Some results on two-dimensional anisotropic Ising spin systems
 and percolation

Maria Eulália Vares
UFRJ, Rio de Janeiro

Based on joint paper / work in progress with
L.R. Fontes, D. Marchetti, I. Merola, E. Presutti / T. Mountford

Our basic model

System of ± 1 Ising spins on the lattice $\mathbb{Z} \times \mathbb{Z}: \quad\{\sigma(x, i)\}$

- On each horizontal line $\{(x, i), x \in \mathbb{Z}\}$, we have a ferromagnetic Kac interaction:

$$
-\frac{1}{2} J_{\gamma}(x, y) \sigma(x, i) \sigma(y, i)
$$

$J_{\gamma}(x, y)=c_{\gamma} \gamma J(\gamma(x-y))$,
where $J(\cdot) \geq 0$ symmetric, smooth, compact support, $\int J(r) d r=1, J(0)>0$.
$\gamma>0$ (scale parameter)
c_{γ} is the normalizing constant: $\sum_{y \neq x} J_{\gamma}(x, y)=1$, for all x
Fix the inverse temperature at the mean field critical value $\beta=1$:
Also in the Lebowitz-Penrose limit no phase transition is present

- Add a small nearest neighbor vertical interaction

$$
-\epsilon \sigma(x, i) \sigma(x, i+1)
$$

Question: Does it lead to phase transition?

Theorem 1

Given any $\epsilon>0$, for any $\gamma>0$ small enough $\mu_{\gamma}^{+} \neq \mu_{\gamma}^{-}, \mu_{\gamma}^{ \pm}$the plus-minus DLR measures defined as the thermodynamic limits of the Gibbs measures with plus, respectively minus, boundary conditions.

A few comments or questions:

- The model goes back to a system of hard-rods proposed by Kac-Helfand (1960s)
- Related to a one-dimensional quantum spin model with transverse field.
(Aizenman, Klein, Newman (1993); loffe, Levit (2012))
- Our motivation was mathematical. But such anisotropic interactions should be natural in some applications.
- Phase diagram in the Lebowitz-Penrose limit $\gamma \rightarrow 0$? (Cassandro, Colangeli, Presutti)
- When $\beta>1$ there is phase transition for $\epsilon=\gamma^{A}$ for any $A>0$.
- What if $\beta=1$ and we take $\epsilon(\gamma) \rightarrow 0$?
- If $\epsilon(\gamma)=\kappa \gamma^{b}$, for which b do we see a change of behavior in κ ?
(Work in progress with T. Mountford for the case of percolation)

Outline:

- Study the Gibbs measures for a "chessboard" Hamiltonian $H_{\gamma, \epsilon}$: some vertical interactions are removed.
- For $H_{\gamma, \epsilon}$ we have a two dimensional system with pair of long segments of parallel layers interacting vertically within the pair (but not with the outside) plus horizontal Kac.
- Preliminary step: look at the mean field free energy function of two layers and its minimizers; exploit the spontaneous magnetization that emerges.
- This spontaneous magnetization used for the definition of contours (as in the analysis of the one dimensional Kac interactions below the mean field critical temperature).
- For the chessboard Hamiltonian, and after a proper coarse graining procedure, we are able to implement the Lebowitz-Penrose procedure and to study the corresponding free energy functional
- Peierls bounds (Theorem 2) for the weight of contours is transformed in variational problems for the free energy functional.

Coarse grained description and contours Length scales and accuracy:

$$
\gamma^{-1 / 2}, \quad \ell_{ \pm}=\gamma^{-(1 \pm \alpha)}, \quad \zeta=\gamma^{a}, \quad 1 \gg \alpha \gg a>0
$$

$\gamma^{-1 / 2} \bullet$ to implement coarse graining - procedure to define free energy functionals
ζ, ℓ_{-}and $\ell_{+} \bullet$ to define, at the spin level, the plus/minus regions and then the contours
Partition each layer into intervals of suitable lengths $\ell \in\left\{2^{n}, n \in \mathbb{Z}\right\}$.

$$
C_{x}^{\ell, i}=C_{x}^{\ell} \times\{i\}:=([k \ell,(k+1) \ell) \cap \mathbb{Z}) \times\{i\}, \text { where } k=\lfloor x / \ell\rfloor
$$

$\mathcal{D}^{\ell, i}=\left\{C_{k \ell}^{\ell, i}, k \in \mathbb{Z}\right\}$
empirical magnetization on a scale ℓ in the layer i

$$
\sigma^{(\ell)}(x, i):=\frac{1}{\ell} \sum_{y \in C_{x}^{\ell}} \sigma(y, i) .
$$

