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Introduction.

Work in progress with M. Colangeli, E. Presutti (L’Aquila)
C. Giardinà, C. Giberti, C. Vernia (Modena-Reggio Emilia)

In the literature “uphill diffusion” has several meanings.

Here we refer to one in particular which occurs when a
diffusive fluid is in a stationary state with a boundary
driven current and undergoes a phase transition.

We then say that:

there is uphill diffusion if the current brings mass from the
region with the low density phase to the one with the larger
density.
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Introduction.

To verify the presence of uphill diffusion I consider the
nearest-neighbor Ising model with ferromagnetic interaction in a
square [0,L]2 ∩ Z2 with

Kawasaki dynamics at β > βc .

Periodic boundary conditions in the vertical direction.

Independent spin flips on the first and last columns that
force a magnetization m+ > 0 on the right column and
m− = −m+ on the left column (which simulate two
reservoirs).

Precise definitions are given later.
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Introduction.

We have fixed β = 1 (> βc ≈ 0,440686 by Onsager)

and run computer simulations with L = 50,100

for various values of m+ in (1− δ, 1], δ > 0 small, and
m− = −m+

Fact.
As m+ decreases from m+ = 1 the current is first negative and
past a critical value it becomes positive.
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Introduction.

Downhill and uphill diffusions.

We conclude from the simulations that:

If m+ (the magnetization of the right reservoir R+) is
supercritical and m− (the magnetization of the left
reservoir R−) = −m+ then the magnetization flows from
the plus to the minus phase (from R+ to R−) so that the
current is negative (in agreement with the Fick’s law) and
we see downhill diffusion.

Instead if m+ is subcritical the magnetization flows from
the minus to the plus phases (from R− to R+) thus the
current is positive and it goes uphill.
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Introduction.

The value of the critical magnetization (at β = 1) obtained from
the computer simulations is mcrit = 0.99926 which is very close
to the equilibrium spontaneous magnetization mβ = 0.9992757
(by Onsager) of the Ising model.

I will present in this talk heuristic arguments which indicate that
in the limit L→∞ there is no uphill diffusion which is instead
present at finite L. Therefore the claim is:

There is uphill diffusion but it is a finite size effect.
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The model : nearest-neighbor Ising spin system

σ(x) = ±1 in the square x ∈ [0,L]2 ∩ Z2. β = 1 > βc ≈ 0,44

E = set of n.n. bonds < x , y > including x =< i ,1 > and
y =< i ,L > (vertical periodicity). L

r
x

ry

L

The ferromagnetic hamiltonian we consider is

H(σ) = H0(σ) + Hb(σ)

where
H0(σ) = 2

∑
<x ,y>∈E

1σ(x)6=σ(y)
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Hb(σ) = 2
L∑

j=1

1σ(1,j)6=σ(1,j− L
4 ) + 2

L∑
j=1

1σ(L,j)6=σ(L,j− L
4 )

where j − L
4 stands for j minus the integer part of L

4 modulo L.

It will become clear later why we have added the boundary
interaction Hb(σ) which describes a delocalized spin-spin
interaction on the first and last columns:

jr
r j − L

4

L

L
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Kawasaki dynamics + spin flips.

This is the continuous time Markov process with the following
rates. The spins in a bond < x , y >∈ E exchange values at rate

c(x , y ;σ) = 1σ(x)6=σ(y)

{
1 if ∆H(σ) = H(σx ,y )− H(σ) ≤ 0
e−β∆H(σ) otherwise

The spins σ(x) at the boundaries flip at rate c±:

c−(x ;σ) =
1− σ(x)m−

2
if x = (1, j)

c+(x ;σ) =
1− σ(x)m+

2
if x = (L, j)
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We have done computer simulations using both the classical
Metropolis Monte Carlo method and the kinetic Monte Carlo
method.

While the first algorithm is better suited to describe stationary
states the second, which mimics a continuous time dynamics,
is useful in the description of transient regimes.
The two dynamics have the same invariant measure.

