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Crossover between Diffusion and Superdiffusion

• One dimensional conservative asymmetric interacting parti-
cle systems display anomalous diffusion.

• It means that if the system at equilibrium is locally disturbed
by adding some extra energy, the perturbation will not diffuse
like a Brownian Motion but like some superdiffusive process.

• What is the superdiffusive process? How universal is it?
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Crossover between Diffusion and Superdiffusion

• We are interested in one dimensional interacting particle
systems which conserve some quantities (energy, density,
momentum ...).

• In a suitable space-time scale, the empirical conserved quan-
tities (macroscopic, coarse-grained) will evolve according to
some hyperbolic system of conservation laws (e.g. Euler
equations). These are the hydrodynamic limits of the sys-
tem.

• Starting from these macroscopic equations (ignoring the de-
tails of the microscopic dynamics), the Nonlinear Fluctuating
Hydrodynamics Theory (Spohn) predicts very precisely the
form of the fluctuations of the conserved quantities.
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Microscopic models

• We consider a lattice field model {ηx(t) ∈ R ; x ∈ Z} whose
dynamics is composed of a deterministic part and of a stochas-
tic part [B. Stoltz’11], [Basile, B., Olla’06] .

• The stochastic part is introduced to provide a better control
of the chaotic motion due to the nonlinearities of the inter-
actions.
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• Deterministic part: It is given by Hamilton equations:

dηx = (V ′(ηx+1)− V ′(ηx−1)) dt, x ∈ Z,

where V : R→ R is a well behaved potential.
• Stochastic part :

Independent Poisson processes
(clock) on each bond {x, x + 1}.
When the clock of {x, x + 1} rings,
ηx is exchanged with ηx+1. The
dynamics between two successive
rings of the clocks is given by the
Hamiltonian dynamics.

t

x0
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Conserved quantities (slow variables):

1 The energy
∑

x ex =
∑

x V (ηx).
2 The volume

∑
x ηx.
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• The energy
∑

x V (ηx) and the volume
∑

x ηx are the only
conserved quantities of the stochastic model (in a suitable
sense) [B. Stoltz’11], [Fritz-Funaki-Lebowitz’93].

• The Gibbs equilibrium measures 〈·〉τ,β are parameterized by
two parameters (τ, β) ∈ R× [0,∞) and are product

〈·〉τ,β ∼ exp{−β
∑
x

(V (ηx) + τηx)}dη

are invariant for the dynamics.
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Hydrodynamics: Euler equations

Theorem (B., Stoltz’11)
For t < T ∗ (first shock), the hydrodynamic equations of the
stochastic dynamics are given by the compressible Euler
equations: {

∂tv = 2∂q P,
∂te = ∂q P2.

In the harmonic case V (r) = r2/2, P(v, e) = v and T ∗ =∞ (no
shocks).
Proof based on [Olla, Varadhan, Yau’91], [Fritz-Funaki-Lebowitz’93].
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Nonlinear fluctuating hydrodynamics predictions

The theory of nonlinear fluctuating hydrodynamics (Spohn) pre-
dicts the long time behavior of the equilibrium time-space corre-
lation functions of the conserved fields g(x, t) = (ηx(t), ex(t))

Sαα′(x, t) = 〈gα(x, t) gα′(0, 0)〉τ,β − 〈gα〉τ,β 〈gα′〉τ,β

Gibbs measure: 〈·〉τ,β ∼ exp{−β
∑
x

(ex + τηx)} dη.

temperature: β−1 pressure: τ
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• Spohn’s theory: the long time behavior of the correlation
functions of the conserved fields depends only on the func-
tion (v, e) → P(v, e), and parameters τ , β, but NOT on the
details of the microscopic dynamics.

• It is a macroscopic theory based on the validity of the hydro-
dynamics in the Euler time scale.
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• n = 1 case: 2 UC
• Edwards-Wilkinson

(Gaussian)
• "KPZ fixed point" (non

Gaussian) a

• n ≥ 2 case:
• richer (many UC),
• different time scales involved

ascaling limit of the solution of the KPZ
equation

Popkov et al., J. Stat. Phys.
160 (2015), n = 2
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We consider now the harmonic case

V (r) = r2/2 ⇒ ex = η2
x/2

Our first results confirm Spohn’s predictions in this case.

