Hydrodynamics of the $N\mbox{-}{\sf BBM}$ process

Anna De Masi, Pablo A. Ferrari, Errico Presutti, Nahuel Soprano-Loto

Illustration by Eric Brunet

Institut Henri Poincaré, June 2017

Brunet and Derrida N branching particles in \mathbb{R} with selection: discrete time.

Particle at x dies and creates random offsprings around x.

Select the rightmost \boldsymbol{N} particles.

iterate

Pascal Maillard studied the N-BBM process.

N particles move as independent Brownian motions in \mathbb{R} ,

each particle, at rate 1, creates a new particle at its current position.

At each branching time, the left-most particle is removed.

The number N of particles is then conserved.

Brunet Derrida (1997) Shift in the velocity of a front due to a cutoff PRE

Brunet, Derrida, Mueller, Munier (2006). Noisy traveling waves: effect of selection on genealogies. EPL + (06) + (07)

Bérard, Gouéré (2010) Brunet-Derrida behavior of branching-selection particle systems on the line CMP.

Bérard, Maillard (2014) The limiting process of N-BRW with polynomial tails EJP.

Durrett, Remenik (2011) Brunet-Derrida particle systems, free boundary problems and Wiener-Hopf equations AOP.

Derrida, Shi (2017) Large deviations for the BBM in presence of selection or coalescence Preprint.

Julien Berestycki, Brunet, Derrida (2017) Exact solution and precise asymptotics of a Fisher-KPP type front ArXiv

Hydrodynamics

Density ρ with left boundary $L_0 = \arg \max_a \int_a^\infty \rho(x) dx > -\infty$

Time zero: iid continuous random variables with density ρ .

 $X_t :=$ set of positions of N-BBM particles at time t.

Theorem 1. [Existence]

For every $t \ge 0$, there is a density function $\psi(\cdot, t) : \mathbb{R} \to \mathbb{R}^+$ such that,

$$\lim_{N \to \infty} \frac{|X_t \cap [a, \infty)|}{N} = \int_a^\infty \psi(r, t) dr, \quad \text{a.s. and in } L^1.$$

for any $a \in \mathbb{R}$.

Free boundary problem.

Density ρ with left boundary $L_0 = \arg \max_a \int_a^\infty \rho(x) dx > -\infty$

Find $((u(r,t), L_t) : r \in \mathbb{R}, t \in [0,T])$ such that: $u_t = \frac{1}{2}u_{rr} + u, \quad \text{in } (L_t, +\infty);$ $u(r,0) = \rho(r);$ $u(L_t,t) = 0, \quad \int_{L_t}^{\infty} u(r,t)dr = 1.$

If one finds a continuous function L_t such that

$$e^t P(L_s \le B_s^{\rho}, 0 \le s \le t) = 1, \qquad t \ge 0.$$

where B_s^{ρ} is BM with random initial position $B_0^{\rho} \sim \rho$, then

$$\int \varphi(r)u(r,t)dr = e^t E(\varphi(B_t^{\rho}) \mathbf{1}\{L_s \le B_s^{\rho}, 0 \le s \le t\})$$

Theorem 2. If L_t is a continuous function such that

 $((u(r,t), L_t) : t \in [0,T]$

is a solution of the free boundary problem, then the hydrodynamic limit ψ coincides with $u{:}$

$$\psi(\cdot, t) = u(\cdot, t), \quad t \in [0, T].$$
(1)

Lee (2017) proved that if $\rho \in C_c^2([L_0,\infty))$ and $\rho'_{L_0} = 2$ then there exist T > 0 and a solution (u, L) of the free boundary problem with the following properties:

- $\{L_t : t \in [0,T]\}$ is in $C^1[0,T]$, $L_{t=0} = L_0$
- $u \in C(D_{L,T}) \cap C^{2,1}(D_{L,T})$, where $D_{L,T} = \{(r,t) : L_t < r, 0 < t < T\}$.

General strategy

We use a kind of Trotter-Kato approximation as upper and lower bounds.