P. Kratzer, Monte Carlo and Kinetic Monte Carlo Methods – A
Tutorial, Multiscale Simulation Methods in Molecular Sciences,
Forschungszentrum Jülich, NIC Series, Vol. 42, pp. 51-76,
2009
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Hydrodynamic limit.

Let β < βc .

In the limit L→∞ the empirical magnetization in the stationary
state converges to the macroscopic magnetization profile m(r),
r ∈ [0,1]2.

By the vertical symmetry m(r) is a function m(r1) of the
x-coordinate r1 and m(r1), r1 ∈ (0,1), is the unique solution of:

j = −D(m)
dm
dr1

= const., m(0) = m−, m(1) = m+

with D(m) > 0 given by the Green Kubo formula.
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β < βc: Fick law.

m(r1), r1 ∈ (0,1) is the unique solution of

j = −D(m)
dm
dr1

= const., m(0) = m−, m(1) = m+

The statement should follow from:

Varadhan, Yau: Diffusive limit of lattice gas with mixing
conditions (1997)
Spohn, Yau: Bulk Diffusivity of Lattice Gases Close to
Criticality (1995)
Eyink, Lebowitz, Spohn: Hydrodynamics of stationary
non-equilibrium states for some stochastic lattice gas
models (1990)
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β > βc.

The analysis is much more complex when β > βc because of
phase-coexistence with regions (interfaces) where the
magnetization profile is not slowly varying.

However if the system is in only one phase the problem
disappears and the hydrodynamic limit should still be described
by a diffusion with D strictly positive.

Indeed:

I Spohn and Yau have proved that for β > βc the Green-Kubo
diffusion coefficient

D(m) > 0 if |m| > mβ, D(m) = 0 otherwise

IHP - June 2017



β > βc, finite volume effects.

Thus if both m+ and m− are ≥ mβ (or both ≤ −mβ) we
expect in the hydrodynamic limit that the Fick law is satisfied
as when β < βc .

I In a finite L× L box the evolution is then well approximated
by the regular diffusion described above, provided there is a
single phase.

Here comes the key point we will use to explain the
phenomenon of uphill diffusion:

If L is finite (and large) the plus stable region is slightly larger
than [mβ,1] and extends to (mβ − cL−2/3,1] (see next slide).

I Conjecture: profiles with values in (mβ − cL−2/3,1] are well
described by a regular diffusion.
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Finite size effect: stable regions are larger.

Consider the canonical Gibbs measure µ with magnetization m
in the torus [0,L]2 ∩ Z2: (see for instance Biskup, Chayes,
Kotecký, 2003)

If m ∈ (mβ − cL−2/3,mβ), c small enough, then µ is
supported by configurations with “small" contours (of size
≤ log L).

There is no phase separation.

Instead if m = mβ − cL−2/3 with c large there is a droplet of
size L2/3.

Thus:
I (−mβ,−mβ + cL−2/3) is the minus metastable region
I (mβ − cL−2/3,mβ) is the plus metastable region
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The conjecture I stated before is that if both m− and m+ are in
the plus metastable region (or both in the minus metastable
region) then the profile is well described by a regular diffusion.

In our case we want m+ plus-stable/metastable and
m− = −m+ minus-stable/metastable, there is then necessarily
an interface and the above considerations do not apply.
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β > βc: equilibrium.

To understand what happens we start from equilibrium
considering the canonical Gibbs measure with Hamiltonian
H0 + Hb and total magnetization m = 0.

This is the Wulff problem first studied by Dobrushin, Kotecký,
Shlosman.
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Wulff shape.

It is proved that the typical configurations have the following
structure:

there is a vertical strip centered at L/2 of macroscopically
infinitesimal thickness: to the right of the strip the magnetization
is essentially mβ and to the left −mβ; or viceversa.

Without the additional hamiltonian Hb the magnetization in the
last column differs from mβ (or −mβ) and this is why we have
added Hb.

We have used ideas in:
I Bodineau and Presutti (2003) where they study surface
tension and Wulff shape without spin flip symmetry.
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Finite volume corrections.

If L is finite the magnetization of the last column is not exactly
equal to mβ (or to −mβ).

