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Brunet and Derrida N branching particles in R with selection:
discrete time.

Particle at = dies and creates random offsprings around =x.
Select the rightmost IV particles.

iterate

Pascal Maillard studied the N-BBM process.

N particles move as independent Brownian motions in R,

each particle, at rate 1, creates a new particle at its current position.
At each branching time, the left-most particle is removed.

The number N of particles is then conserved.



Brunet Derrida (1997) Shift in the velocity of a front due to a cutoff PRE

Brunet, Derrida, Mueller, Munier (2006). Noisy traveling waves: effect of
selection on genealogies. EPL + (06) + (07)

Bérard, Gouéré (2010) Brunet-Derrida behavior of branching-selection
particle systems on the line CMP.

Bérard, Maillard (2014) The limiting process of N-BRW with polynomial
tails EJP.

Durrett, Remenik (2011) Brunet-Derrida particle systems, free boundary
problems and Wiener-Hopf equations AOP.

Derrida, Shi (2017) Large deviations for the BBM in presence of selection
or coalescence Preprint.

Julien Berestycki, Brunet, Derrida (2017) Exact solution and precise asymp-
totics of a Fisher-KPP type front ArXiv

3



Hydrodynamics
Density p with left boundary Lo = argmax, [,° p(z)dz > —o0
Time zero: iid continuous random variables with density p.

X, := set of positions of N-BBM particles at time t.

Theorem 1. [Existence]

For every t > 0, there is a density function (-, t) : R — R such that,

. 1202200
1m
N—o0

/wrt r, a.s. andin L'

for any a € R.



Free boundary problem.

Density p with left boundary Lo = argmax, [,° p(z)dz > —o0

Find ((u(r,t), Ly) : 7 € Rt € [0,T]) such that:

Ut = %UM‘ +u, in (Ltv +OO)7
u(r, 0) = p(r);
[e.e]
u(Le, t) =0, / u(r,t)dr = 1.
Ly

If one finds a continuous function L; such that
e'P(Lsy<B,0<s<t)=1, t>0.

where B? is BM with random initial position Bf ~ p, then

[ utrdr = BB 1L, < B0 < s < 1)
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Theorem 2. If L; is a continuous function such that
((u(r,t), Ly) : t € [0,T]

is a solution of the free boundary problem, then the hydrodynamic limit
1 coincides with w:

w('vt) = u("t)a te [OvT]' (1)

Lee (2017) proved that if p € CZ([Lo,o0)) and pf, = 2 then there
exist 7' > 0 and a solution (u, L) of the free boundary problem with the
following properties:
e {L;:t€[0,T]}isin CY0,T], Li—o = Lo
e ucC(Drr)N CQ’I(DLT),
where Dy, = {(r,t) : Ly <r,0<t < T}
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General strategy
We use a kind of Trotter-Kato approximation as upper and lower bounds.

Durrett and Remenik upperbound for the Brunet-Derrida model. Leftmost
particle motion is increasing: natural lower bounds.

Upper and lower bounds method was used in several papers:

e De Masi, F and Presutti (2015) Symmetric simple exclusion process
with free boundaries. PTRF

e Carinci, De Masi, Giardina, and Presutti (2016) Free boundary problems
in PDEs and particle systems. SpringerBriefs in Mathematical Physics.

We introduce labelled versions of the processes and a coupling of trajec-
tories to prove the lowerbound.



Ranked BBM, a tool Let (Z},...,Z}) BBM initial positions.
Bé’l = Z}, iid with density p.

N}: is the size of the ith BBM family.

Bz’j: is the j-th member of the i-th family at time ¢, 1 < j < N},

birth-time order.

BBM: Z;, ={B}”:1<j<N,1<i<N}

B7'7j

0.4] trajectory coincides with ancestors before birth.

(i,7) is the rank of the jth particle of i-family



N-BBM as subset of BBM
Let Xog = Zp, 10=0
Ty, branching times of BBM.

X, :={B;’ : BY > L, , forall 7, <t}

L., := defined iteratively such that | X;| = N for all ¢

n

X; has the law of N-BBM.



Stochastic barriers.
Fix 6 >0
x5t = 2.

The upper barrier. Post-selection at time k9.
o+ . : 2V
X5 = N rightmost {B,5 : B(k 15 € Xk 1)6}
Lz’(;r := min ng—i-

The number of particles in X,fgr is exactly IV for all k.
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The lower barrier.

Pre selection at time (k — 1)é.
Select maximal number of rightmost particles at time (k—1)d keeping no
more than N particles at time k9.

L?};l)(g := cutting point at time (k — 1)

67_ R '74 . .7' 67_ 67_
X0 = (B B € X0 N [LE 5,000}

Only entire families of particles at time (k — 1)J are kept at time k¢.