C. Bernardin Diffusion versus Superdiffusion



Nonlinear fluctuating hydrodynamics
Fractional Superdiffusion

Crossover between Diffusion and Superdiffusion

We define the space-time correlation of the energy

Et(x) =
〈(
e0(0)− 1

β

)(
et(x)− 1

β

)〉
τ,β

and the space-time correlation of the volume

Vt(x) =
〈(
η0(0)− τ

)(
ηt(x)− τ

)〉
τ,β
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Theorem (B., Gonçalves, Jara’16)

• Volume: limn→∞ Vtn2

(
[nq]

)
= 2

β Vt(q), t > 0, q ∈ R,

∂tV = ∆V, heat equation

• Energy: limn→∞Etn3/2

(
[nq]

)
= 2

β2 Et(q), t > 0, q ∈ R,

∂tE = − 1√
2

{
(−∆)3/4−∇(−∆)1/4

}
E , skew fractional heat equation

See also [Basile-B.-Olla’06,’09, Basile-Olla-Spohn’08, Mellet-
Mischler-Mouhot’08, Jara-Komorowski-Olla’09, Delfini-Lepri-Livi-
Mejia-Monasterio-Politi’10, Jara-Komorowski-Olla’15]
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Proof:

Caffarelli &Silvestre, An extension problem related to the fractional Laplacian,
CPDE ’07
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Weak anharmonicity limit: Universality persistence

Weak anharmonic potential : V (r) = r2 + γn r
4/4.

• If γn = 0 then the energy fluctuation field is described in the
time scale tn3/2 by a 3/2 stable asymmetric Lévy process
and the volume fluctuation field is described in the time scale
tn2 by a Brownian motion.

• If γn = O(1) and τ = 0, β > 0, then NLFH [Spohn-Stoltz’15]
indicates that the energy-volume fluctuation fields are de-
scribed by the same processes.
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Theorem (B., Gonçalves, Jara, Simon ’17)
The harmonic scenario persists in tne nonlinear regime if γn is
sufficiently small. It is valid for the energy for γn � n−1/4 and
for the volume for γn � n−1/2.

Extension of this result outside of this regime requires new ideas.
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Crossover between Diffusion and Superdiffusion

How can we cross different
Universality Classes by tuning
the parameters of the model ?

Popkov et al., J. Stat. Phys. 160
(2015)

C. Bernardin Diffusion versus Superdiffusion



Nonlinear fluctuating hydrodynamics
Fractional Superdiffusion

Crossover between Diffusion and Superdiffusion

Weakly harmonic chain

• Consider the harmonic chain where the potential V (r) is
now

V (r) = c
nb r

2

with c, b > 0 two positive constants.
• We look at the system in the time scale tna, a > 0, such

that the energy field has a non-trivial limit.
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[B., Gonçalves, Jara’16]
a

b0
0

1/3

3/2

2
fract. heat eq. heat eq.

No evolution

For b = 1/3, a = 2 the en-
ergy limiting field is described
by a Levy process interpolat-
ing between the asymmetric
stable Levy process and the
Brownian motion.
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• The generator of the interpolating Levy process is

∆−
c3/2
√

2

{
(−∆)3/4 −∇(−∆)1/4

}
.

• As c → ∞, scaled with c, it goes to the skew 3/4-fractional
Laplacian.

• As c→ 0, it goes to the Laplacian.
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Evanescent flip noise limit

• Consider the initial process (harmonic chain + exchange
noise) and add a second stochastic perturbation with inten-
sity γn = cn−b, c, b > 0, which consists to flip independently
on each site at exponential times the variable ηx into −ηx.

• The energy is conserved but the volume
∑

x ηx is not (stricto
sensu, only if b =∞).

• We look at the system in the time scale tna, a > 0, such that
the energy field has a non-trivial limit.
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[B., Gonçalves, Jara, Sasada, Simon ’15], [B., Gonçalves, Jara,
Simon ’16]

a

b0
0

1

3/2

2 heat eq.
fract. heat eq.

No evolution

For b = 1, a = 3/2 the en-
ergy limiting field is described
by a Levy process interpo-
lating between the Brownian
motion and the asymmetric
stable Levy process.
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• The Fourier symbol of the generator of the interpolating Levy
process is

1
2
√

3
(2iπk)2√
c+ iπk

, k ∈ R.

• As c → 0 it goes to the Fourier symbol of the skew 3/4-
fractional Laplacian.

• As c→∞, scaled with c, it goes to the Fourier symbol of the
Laplacian.
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Space of UC

2 / 2

3
2
/ 2

5
3

/ KPZ

KPZ /KPZ

. . .

Weak

harmonicity

Evanescent

flip noise

CoupledKPZ eq. ??

??
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