Durrett and Remenik upperbound for the Brunet-Derrida model. Leftmost particle motion is *increasing*: natural lower bounds.

Upper and lower bounds method was used in several papers:

- De Masi, F and Presutti (2015) Symmetric simple exclusion process with free boundaries. PTRF

• Carinci, De Masi, Giardinà, and Presutti (2016) Free boundary problems in PDEs and particle systems. SpringerBriefs in Mathematical Physics.

We introduce labelled versions of the processes and a coupling of trajectories to prove the lowerbound. **Ranked BBM, a tool** Let (Z_0^1, \ldots, Z_0^N) BBM initial positions. $B_0^{i,1} = Z_0^i$, iid with density ρ . N_t^i : is the size of the *i*th BBM family.

 $B_t^{i,j}:$ is the j-th member of the i-th family at time $t,\ 1\leq j\leq N_t^i.$ birth-time order.

BBM:
$$Z_t = \{B_t^{i,j} : 1 \le j \le N_t^i, 1 \le i \le N\}$$

 $B^{i,j}_{[0,t]}$ trajectory coincides with ancestors before birth.

(i, j) is the rank of the *j*th particle of *i*-family

N-BBM as subset of BBM

Let $X_0 = Z_0$, $\tau_0 = 0$

 τ_n branching times of BBM.

$$X_t := \{ B_t^{i,j} : B_{\tau_n}^{i,j} \ge L_{\tau_n}, \text{ for all } \tau_n \le t \}$$

 $L_{\tau_n} :=$ defined iteratively such that $|X_t| = N$ for all t

 X_t has the law of N-BBM.

Stochastic barriers.

Fix $\delta>0$

 $X_0^{\delta,\pm} = Z_0.$

The upper barrier. Post-selection at time $k\delta$.

$$\begin{split} X^{\delta,+}_{k\delta} &:= N \text{ rightmost } \{B^{i,j}_{k\delta} : B^{i,j}_{(k-1)\delta} \in X^{\delta,+}_{(k-1)\delta} \} \\ L^{\delta,+}_{k\delta} &:= \min X^{\delta,+}_{k\delta} \end{split}$$

The number of particles in $X_{k\delta}^{\delta,+}$ is exactly N for all k.

The lower barrier.

Pre selection at time $(k-1)\delta$.

Select maximal number of rightmost particles at time $(k-1)\delta$ keeping no more than N particles at time $k\delta$.

$$\begin{split} L^{\delta,-}_{(k-1)\delta} &:= \text{cutting point at time } (k-1)\delta \\ X^{\delta,-}_{k\delta} &:= \{B^{i,j}_{k\delta} : B^{i,j}_{(k-1)\delta} \in X^{\delta,-}_{(k-1)\delta} \cap [L^{\delta,-}_{(k-1)\delta},\infty)\} \end{split}$$

Only entire families of particles at time $(k-1)\delta$ are kept at time $k\delta$.

The number of particles in $X_{k\delta}^{\delta,-}$ is N - O(1).

Mass transport partial order

 $X \preccurlyeq Y \quad \text{if and only if} \quad |X \cap [a,\infty)| \leq |Y \cap [a,\infty)| \quad \forall a \in \mathbb{R}.$

Proposition 3. Coupling $((\hat{X}_{k\delta}^{\delta,-}, \hat{X}_{k\delta}, \hat{X}_{k\delta}^{\delta,+}) : k \ge 0)$ such that

$$\hat{X}_{k\delta}^{\delta,-} \preccurlyeq \hat{X}_{k\delta} \preccurlyeq \hat{X}_{k\delta}^{\delta,+}, \quad k \ge 0.$$

 $\hat{X}_t^{\delta,-}$ is a subset of \hat{Z}_t , a BBM with the same law as Z_t .

Deterministic barriers. $u \in L^1(\mathbb{R}, \mathbb{R}_+)$.

Gaussian kernel:
$$G_t u(a) := \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-(a-r)^2/2t} u(r) dr.$$

$$e^t G_t \rho$$
 solves $u_t = \frac{1}{2}u_{rr} + u$ with initial ρ .

