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Brunet and Derrida N branching particles in R with selection:

discrete time.

Particle at x dies and creates random offsprings around x.

Select the rightmost N particles.

iterate

Pascal Maillard studied the N -BBM process.

N particles move as independent Brownian motions in R,

each particle, at rate 1, creates a new particle at its current position.

At each branching time, the left-most particle is removed.

The number N of particles is then conserved.
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Hydrodynamics

Density ρ with left boundary L0 = arg maxa
∫∞
a ρ(x)dx > −∞

Time zero: iid continuous random variables with density ρ.

Xt := set of positions of N -BBM particles at time t.

Theorem 1. [Existence]

For every t ≥ 0, there is a density function ψ(·, t) : R→ R+ such that,

lim
N→∞

∣∣Xt ∩ [a,∞)
∣∣

N
=
∫ ∞
a

ψ(r, t)dr, a.s. and in L1.

for any a ∈ R.
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Free boundary problem.

Density ρ with left boundary L0 = arg maxa
∫∞
a ρ(x)dx > −∞

Find ((u(r, t), Lt) : r ∈ R, t ∈ [0, T ]) such that:

ut = 1
2urr + u, in (Lt,+∞);

u(r, 0) = ρ(r);

u(Lt, t) = 0,
∫ ∞
Lt

u(r, t)dr = 1.

If one finds a continuous function Lt such that

etP
(
Ls ≤ Bρ

s , 0 ≤ s ≤ t
)

= 1, t ≥ 0.

where Bρ
s is BM with random initial position Bρ

0 ∼ ρ, then∫
ϕ(r)u(r, t)dr = etE

(
ϕ(Bρ

t ) 1{Ls ≤ Bρ
s , 0 ≤ s ≤ t}

)
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Theorem 2. If Lt is a continuous function such that

((u(r, t), Lt) : t ∈ [0, T ]

is a solution of the free boundary problem, then the hydrodynamic limit
ψ coincides with u:

ψ(·, t) = u(·, t), t ∈ [0, T ]. (1)

Lee (2017) proved that if ρ ∈ C2
c ([L0,∞)) and ρ′L0

= 2 then there
exist T > 0 and a solution (u, L) of the free boundary problem with the
following properties:

• {Lt : t ∈ [0, T ]} is in C1[0, T ], Lt=0 = L0

• u ∈ C(DL,T ) ∩ C2,1(DL,T ),
where DL,T = {(r, t) : Lt < r, 0 < t < T}.
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General strategy

We use a kind of Trotter-Kato approximation as upper and lower bounds.

Durrett and Remenik upperbound for the Brunet-Derrida model. Leftmost
particle motion is increasing : natural lower bounds.

Upper and lower bounds method was used in several papers:

• De Masi, F and Presutti (2015) Symmetric simple exclusion process
with free boundaries. PTRF

• Carinci, De Masi, Giardinà, and Presutti (2016) Free boundary problems
in PDEs and particle systems. SpringerBriefs in Mathematical Physics.

We introduce labelled versions of the processes and a coupling of trajec-
tories to prove the lowerbound.
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Ranked BBM, a tool Let (Z1
0 , . . . , Z

N
0 ) BBM initial positions.

Bi,1
0 = Zi0, iid with density ρ.

N i
t : is the size of the ith BBM family.

Bi,j
t : is the j-th member of the i-th family at time t, 1 ≤ j ≤ N i

t .

birth-time order.

BBM: Zt = {Bi,j
t : 1 ≤ j ≤ N i

t , 1 ≤ i ≤ N}

Bi,j
[0,t] trajectory coincides with ancestors before birth.

(i, j) is the rank of the jth particle of i-family
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N-BBM as subset of BBM

Let X0 = Z0, τ0 = 0

τn branching times of BBM.

Xt := {Bi,j
t : Bi,j

τn ≥ Lτn , for all τn ≤ t}

Lτn := defined iteratively such that |Xt| = N for all t

Xt has the law of N -BBM.
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Stochastic barriers.

Fix δ > 0

Xδ,±
0 = Z0.

The upper barrier. Post-selection at time kδ.

Xδ,+
kδ := N rightmost {Bi,j

kδ : Bi,j
(k−1)δ ∈ X

δ,+
(k−1)δ}

Lδ,+kδ := minXδ,+
kδ

The number of particles in Xδ,+
kδ is exactly N for all k.
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The lower barrier.

Pre selection at time (k − 1)δ.