The number of particles in leii_ is N —O(1).
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Mass transport partial order
X =xY ifandonlyif |[XNa,00) <|YN[a,00)] VaeR.
Proposition 3. Coupling (()A(,i;;_,Xk(g,ngr) : k > 0) such that
X < X < X3H, k>0

A

Xf’f is a subset of Zt, a BBM with the same law as Z;.
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Deterministic barriers. u € L'(R,R,).

© 1

Gaussian kernel:  Giu(a) = / e_(“_”)2/2tu(r) dr.

—oo V 2nt

ethp solves u; = %uw + w with initial p.
Cut operator Cy, is defined by

Cu(a) = u(a)l{/:o u(r)dr < m},

so that Cp,u has total mass m A |Jul|;.
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For § > 0 and k € N, define the upper and lower barriers:

Sg’ip := p Initial condition
k
Spyp = (01 (e‘SG(;)) p (diffuse & grow) + cut;
k
Sg’aip = ((eéGé) Ce—a) p cut + (diffuse & grow)

We have HS;(z’(sile =||pll; =1 for all k.
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Hydrodynamics of J-barriers
We prove that for fixed ¢

the stochastic barriers converge to the macroscopic barriers:
Theorem 4. Conditions of Theorem 1 and fixed §:
|X N [r, 00)
lim ko / S a.s. and in L'.
N—o00 kd p,

The same is true for the coupling marginals )A(,f;;i.
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Convergence of macroscopic barriers

Partial order: Take u,v : R — RT and denote

u=<v iff / ug/ v VaeR.

Fix ¢t and take diadic 6 = t27". We prove

. Sf’fp is increasing and Sf’+p decreasing in n (diadics).
s, 5,—

o ||S; tp— S, p||1 < cd.

e There exists a continuous function 1 such that for any ¢ > 0,

. o . _
Jim (1575 p — (-, ) [l1 = 0.
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Sketch of proof of Theorem 1
By coupling Xf’_ <X < Xf’+.
Convergences in the sense of the Theorem 1:

N — oo
The stochastic barriers Xf’i converge to the macroscopic barriers Sf’i.

0—0:
The macroscopic barriers converge to a function 1, along diadics § — 0.

Corollary:
N-BBM X; converge to 1 as N — oo.

This is Theorem 1.
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Sketch of proof of Theorem 2

We show that for continuous L;, the solution u of the free boundary
problem is in between the barriers:

6, — d,
Sps p < u(-,kd) < Sk5+p.

Here we use the Brownian representation of the solution.
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Proof of Pre-selection inequalities.

Rank order

i,§) < (i',') if and only if B®! < BY ori=1i and i<i. (2
0 0
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N rank-selected BBM:

Y= (B [{B{7 2 (i,) < (0,5} < N},

We have Xg’f C Ys, which in turn implies

X7 <Y
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Labeled N-BBM.

(XL, XN)eRrRY

X/ is just a labelling of N-BBM as function of (B[ [0 t} 21, 7):
When one of the Brownian particles branches at time s, identify
X7 := the branching particle

X" := the position of the leftmost particle (to be erased)

At time s put

X=X

X" will follow the newborn Brownian particle until next branching.
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Labeled rank-selected N-BBM.

(Y 00)s o, (YN, o)) € (R x N2

Y/ is a labelling of the rank-selected N-BBM Y;.

of tracks the rank of the Y’-particles in the Y-tree.

When one of the Brownian particles branches at time s, identify
YY" := the branching particle, o = (i, j)

Y/ := lowest ranked Y-particle (to be erased)

At time s put

Y) =Y.' and this particle will follow now the newborn Brownian particle

S
o = (i, Mi_ 4 1) (youngest new element of the Y branching family)
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Coupling. (X}, ..., XM), (Y, of) ... (YN, o))

Between branchings X! — Y/ and of are constant.

s branching time for X process.

X7 and Y" branching particles.

o = (i,7) rank of Y-branching particle

X! = leftmost X-particle (to be erased).

Y} := lowest-rank Y-particle (to be erased).

At time s put

XM =Xn Yh=Yym Y"=Y"

X" and Y™ will follow now the (same) newborn Brownian particle

ol =0 , 0™ = (i, M!_ + 1) (youngest new element of the branching

S - S

family)
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Before jumps: /v—\'\ H
hi
After jumps: i nm
o $
h nm

Relative positions of particles at branching time s.
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before jumps: e :
JHmP o o f Y,
in=m h :
. ; $ Xs
after jumps: : hom v
h m

Coupling between z(t) and (g(t),g(t)). When n = m only the h-th
Y -particle jumps to Y. .

When n = h only the m-th X-particle jumps to X" .

Perform two cases simultaneously.
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The coupling satisfies

Vi< X!, forallt,d.
Hence

)A(g’* =< }A/t = X;, as.

M} = size of Y{ family at time ¢.
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The post-selection process
N-BBM X; is a subset of the BBM Z;.

X§’+ = N right-most Z-particles at time §. Hence,

X5 < X2

Domination We have proven the dominations
o-9,— O-0,+
Xy = Xis 2 X35

for £ = 1. Iterate to obtain the same for all k.