Cut operator C_m is defined by

$$C_m u(a) := u(a) \mathbf{1} \bigg\{ \int_a^\infty u(r) dr \le m \bigg\},$$

so that $C_m u$ has total mass $m \wedge ||u||_1$.

For $\delta > 0$ and $k \in \mathbb{N}$, define the upper and lower barriers:

$$\begin{split} S_0^{\delta,\pm}\rho &:= \rho \quad \text{Initial condition} \\ S_{k\delta}^{\delta,+}\rho &:= \left(C_1 \left(e^{\delta}G_{\delta}\right)\right)^k \rho \quad (\text{diffuse \& grow}) + \text{cut}; \\ S_{k\delta}^{\delta,-}\rho &:= \left(\left(e^{\delta}G_{\delta}\right)C_{e^{-\delta}}\right)^k \rho \quad \text{cut} + (\text{diffuse \& grow}) \end{split}$$

We have $\|S_{k\delta}^{\delta,\pm}\rho\|_1 = \|\rho\|_1 = 1$ for all k.

Hydrodynamics of δ -barriers

We prove that for fixed δ

the stochastic barriers converge to the macroscopic barriers:

Theorem 4. Conditions of Theorem 1 and fixed δ :

$$\lim_{N \to \infty} \frac{\left| X_{k\delta}^{\delta, \pm} \cap [r, \infty) \right|}{N} = \int_{a}^{\infty} S_{k\delta}^{\delta, \pm} \rho, \quad \text{a.s. and in } L^{1}.$$

The same is true for the coupling marginals $\hat{X}_{k\delta}^{\delta,\pm}$.

Convergence of macroscopic barriers

Partial order: Take $u, v : \mathbb{R} \to \mathbb{R}^+$ and denote

$$u \preccurlyeq v \quad \text{iff} \quad \int_a^\infty u \leq \int_a^\infty v \quad \forall a \in \mathbb{R}.$$

Fix t and take diadic $\delta = t2^{-n}$. We prove

- $S_t^{\delta,-}\rho$ is increasing and $S_t^{\delta,+}\rho$ decreasing in n (diadics).
- $\left\|S_t^{\delta,+}\rho S_t^{\delta,-}\rho\right\|_1 \le c\delta.$
- There exists a continuous function ψ such that for any t > 0,

$$\lim_{n \to \infty} \|S_t^{\delta, \pm} \rho - \psi(\cdot, t)\|_1 = 0.$$

Sketch of proof of Theorem 1

By coupling $\hat{X}_t^{\delta,-} \preccurlyeq \hat{X}_t \preccurlyeq \hat{X}_t^{\delta,+}$.

Convergences in the sense of the Theorem 1:

 $N \to \infty$:

The stochastic barriers $\hat{X}_t^{\delta,\pm}$ converge to the macroscopic barriers $S_t^{\delta,\pm}.$

 $\delta \rightarrow 0$:

The macroscopic barriers converge to a function ψ , along diadics $\delta \rightarrow 0$.

Corollary: N-BBM \hat{X}_t converge to ψ as $N \to \infty$.

This is Theorem 1.

Sketch of proof of Theorem 2

We show that for continuous L_t , the solution u of the free boundary problem is in between the barriers:

$$S_{k\delta}^{\delta,-}\rho \preccurlyeq u(\cdot,k\delta) \preccurlyeq S_{k\delta}^{\delta,+}\rho.$$

Here we use the Brownian representation of the solution.

Proof of Pre-selection inequalities.