We thus compute its value by running simulations of the
Kawasaki dynamics with hamiltonian H0 + Hb starting from a
configuration with:
σ(x) = −1, x = (i , j), i ≤ L

2 and σ(x) = 1 elsewhere.

1

+

L/2 L

L
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We have computed the time asymptotic magnetization m∗ in
the last column. When L = 50 we get:

m∗ =
1
T

t0+T∑
t=t0

L∑
j=1

σt (L, j) ≈ 0.99926, t0 = 109,T = 105

which is very close to the equilibrium magnetization

mβ = 0.9992757 (Onsager)
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Critical value of m+.

Observe that m∗ must be very close to the critical value mcrit of
m+ because:

if m+ = m∗ (and m− = −m∗) then the reservoirs are trying to
impose a magnetization which is already there so that their
influence is negligible.

Therefore the current in the presence of the reservoirs is
essentially the current without reservoirs which is 0.

We have thus explained the relation between the critical value
of m+ and the equilibrium spontaneous magnetization mβ.
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We have not made many progresses in the analysis of the
model and we have thus looked for simplifications.

We have tried two of them.

I The first one is to study the regime where β →∞ and time is
scaled appropriately.

Analogous regime has been considered by:

- den Hollander, Nardi, Olivieri, Scoppola (2000), (2003)
- A. Bovier · F. den Hollander · F.R. Nardi (2006)

to identify size and shape of the critical droplet and the time of
its creation in the limit as β →∞.
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The β →∞ limit: m+ = 1.

We start from the initial configuration:

1

+

L/2 L

L

The first change occurs on the time scale e12β when the spins
in a bond across the interface exchange their values.
At this time we have a - in a set of +’s and a + in a set of -’s.

L

1 L/2 L
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The β →∞ limit: m+ = 1

With probability 1 as β →∞ the discrepancies die and the
initial state is re-stablished on the time scale e4β

This can happen in two ways:

the discrepancies are killed by the reservoirs (the - is
absorbed by the right reservoir and the + by the left
reservoir)

the discrepancies meet at the interface and swhich back.
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The β →∞ limit: m+ = 1− e−aβ, a ∈ (0,4)

The first change is when either a - is created on the last column
or a + on the first column.

1 L/2 L

L

The discrepancy is either re-absorbed by the reservoir or
moves inside. In the latter case it moves as a random walk with
intensity 1 till it either reaches the interface or it is absorbed by
the reservoir.

1 L

L
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If it reaches the interface it “sticks"

1 L

because the intensity for detaching is e−4β and so this will not
be seen on the time scale eaβ.

We have therefore a two-sided kind of diffusion-limited
aggregation.

The analysis of this process and of what happens on longer
times scale becomes too complicated and we did not make
many progresses.
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Pinning the interface.

I A second type of simplifications which is more successful
than the previous one deals with a main difficulty, namely to
control location and size of the interface.

To this end we add to the Hamiltonian H the energy due to a
space dependent magnetic field

h(x) = ε1i> L
2
− ε1i≤ L

2
, x = (i , j)

The corresponding Gibbs measure is a sort of Dobrushin state
with a localized interface and magnetization approching mβ,ε

when moving to the right of the interface.

mβ,ε > mβ (mβ is the spontaneous magnetization for H.)
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Reservoirs and an external magnetic field

I We now consider the process with the reservoirs and with
m+ “+ stable or metastable" and m− = −m+.

It is natural to conjecture that as in equilibrium, in the stationary
state there is a vertical interface localized around the middle of
the box.

Consider a “small (macroscopically infinitesimal) vertical strip"
around the interface and call Λ± the regions to the right and left
of the strip. We may suppose that the magnetization at the end
of the strip are ≈ ±mβ,ε.

L

+

L/2 L1

Λ

IHP - June 2017



L

+

L/2 L1

Λ

Notice that in Λ+ the magnetic field is constant so that the bond
exchange rates are the same as when ε = 0. The reservoirs
spin flips are also independent of ε.

Then in the region Λ+ we are in set up where the Fick law
approximately holds with boundary values mβ,ε and m+

provided that m+ > mβ − cL−2/3, c small.