Select maximal number of rightmost particles at time (k−1)δ keeping no
more than N particles at time kδ.

Lδ,−(k−1)δ := cutting point at time (k − 1)δ

Xδ,−
kδ := {Bi,j

kδ : Bi,j
(k−1)δ ∈ X

δ,−
(k−1)δ ∩ [Lδ,−(k−1)δ,∞)}

Only entire families of particles at time (k − 1)δ are kept at time kδ.

The number of particles in Xδ,−
kδ is N −O(1).
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Mass transport partial order

X 4 Y if and only if |X ∩ [a,∞)| ≤ |Y ∩ [a,∞)| ∀a ∈ R.

Proposition 3. Coupling
(
(X̂δ,−

kδ , X̂kδ, X̂
δ,+
kδ ) : k ≥ 0

)
such that

X̂δ,−
kδ 4 X̂kδ 4 X̂δ,+

kδ , k ≥ 0.

X̂δ,−
t is a subset of Ẑt, a BBM with the same law as Zt.
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Deterministic barriers. u ∈ L1(R,R+).

Gaussian kernel: Gtu(a) :=
∫ ∞
−∞

1√
2πt

e−(a−r)2/2tu(r) dr.

etGtρ solves ut = 1
2urr + u with initial ρ.

Cut operator Cm is defined by

Cmu(a) := u(a)1
{∫ ∞

a
u(r)dr ≤ m

}
,

so that Cmu has total mass m ∧ ‖u‖1.
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For δ > 0 and k ∈ N, define the upper and lower barriers:

Sδ,±0 ρ := ρ Initial condition

Sδ,+kδ ρ :=
(
C1 (eδGδ)

)k
ρ (diffuse & grow) + cut;

Sδ,−kδ ρ :=
(
(eδGδ)Ce−δ

)k
ρ cut + (diffuse & grow)

We have
∥∥Sδ,±kδ ρ∥∥1 = ‖ρ‖1 = 1 for all k.
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Hydrodynamics of δ-barriers

We prove that for fixed δ

the stochastic barriers converge to the macroscopic barriers:

Theorem 4. Conditions of Theorem 1 and fixed δ:

lim
N→∞

∣∣Xδ,±
kδ ∩ [r,∞)

∣∣
N

=
∫ ∞
a

Sδ,±kδ ρ, a.s. and in L1.

The same is true for the coupling marginals X̂δ,±
kδ .
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Convergence of macroscopic barriers

Partial order: Take u, v : R→ R+ and denote

u 4 v iff
∫ ∞
a

u ≤
∫ ∞
a

v ∀a ∈ R.

Fix t and take diadic δ = t2−n. We prove

• Sδ,−t ρ is increasing and Sδ,+t ρ decreasing in n (diadics).

•
∥∥Sδ,+t ρ− Sδ,−t ρ

∥∥
1 ≤ cδ.

• There exists a continuous function ψ such that for any t > 0,

lim
n→∞

‖Sδ,±t ρ− ψ(·, t)‖1 = 0.
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Sketch of proof of Theorem 1

By coupling X̂δ,−
t 4 X̂t 4 X̂δ,+

t .

Convergences in the sense of the Theorem 1:

N →∞:
The stochastic barriers X̂δ,±

t converge to the macroscopic barriers Sδ,±t .

δ → 0:
The macroscopic barriers converge to a function ψ, along diadics δ → 0.

Corollary:
N -BBM X̂t converge to ψ as N →∞.

This is Theorem 1.
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Sketch of proof of Theorem 2

We show that for continuous Lt, the solution u of the free boundary
problem is in between the barriers:

Sδ,−kδ ρ 4 u(·, kδ) 4 Sδ,+kδ ρ.

Here we use the Brownian representation of the solution.
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Proof of Pre-selection inequalities.

Rank order

(i, j) ≺ (i′, j′) if and only if Bi,1
0 < Bi′,1

0 or i = i′ and j < j′. (2)
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N rank-selected BBM:

Yt :=
{
Bi,j
t :

∣∣{Bi′,j′

t : (i, j) ≺ (i′, j′)}
∣∣ < N

}
,

We have Xδ,−
δ ⊂ Yδ, which in turn implies

Xδ,−
δ � Yδ.
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Labeled N -BBM.