Rank order

$$(i,j) \prec (i',j')$$
 if and only if $B_0^{i,1} < B_0^{i',1}$ or $i = i'$ and $j < j'$. (2)

N rank-selected BBM :

$$Y_t := \{ B_t^{i,j} : |\{ B_t^{i',j'} : (i,j) \prec (i',j')\}| < N \},\$$

We have $X^{\delta,-}_{\delta} \subset Y_{\delta}$, which in turn implies

 $X_{\delta}^{\delta,-} \preceq Y_{\delta}.$

Labeled N-BBM.

$$(X_t^1,\ldots,X_t^N) \in \mathbb{R}^N$$

 X_t^{ℓ} is just a labelling of *N*-BBM as function of $(B_{[0,t]}^{i,j}:i,j)$: When one of the Brownian particles branches at time *s*, identify $X_{s-}^n :=$ the branching particle $X_{s-}^m :=$ the position of the leftmost particle (to be erased) At time *s* put

 $X^m_{\circ} = X^n_{\circ}$

 X_t^m will follow the newborn Brownian particle until next branching.

Labeled rank-selected N-BBM.

$$((Y_t^1, \sigma_t^1), \dots, (Y_t^N, \sigma_t^N)) \in (\mathbb{R} \times \mathbb{N}^2)^N$$

 Y_t^{ℓ} is a labelling of the rank-selected N-BBM Y_t .

 σ_t^ℓ tracks the rank of the $Y^\ell\text{-particles}$ in the Y-tree.

When one of the Brownian particles branches at time s, identify

$$Y_{s-}^n :=$$
 the branching particle, $\sigma_{s-}^n = (i,j)$

$$Y_{s-}^h :=$$
 lowest ranked Y-particle (to be erased)

At time s put

 $Y^h_s=Y^n_{s-}$ and this particle will follow now the newborn Brownian particle $\sigma^h_s=(i,M^i_{s-}+1)$ (youngest new element of the Y^i branching family)

Coupling. $(X_t^1, \ldots, X_t^N), ((Y_t^1, \sigma_t^1) \ldots (Y_t^N, \sigma_t^N))$ Between branchings $X_t^{\ell} - Y_t^{\ell}$ and σ_t^{ℓ} are constant. *s* branching time for *X* process.

 X_{s-}^n and Y_{s-}^n branching particles.

 $\sigma_{s-}^n=(i,j)$ rank of Y-branching particle

 $X_{s-}^m :=$ leftmost X-particle (to be erased).

 $Y_{s-}^h :=$ lowest-rank *Y*-particle (to be erased).

At time s put

 $X_{s}^{m} = X_{s-}^{n}, Y_{s}^{h} = Y_{s-}^{m}, Y_{s}^{m} = Y_{s-}^{n}$

 X^m_s and Y^m_s will follow now the (same) newborn Brownian particle $\sigma^h_s=\sigma^n_{s-},\,\sigma^m_s=(i,M^i_{s-}+1)$ (youngest new element of the branching family)

Relative positions of particles at branching time s.

Coupling between $\underline{x}(t)$ and $(\underline{y}(t), \underline{\sigma}(t))$. When n = m only the *h*-th *Y*-particle jumps to Y_{s-}^n . When n = h only the *m*-th *X*-particle jumps to X_{s-}^h . Perform two cases simultaneously. The coupling satisfies

$$Y_t^\ell \le X_t^\ell, \quad \text{for all } t, \ell.$$

Hence

$$\hat{X}^{\delta,-}_{\delta} \preceq \hat{Y}_t \preceq X_t$$
, a.s.

 $M_t^i :=$ size of Y_0^i family at time t.

The post-selection process

N-BBM X_t is a subset of the BBM Z_t .

 $X_{\delta}^{\delta,+} = N$ right-most Z-particles at time δ . Hence,

$$X_{\delta} \preceq X_{\delta}^{\delta,+}$$

Domination We have proven the dominations

$$\hat{X}_{k\delta}^{\delta,-} \preceq X_{k\delta} \preceq \hat{X}_{k\delta}^{\delta,+}.$$

for k = 1. Iterate to obtain the same for all k.

Construct the coupling for each time interval and then the Brownian tree \hat{B} containing $\hat{Y}_{k\delta} \supset \hat{X}_{k\delta}^{\delta,-}$.

Similarly construct Brownian tree containing $\hat{X}_{k\delta}^{\delta,+}$.