Then the sign of the current j depends on the difference
mβ,ε −m+ and j > 0 if the difference is positive.
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Reservoirs with an external magnetic field.

If m+ ∈ [mβ,mβ,ε) in the hydrodynamic limit the stationary
macroscopic magnetization density m(r1), r1 ∈ (0,1)
satisfies:

j = −D(m)
dm
dr1

= const., r1 ∈ (0,
1
2

) ∪ (
1
2
,1)

m(0) = m−, m(
1
2

) = −mβ,ε, m(
1
2

) = mβ,ε, m(1) = m+

I In the hydrodynamic limit we get a positive current hence
uphill diffusion.

This is in contrast to what claimed in the introduction but it is
not a contradiction because the effect is due to the external
magnetic field.
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Indeed the magnetic field produces a positive current even
when there is no phase transition with a magnetization jump in
the middle.

Consider for instance the case H = 0. The Kawasaky dynamics
is the well known exclusion process except for the bonds which
cross the interface: in that case the exchange +⇒ − is favored
with respect to the opposite one due to h.

A 1d version of this is system has been studied by:

• Bodineau, Derrida, Lebowitz, (2010) A diffusive system driven
by a battery or by a smoothly varying field.
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We have considered a similar model but not in a circle and with
reservoirs at the ends. (Colangeli, DM, Presutti (2017)).
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At the bottom right corner we plot the magnetization profile.

The profile in the large picture is an enlarging of the profile
around the middle .

In macroscopic units the transition region becomes a
discontinuity point.
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Uphill diffusion.

In these cases we have uphill diffusion namely a current which
goes uphill from smaller to larger values of the magnetization in
the region where the magnetic field changes sign.

This phenomenon was first observed by:

• L.S. Darken (1949) Diffusion of carbon in austenite with a
discontinuity in composition Transactions of the American
Institute of Mining, Metallurgical and Petroleum Engineers 180
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Uphill diffusion: Darken experiment

Quoting Darken: In order to demonstrate the existence of such
diffusion in metals a series of four weld-diffusion experiments
was made. In these measurements pairs of steel of virtually the
same carbon content, were weld at the end and held at 1050◦C
for about 2 weeks. Subsequent analysis showed that the
carbon had diffused so as to produce an inequality of carbon
content on the two sides of the weld.... The uphill diffusion of
carbon is most clear in fig.2.... The large difference is
occasioned by the high silicon content of one side.... Thus
silicon decreases and.... gives a pronounced migration of
carbon to the high carbon side.
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Uphill diffusion

The relation with the previous models is that the role of silicon
is represented by our magnetic field which has a discontinuity
at the middle and the carbon particles are then represented by
the spins values +1 (-1= empty site).

For recent survey on uphill diffusion see for instance:

Rajamani Krishna, Uphill diffusion in multicomponent mixtures
Chem. Soc. Rev., 44, 2812–2836 (2015)
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Thus the positive current found by adding the external magnetic
field may be produced by the magnetic field itself and vanishes
when it is removed. (m+ ∈ [mβ,mβ.ε))

Here enter into play the finite volume effects:

if we take m+ ∈ (mβ − cL−2/3,mβ) then the difference
mβ,ε −m+ is not only positive but uniformly positive as ε→ 0.

Thus when m+ = mβ − cL−2/3 we have a positive current
uniformly in ε which scales like L−1L−2/3.

This might look as the desired explanation of the uphill diffusion
phenomenon, but it is not quite so.
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In fact the simulation show that ε = 0 is quite different than
ε > 0 if m+ ∈ (mβ − cL−2/3,mβ).

We see that the magnetization profile when ε = 0 moves away
from the middle of the domain and goes to the boundary.

Nonetheless the current we measure is still positive.
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Simulations

Below I show the computer simulations.

Recall that we have argued that mcrit ≈ 0.99926

Start with the interface at L
4 and with m+ = 0.99936

Start with the interface at L
4 and with m+ = 0.998

For smaller values of m+ strange phenomena appear. The
simulation refers to m+ = 0.9
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