To simplify notation take γ in $\left\{2^{-n}, n \in \mathbb{N}\right\}$. We also take $\gamma^{-\alpha}, \ell_{ \pm}$in $\left\{2^{n}, n \in \mathbb{N}_{+}\right\}$

- The "chessboard" Hamiltonian:

$$
H_{\gamma, \epsilon}=-\frac{1}{2} \sum_{x \neq y, i} J_{\gamma}(x, y) \sigma(x, i) \sigma(y, i)-\epsilon \sum_{x, i} \chi_{i, x} \sigma(x, i) \sigma(x, i+1)
$$

where

$$
\chi_{x, i}= \begin{cases}1 & \text { if }\left\lfloor x / \ell_{+}\right\rfloor+i \text { is even }, \\ 0 & \text { otherwise }\end{cases}
$$

If $\chi_{x, i}=1$, we say that (x, i) and $(x, i+1)$ interact vertically; $v_{x, i}$ the site (x, j) which interacts vertically with (x, i).

- Theorem 1 will follow once we prove that the magnetization in the plus state of the chessboard Hamiltonian is strictly positive (by the GKS correlation inequalities).
- For $H_{\gamma, \epsilon}$ we detect a spontaneous magnetization $m_{\epsilon}>0$ in the limit $\gamma \rightarrow 0$. We use m_{ϵ} to define contours.

Natural guess for m_{ϵ} : minimizers of "mean field free energy function" of two layers.
(i) First take two layers of ± 1 spins whose unique interaction is the n.n.vertical one. (a system of independent pairs of spins)

- $\hat{\phi}_{\epsilon}\left(m_{1}, m_{2}\right)$ the limit free energy (as the number of pairs tends to infinity).

Proposition 1. $X_{n}=\{-1,1\}^{n}$. For $i=1,2$, let $m_{i} \in\left\{-1+\frac{2 j}{n}: j=1, \ldots, n-1\right\}$ and

$$
Z_{\epsilon, n}\left(m_{1}, m_{2}\right)=\sum_{\left(\sigma_{1}, \sigma_{2}\right) \in X_{n} \times X_{n}} \mathbf{1}_{\left\{\sum_{x=1}^{n} \sigma_{i}(x)=n m_{i} i=1,2\right\}} e^{\epsilon \sum_{x=1}^{n} \sigma_{1}(x) \sigma_{2}(x)}
$$

There is a continuous and convex function $\hat{\phi}_{\epsilon}$ defined on $[-1,1] \times[-1,1]$, with bounded derivatives on each $[-r, r] \times[-r, r]$ for $|r|<1$, and a constant $c>0$ so that

$$
-\hat{\phi}_{\epsilon}\left(m_{1}, m_{2}\right)-c \frac{\log n}{n} \leq \frac{1}{n} \log Z_{\epsilon, n}\left(m_{1}, m_{2}\right) \leq-\hat{\phi}_{\epsilon}\left(m_{1}, m_{2}\right)
$$

(ii) Mean field free energy for two layers (reference in the L-P context):

- $\hat{f}_{\epsilon}\left(m_{1}, m_{2}\right):=-\frac{1}{2}\left(m_{1}^{2}+m_{2}^{2}\right)+\hat{\phi}_{\epsilon}\left(m_{1}, m_{2}\right)$

Proposition 2. For any $\epsilon>0$ small enough $\hat{f}_{\epsilon}\left(m_{1}, m_{2}\right)$ has two minimizers: $\pm m^{(\epsilon)}:= \pm\left(m_{\epsilon}, m_{\epsilon}\right)$ and there is a constant $c>0$ so that

$$
\left|m_{\epsilon}-\sqrt{3 \epsilon}\right| \leq c \epsilon^{3 / 2}
$$

Moreover, calling $\hat{f}_{\epsilon, \text { eq }}$ the minimum of $\hat{f}_{\epsilon}(m)$, for any $\zeta>0$ small enough:

$$
\left|\hat{f}_{\epsilon}(m)-\hat{f}_{\epsilon, \mathrm{eq}}\right| \geq c \zeta^{2}, \quad \text { for all } m \text { such that }\left\|m-m^{(\epsilon)}\right\| \wedge\left\|m+m^{(\epsilon)}\right\| \geq \zeta
$$