Construct new BBM process $\hat{B}_{[0,t]}$ by

Attaching independent BBM to loose branches of \hat{Y}_t .

Proposition 5. $\hat{B}_{[0,t]}$ has the same law as the BBM $B_{[0,t]}$ and

$$\hat{Y}_t := \{ \hat{B}_t^{i,j} : \left| \{ \hat{B}_t^{i',j'} : (i,j) \prec (i',j') \} \right| < N \}$$

is the rank selected process associated to $\hat{B}_{[0,t]}$.

The rightmost families with up to N total particles coincide

$$\hat{N}_t^i = M_t^i \quad \text{if} \quad \sum_j N_t^j \mathbf{1}\{B_0^{j,1} \ge B_0^{i,1}\} \le N$$

Hydrodynamic limit for the barriers

Macroscopic left boundaries

For $\delta>0$ and $\ell\leq k$ denote

$$L_{\ell\delta}^{\delta,+} := \sup_{r} \left\{ \int_{-\infty}^{r} S_{\ell\delta}^{\delta,+} \rho(r') dr' = 0 \right\};$$

$$L_{\ell\delta}^{\delta,-} := \sup_{r} \left\{ \int_{-\infty}^{r} S_{\ell\delta}^{\delta,-} \rho(r') dr' < 1 - e^{-\delta} \right\}.$$
(1)

Brownian representation of macroscopic barriers:

 $B_{[0,t]} = (B_s : s \in [0,t])$ Brownian motion with

 B_0 , random variable with density ρ .

Lemma 6. For test function $\varphi \in L^{\infty}(\mathbb{R})$ and t > 0,

$$\int \varphi S_{k\delta}^{\delta,+} \rho = e^{k\delta} E[\varphi(B_{k\delta}) \mathbf{1} \{ B_{\ell\delta} > L_{\ell\delta}^{\delta,+} : 1 \le \ell \le k \}].$$
$$\int \varphi S_{k\delta}^{\delta,-} \rho = e^{k\delta} E[\varphi(B_{k\delta}) \mathbf{1} \{ B_{\ell\delta} > L_{\ell\delta}^{\delta,-} : 0 \le \ell \le k-1 \}].$$

Generic LLN over trajectories of BBM

Let $B_0^{i,1}$ iid with density ρ .

 N_t^i size at time t of the i-th BBM family. $EN_t^i = e^t$.

Proposition 7. Let g be bounded. Then

$$\mu_t^N g := \frac{1}{N} \sum_{i=1}^N \sum_{j=1}^{N_t^i} g(B_{[0,t]}^{i,j}) \underset{N \to \infty}{\longrightarrow} e^t Eg(B_{[0,t]}), \quad \text{a.s. and in } L^1.$$
 (0)

a.s. and in L^1 .

Proof. By the many-to-one Lemma we have

$$E\mu_t^N g = EN_t Eg(B_{[0,t]}) = e^t Eg(B_{[0,t]}), \tag{1}$$

The variance of $\mu_t^N g$ is order 1/N, by family independence.

Corollary 8 (Hydrodynamics of the BBM).

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N_t^i} \varphi(B_t^{i,j}) = e^t E \varphi(B_t) \quad \text{a.s. and in } L^1.$$
$$= e^t \int \varphi(r) G_t \rho(r) dr, \qquad (2)$$

Proof of Hydrodynamics for barriers

Proof of Theorem 4 BBM representation of stochastic barriers:

$$\begin{aligned} \pi_{k\delta}^{N,\delta,+}\varphi &= \frac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{N_{k\delta}^{i}}\varphi(B_{k\delta}^{i,j})\mathbf{1}\{B_{\ell\delta}^{i,j} \geq \underline{L}_{\ell\delta}^{N,\delta,+}: 1 \leq \ell \leq k\}\\ \pi_{k\delta}^{N,\delta,-}\varphi &= \frac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{N_{k\delta}^{i}}\varphi(B_{k\delta}^{i,j})\mathbf{1}\{B_{\ell\delta}^{i,j} \geq \underline{L}_{\ell\delta}^{N,\delta,-}: 0 \leq \ell \leq k-1\}. \end{aligned}$$

We show that as $N \to \infty$

 $L_{\ell\delta}^{N,\delta,\pm}$ can be replaced by $L_{\ell\delta}^{\delta,\pm}$, and get the result by the generic LLN. Use the fact that the random left boundaries are exact quantiles of 1.