(X1
t , . . . , X

N
t ) ∈ RN

X`
t is just a labelling of N -BBM as function of (Bi,j

[0,t] : i, j):

When one of the Brownian particles branches at time s, identify

Xn
s− := the branching particle

Xm
s− := the position of the leftmost particle (to be erased)

At time s put

Xm
s = Xn

s−

Xm
t will follow the newborn Brownian particle until next branching.
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Labeled rank-selected N -BBM.(
(Y 1
t , σ

1
t ), . . . , (Y N

t , σNt )
)
∈
(
R× N2)N

Y `
t is a labelling of the rank-selected N -BBM Yt.

σ`t tracks the rank of the Y `-particles in the Y -tree.

When one of the Brownian particles branches at time s, identify

Y n
s− := the branching particle, σns− = (i, j)

Y h
s− := lowest ranked Y -particle (to be erased)

At time s put

Y h
s = Y n

s− and this particle will follow now the newborn Brownian particle

σhs = (i,M i
s− + 1) (youngest new element of the Y i branching family)
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Coupling. (X1
t , . . . , X

N
t ),

(
(Y 1
t , σ

1
t ) . . . (Y N

t , σNt )
)

Between branchings X`
t − Y `

t and σ`t are constant.

s branching time for X process.

Xn
s− and Y n

s− branching particles.

σns− = (i, j) rank of Y -branching particle

Xm
s− := leftmost X-particle (to be erased).

Y h
s− := lowest-rank Y -particle (to be erased).

At time s put

Xm
s = Xn

s−, Y h
s = Y m

s−, Y m
s = Y n

s−

Xm
s and Y m

s will follow now the (same) newborn Brownian particle

σhs = σns−, σms = (i,M i
s− + 1) (youngest new element of the branching

family)
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m n = h

n = m h

h m

h m

before jumps:
Xs−

Ys−

after jumps:
Xs

Ys

Coupling between x(t) and
(
y(t), σ(t)

)
. When n = m only the h-th

Y -particle jumps to Y n
s−.

When n = h only the m-th X-particle jumps to Xh
s−.

Perform two cases simultaneously.
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The coupling satisfies

Y `
t ≤ X`

t , for all t, `.

Hence

X̂δ,−
δ � Ŷt � Xt, a.s.

M i
t := size of Y i

0 family at time t.
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The post-selection process

N -BBM Xt is a subset of the BBM Zt.

Xδ,+
δ = N right-most Z-particles at time δ. Hence,

Xδ � Xδ,+
δ .

Domination We have proven the dominations

X̂δ,−
kδ � Xkδ � X̂δ,+

kδ .

for k = 1. Iterate to obtain the same for all k.

Construct the coupling for each time interval and then the Brownian tree
B̂ containing Ŷkδ ⊃ X̂δ,−

kδ .

Similarly construct Brownian tree containing X̂δ,+
kδ .
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Construct new BBM process B̂[0,t] by

Attaching independent BBM to loose branches of Ŷt.

Proposition 5. B̂[0,t] has the same law as the BBM B[0,t] and

Ŷt :=
{
B̂i,j
t :

∣∣{B̂i′,j′

t : (i, j) ≺ (i′, j′)}
∣∣ < N

}
is the rank selected process associated to B̂[0,t].

The rightmost families with up to N total particles coincide

N̂ i
t = M i

t if
∑
j

N j
t 1{Bj,1

0 ≥ B
i,1
0 } ≤ N
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Hydrodynamic limit for the barriers

Macroscopic left boundaries

For δ > 0 and ` ≤ k denote

Lδ,+`δ := sup
r

{∫ r

−∞
Sδ,+`δ ρ(r′)dr′ = 0

}
;

Lδ,−`δ := sup
r

{∫ r

−∞
Sδ,−`δ ρ(r′)dr′ < 1− e−δ

}
. (1)
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Brownian representation of macroscopic barriers:

B[0,t] = (Bs : s ∈ [0, t]) Brownian motion with

B0, random variable with density ρ.

Lemma 6. For test function ϕ ∈ L∞(R) and t > 0,

∫
ϕSδ,+kδ ρ = ekδE

[
ϕ(Bkδ)1

{
B`δ > Lδ,+`δ : 1 ≤ ` ≤ k

}]
.∫

ϕSδ,−kδ ρ = ekδE
[
ϕ(Bkδ)1

{
B`δ > Lδ,−`δ : 0 ≤ ` ≤ k − 1

}]
.
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Generic LLN over trajectories of BBM

Let Bi,1
0 iid with density ρ.