Construct the coupllng for each time interval and then the Brownian tree
B containing Yk(S D X,ﬂ; )

Similarly construct Brownian tree containing Xgﬁ.
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Construct new BBM process E[OJ] by
Attaching independent BBM to loose branches of Y;.

Proposition 5. B[O,t] has the same law as the BBM By and

U

Y, = {Bti’j : {By 7 (1,5) < (¢, 5")} < N}

is the rank selected process associated to B[O,t]-

The rightmost families with up to N total particles coincide

N =M} if Y_NJUY{B) >By'y <N
j
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Hydrodynamic limit for the barriers

Macroscopic left boundaries

For 6 > 0 and ¢ < k denote
L%‘_ = s&p{/_ ngp(rl)drl = 0};

.
Lgé_ = sup{/ SZ’S_p(T')dr’ <1- 6_6}.
T —00
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Brownian representation of macroscopic barriers:
Bioy = (Bs : s € [0,t]) Brownian motion with
By, random variable with density p.

Lemma 6. For test function ¢ € L°(R) and t > 0,

/@521% = M E[p(Bys)1{Bgs > LY 1< L < k}].

/@Sils_ﬂ = " E[p(Bis)1{ B > Ly 10<(<k—1}].
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Generic LLN over trajectories of BBM

Let Bé’l iid with density p.

N} size at time t of the i-th BBM family. EN} = ¢'.
Proposition 7. Let g be bounded. Then

N N}
Zzg [{ft — €' Eg(Bpy), as and in L'. (o)
i=1j=1

a.s. and in L.
Proof. By the many-to-one Lemma we have
Eug = EN, Eg(Bjoy) = €'Eg(Byo), (1)

The variance of ¥ g is order 1/N, by family independence. O
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Corollary 8 (Hydrodynamics of the BBM).

N N}

lim 722 (BY) =e'Ep(B;)  as. and in L',

N—oo N =1 =1

= [ p(r)Guplr)ar.
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Proof of Hydrodynamics for barriers

Proof of Theorem 4 BBM representation of stochastic barriers:

s o = ZZso B > L0 1< <k}
i=1j5=1

oy ZZ@DB VI{BY > L) 0<e<k—1}.
i=1j=1

We show that as N — oo
Lé\g’a’i can be replaced by Lg(’;i, and get the result by the generic LLN.

Use the fact that the random left boundaries are exact quantiles of 1. [
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Proof of Theorem 2 The limit function 1 is the solution of the free
boundary problem.

The local solution of the free boundary problem is in between the barriers:

Theorem 9. Lett € (0,7T], 6 € {27 "t,n € N}. Then

ST =ul )< S Te,  t=ko

The upperbound is immediate. The lower bound reduces to show the
following stochastic order between conditioned probability measures:

P, (Bt > T|7‘L <0)< Py, (B> r|TL > 0) (3)
where u; = C,-su, up = u — uy,
1
Pu(Br€ A)i= e / wi(z)Po(B, € A)da. 4)
ill1

and 7% is the hitting time of the boundary.
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Stationary N-BBM X; be N-BBM. Process as seen from leftmost
particle:
X{:={z—minX;:z € Xy}

Durrett and Remenik for a related Brunet-Derrida process proved:
Theorem 10. N-BBM as seen from leftmost particle is Harris recurrent.
VN unique invariant measure. Under vy asymptotic speed

any = (N = 1) vy [min(X \ {0})],
X starting with anything converges in distribution to vy and
min X;

lim
t—o00 t

= QN.
apn converges to asymtotic speed of the first particle in BBM:

lim ay = V2. Berard and Gouéré

N—o0
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Travelling wave solutions u(r,t) = w(r — at), where w must satisfy

1 o0
iw” +aw +w=0, w(0)=0, / w(r)dr = 1.
0

Groisman and Jonckheere (2013): for each speed o > /2 there is a
solution w,

wa(r) = {Ma re” " if o =2 (4)

My e " sinh (rva2 —2) ifa>+2

where M, is a normalization constant.

W, is the unique gsd for Brownian motion with drift —a and absorption
rate 1; see Martinez and San Martin (1994).
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Open problems. (1) Let X; be the N-BBM process with initial configu-

ration sampled from the stationary measure "V.

Show that the empirical distribution of X; converges to a measure with
density w\/@(t\/i + ), as N — oo. This would be a strong selection
principle for N-BBM.

Problem: we do not control the particle-particle correlations in the vy
distributed initial configuration.

If we start with independent particles with distribution w, /5, then Theo-

rem 1 and w\/i(t\/i—i- -) strong solution of FBP imply convergence of the
empirical measure to this solution.

(2) “Yaglom limit"? Does u(-— L¢,t) converges to w, for some a > 1/27?
Fix «, which conditions must satisfy p to converge to w,?

(3) Give a simple proof of existence of the solution for the FBP.
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