i, j}\right) \mathbf{1}\left\{B_{\ell \delta}^{i, j} \geq L_{\ell \delta}^{N, \delta,+}: 1 \leq \ell \leq k\right\} \\
& \pi_{k \delta}^{N, \delta,-} \varphi=\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N_{k \delta}^{i}} \varphi\left(B_{k \delta}^{i, j}\right) \mathbf{1}\left\{B_{\ell \delta}^{i, j} \geq L_{\ell \delta}^{N, \delta,-}: 0 \leq \ell \leq k-1\right\}
\end{aligned}
$$

We show that as $N \rightarrow \infty$
$L_{\ell \delta}^{N, \delta, \pm}$ can be replaced by $L_{\ell \delta}^{\delta, \pm}$, and get the result by the generic LLN.
Use the fact that the random left boundaries are exact quantiles of $1 . \quad \square$

Proof of Theorem 2 The limit function ψ is the solution of the free boundary problem.

The local solution of the free boundary problem is in between the barriers:
Theorem 9. Let $t \in(0, T], \delta \in\left\{2^{-n} t, n \in \mathbb{N}\right\}$. Then

$$
S_{t}^{\delta,-} \rho \preccurlyeq u(\cdot, t) \preccurlyeq S_{t}^{\delta,+} \rho, \quad t=k \delta
$$

The upperbound is immediate. The lower bound reduces to show the following stochastic order between conditioned probability measures:

$$
\begin{equation*}
P_{u_{0}}\left(B_{t} \geq r \mid \tau^{L} \leq \delta\right) \leq P_{u_{1}}\left(B_{t} \geq r \mid \tau^{L}>\delta\right) \tag{3}
\end{equation*}
$$

where $u_{1}=C_{e^{-\delta}} u, u_{0}=u-u_{1}$,

$$
\begin{equation*}
P_{u_{i}}\left(B_{t} \in A\right):=\frac{1}{\left\|u_{i}\right\|_{1}} \int u_{i}(x) P_{x}\left(B_{t} \in A\right) d x \tag{4}
\end{equation*}
$$

and τ^{L} is the hitting time of the boundary.

Stationary N-BBM X_{t} be N-BBM. Process as seen from leftmost particle:

$$
X_{t}^{\prime}:=\left\{x-\min X_{t}: x \in X_{t}\right\}
$$

Durrett and Remenik for a related Brunet-Derrida process proved:
Theorem 10. $N-B B M$ as seen from leftmost particle is Harris recurrent.
ν_{N} unique invariant measure. Under ν_{N} asymptotic speed

$$
\alpha_{N}=(N-1) \nu_{N}[\min (X \backslash\{0\})],
$$

X_{t}^{\prime} starting with anything converges in distribution to ν_{N} and

$$
\lim _{t \rightarrow \infty} \frac{\min X_{t}}{t}=\alpha_{N}
$$

α_{N} converges to asymtotic speed of the first particle in BBM:

$$
\lim _{N \rightarrow \infty} \alpha_{N}=\sqrt{2} . \quad \text { Berard and Gouéré }
$$

Travelling wave solutions $\quad u(r, t)=w(r-\alpha t)$, where w must satisfy

$$
\frac{1}{2} w^{\prime \prime}+\alpha w^{\prime}+w=0, \quad w(0)=0, \quad \int_{0}^{\infty} w(r) d r=1
$$

Groisman and Jonckheere (2013): for each speed $\alpha \geq \sqrt{2}$ there is a solution w_{α}

$$
w_{\alpha}(r)= \begin{cases}M_{\alpha} r e^{-\alpha r} & \text { if } \alpha=\sqrt{2} \tag{4}\\ M_{\alpha} e^{-\alpha r} \sinh \left(r \sqrt{\alpha^{2}-2}\right) & \text { if } \alpha>\sqrt{2}\end{cases}
$$

where M_{α} is a normalization constant.
w_{α} is the unique qsd for Brownian motion with drift $-\alpha$ and absorption rate 1; see Martínez and San Martín (1994).

Open problems. (1) Let X_{t} be the N-BBM process with initial configuration sampled from the stationary measure ν^{N}.

Show that the empirical distribution of X_{t} converges to a measure with density $w_{\sqrt{2}}(t \sqrt{2}+\cdot)$, as $N \rightarrow \infty$. This would be a strong selection principle for N-BBM.

Problem: we do not control the particle-particle correlations in the ν_{N} distributed initial configuration.

If we start with independent particles with distribution $w_{\sqrt{2}}$, then Theorem 1 and $w_{\sqrt{2}}(t \sqrt{2}+\cdot)$ strong solution of FBP imply convergence of the empirical measure to this solution.
(2) "Yaglom limit"? Does $u\left(\cdot-L_{t}, t\right)$ converges to w_{α} for some $\alpha \geq \sqrt{2}$?

Fix α, which conditions must satisfy ρ to converge to w_{α} ?
(3) Give a simple proof of existence of the solution for the FBP.