N i
t size at time t of the i-th BBM family. EN i

t = et.

Proposition 7. Let g be bounded. Then

µNt g := 1
N

N∑
i=1

N i
t∑

j=1
g(Bi,j

[0,t]) −→N→∞
etEg(B[0,t]), a.s. and in L1. (0)

a.s. and in L1.

Proof. By the many-to-one Lemma we have

EµNt g = ENtEg(B[0,t]) = etEg(B[0,t]), (1)

The variance of µNt g is order 1/N , by family independence.
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Corollary 8 (Hydrodynamics of the BBM).

lim
N→∞

1
N

N∑
i=1

N i
t∑

j=1
ϕ(Bi,j

t ) = etEϕ(Bt) a.s. and in L1.

= et
∫
ϕ(r)Gtρ(r)dr, (2)
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Proof of Hydrodynamics for barriers

Proof of Theorem 4 BBM representation of stochastic barriers:

πN,δ,+kδ ϕ = 1
N

N∑
i=1

N i
kδ∑

j=1
ϕ(Bi,j

kδ )1{Bi,j
`δ ≥ L

N,δ,+
`δ : 1 ≤ ` ≤ k}

πN,δ,−kδ ϕ = 1
N

N∑
i=1

N i
kδ∑

j=1
ϕ(Bi,j

kδ )1{Bi,j
`δ ≥ L

N,δ,−
`δ : 0 ≤ ` ≤ k − 1}.

We show that as N →∞

LN,δ,±`δ can be replaced by Lδ,±`δ , and get the result by the generic LLN.

Use the fact that the random left boundaries are exact quantiles of 1.
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Proof of Theorem 2 The limit function ψ is the solution of the free
boundary problem.

The local solution of the free boundary problem is in between the barriers:

Theorem 9. Let t ∈ (0, T ], δ ∈ {2−nt, n ∈ N}. Then

Sδ,−t ρ 4 u(·, t) 4 Sδ,+t ρ, t = kδ

The upperbound is immediate. The lower bound reduces to show the
following stochastic order between conditioned probability measures:

Pu0(Bt ≥ r|τL ≤ δ) ≤ Pu1(Bt ≥ r|τL > δ) (3)

where u1 = Ce−δu, u0 = u− u1,

Pui(Bt ∈ A) := 1
‖ui‖1

∫
ui(x)Px(Bt ∈ A)dx. (4)

and τL is the hitting time of the boundary.
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Stationary N-BBM Xt be N -BBM. Process as seen from leftmost
particle:

X ′t := {x−minXt : x ∈ Xt}

Durrett and Remenik for a related Brunet-Derrida process proved:
Theorem 10. N -BBM as seen from leftmost particle is Harris recurrent.

νN unique invariant measure. Under νN asymptotic speed

αN = (N − 1) νN
[
min(X \ {0})

]
,

X ′t starting with anything converges in distribution to νN and

lim
t→∞

minXt

t
= αN .

αN converges to asymtotic speed of the first particle in BBM:

lim
N→∞

αN =
√

2. Berard and Gouéré
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Travelling wave solutions u(r, t) = w(r − αt), where w must satisfy

1
2w
′′ + αw′ + w = 0, w(0) = 0,

∫ ∞
0

w(r)dr = 1.

Groisman and Jonckheere (2013): for each speed α ≥
√

2 there is a
solution wα

wα(r) =
{
Mα re

−αr if α =
√

2
Mα e

−αr sinh
(
r
√
α2 − 2

)
if α >

√
2

(4)

where Mα is a normalization constant.

wα is the unique qsd for Brownian motion with drift −α and absorption
rate 1; see Mart́ınez and San Mart́ın (1994).
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Open problems. (1) Let Xt be the N -BBM process with initial configu-
ration sampled from the stationary measure νN .

Show that the empirical distribution of Xt converges to a measure with
density w√2(t

√
2 + ·), as N → ∞. This would be a strong selection

principle for N -BBM.

Problem: we do not control the particle-particle correlations in the νN
distributed initial configuration.

If we start with independent particles with distribution w√2, then Theo-
rem 1 and w√2(t

√
2 + ·) strong solution of FBP imply convergence of the

empirical measure to this solution.

(2) “Yaglom limit”? Does u(·−Lt, t) converges to wα for some α ≥
√

2?
Fix α, which conditions must satisfy ρ to converge to wα?

(3) Give a simple proof of existence of the solution for the FBP.
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