Proof of Theorem 2 The limit function ψ is the solution of the free boundary problem.

The local solution of the free boundary problem is in between the barriers:

Theorem 9. Let $t \in (0, T]$, $\delta \in \{2^{-n}t, n \in \mathbb{N}\}$. Then

$$S_t^{\delta,-}\rho \preccurlyeq u(\cdot,t) \preccurlyeq S_t^{\delta,+}\rho, \qquad t=k\delta$$

The upperbound is immediate. The lower bound reduces to show the following stochastic order between conditioned probability measures:

$$P_{u_0}(B_t \ge r | \tau^L \le \delta) \le P_{u_1}(B_t \ge r | \tau^L > \delta)$$
(3)

where $u_1 = C_{e^{-\delta}} u$, $u_0 = u - u_1$,

$$P_{u_i}(B_t \in A) := \frac{1}{\|u_i\|_1} \int u_i(x) P_x(B_t \in A) dx.$$
(4)

and τ^L is the hitting time of the boundary.

Stationary *N***-BBM** X_t be *N*-BBM. Process as seen from leftmost particle:

$$X'_t := \{x - \min X_t : x \in X_t\}$$

Durrett and Remenik for a related Brunet-Derrida process proved:

Theorem 10. N-BBM as seen from leftmost particle is Harris recurrent.

 ν_N unique invariant measure. Under ν_N asymptotic speed

$$\alpha_N = (N-1)\,\nu_N\big[\min(X\setminus\{0\})\big],\,$$

 X_t' starting with anything converges in distribution to u_N and

$$\lim_{t \to \infty} \frac{\min X_t}{t} = \alpha_N.$$

 α_N converges to asymptotic speed of the first particle in BBM:

$$\lim_{N \to \infty} \alpha_N = \sqrt{2}.$$
 Berard and Gouéré

Travelling wave solutions $u(r,t) = w(r - \alpha t)$, where w must satisfy

$$\frac{1}{2}w'' + \alpha w' + w = 0, \quad w(0) = 0, \quad \int_0^\infty w(r)dr = 1.$$

Groisman and Jonckheere (2013): for each speed $\alpha \geq \sqrt{2}$ there is a solution w_{α}

$$w_{\alpha}(r) = \begin{cases} M_{\alpha} r e^{-\alpha r} & \text{if } \alpha = \sqrt{2} \\ M_{\alpha} e^{-\alpha r} \sinh\left(r\sqrt{\alpha^2 - 2}\right) & \text{if } \alpha > \sqrt{2} \end{cases}$$
(4)

where M_{α} is a normalization constant.

 w_{α} is the unique qsd for Brownian motion with drift $-\alpha$ and absorption rate 1; see Martínez and San Martín (1994).

Open problems. (1) Let X_t be the *N*-BBM process with initial configuration sampled from the stationary measure ν^N .

Show that the empirical distribution of X_t converges to a measure with density $w_{\sqrt{2}}(t\sqrt{2}+\cdot)$, as $N \to \infty$. This would be a strong selection principle for N-BBM.

Problem: we do not control the particle-particle correlations in the ν_N distributed initial configuration.

If we start with independent particles with distribution $w_{\sqrt{2}}$, then Theorem 1 and $w_{\sqrt{2}}(t\sqrt{2}+\cdot)$ strong solution of FBP imply convergence of the empirical measure to this solution.

(2) "Yaglom limit"? Does $u(\cdot - L_t, t)$ converges to w_{α} for some $\alpha \ge \sqrt{2}$? Fix α , which conditions must satisfy ρ to converge to w_{α} ?

(3) Give a simple proof of existence of the solution for the FBP.