Partition \mathbb{Z}^{2} into rectangles $\left\{Q_{\gamma}(k, j): k, j \in \mathbb{Z}\right\}$, where

$$
\begin{aligned}
& Q_{\gamma}(k, j)=\left(\left[k \ell_{+},(k+1) \ell_{+}\right) \times\left[j \gamma^{-\alpha},(j+1) \gamma^{-\alpha}\right)\right) \cap \mathbb{Z}^{2} \text { if } k \text { is even } \\
& Q_{\gamma}(k, j)=\left(\left[k \ell_{+},(k+1) \ell_{+}\right) \times\left(j \gamma^{-\alpha},(j+1) \gamma^{-\alpha}\right]\right) \cap \mathbb{Z}^{2} \text { if } k \text { is odd. }
\end{aligned}
$$

Sometimes write $Q_{x, i}=Q_{\gamma}(k, j)$ if $(x, i) \in Q_{\gamma}(k, j)$.

Important features

- Spins in $Q_{x, i}$ do not interact vertically with the spins outside, i.e. $v_{x, i} \in Q_{x, i}$ for all (x, i).
- The $Q_{\gamma}(k, j)$ are squares if lengths are measured in interaction length units.
- The size of the rectangles in interaction length units diverges as $\gamma \rightarrow 0$.

The random variables $\eta(x, i), \theta(x, i)$ and $\Theta(x, i)$ are then defined as follows:

- $\eta(x, i)= \pm 1$ if $\left|\sigma^{\left(\ell_{-}\right)}(x, i) \mp m_{\epsilon}\right| \leq \zeta$;
$\eta(x, i)=0$ otherwise.
- $\theta(x, i)=1$, $[=-1]$, if $\eta(y, j)=1$, $[=-1]$, for all $(y, j) \in Q_{x, i}$; $\theta(x, i)=0$ otherwise.
- $\Theta(x, i)=1$, $[=-1]$, if $\eta(y, j)=1$, $[=-1]$, for all $(y, j) \in \cup_{u, v \in\{-1,0,1\}} Q_{\gamma}(k+u, j+v)$, block 3×3 of Q-rectangles with (k, j) determined by $Q_{x, i}=Q_{\gamma}(k, j)$.
plus phase: union of all the rectangles $Q_{x, i}$ s.t. $\Theta(x, i)=1$, minus phase: union of those where $\Theta(x, i)=-1$, undetermined phase the rest.
$Q_{\gamma}(k, j)$ and $Q_{\gamma}\left(k^{\prime}, j^{\prime}\right)$ connected if (k, j) and $\left(k^{\prime}, j^{\prime}\right)$ are $*-c o n n e c t e d$, i.e. $\left|k-k^{\prime}\right| \vee\left|j-j^{\prime}\right| \leq 1$.

By choosing suitable boundary conditions: $\Theta=1$ outside of a compact $(\Theta=-1$ recovered via spin flip).

Given such a σ, contours are the pairs $\Gamma=\left(\mathrm{sp}(\Gamma), \eta_{\Gamma}\right)$, where $\mathrm{sp}(\Gamma)$ a maximal connected component of the undetermined region, η_{Γ} the restriction of η to $\operatorname{sp}(\Gamma)$

Geometry of contours

$\operatorname{ext}(\Gamma)$ the maximal unbounded connected component of the complement of $\operatorname{sp}(\Gamma)$
$\partial_{\text {out }}(\Gamma)$ the union of the rectangles in $\operatorname{ext}(\Gamma)$ which are connected to $\operatorname{sp}(\Gamma)$.
$\partial_{\mathrm{in}}(\Gamma)$ the union of the rectangles in $\operatorname{sp}(\Gamma)$ which are connected to $\operatorname{ext}(\Gamma)$.

- Θ is constant and different from 0 on $\partial_{\text {out }}(\Gamma)$
- Γ is plus if $\Theta=1$ on $\partial_{\text {out }}(\Gamma) ; \eta=1$ on $\partial_{\mathrm{in}}(\Gamma)$. Analogously for minus contours.
$\operatorname{int}_{k}(\Gamma), k=1, \ldots, k_{\Gamma}$ the bounded maximal connected components (if any) of the complement of $\operatorname{sp}(\Gamma)$,
$\partial_{\mathrm{in}, k}(\Gamma)$ the union of all rectangles in $\mathrm{sp}(\Gamma)$ which are connected to $\operatorname{int}_{k}(\Gamma)$.
$\partial_{\text {out }, k}(\Gamma)$ is the union of all the rectangles in $\operatorname{int}_{k}(\Gamma)$ which are connected to $\operatorname{sp}(\Gamma)$.
- Θ is constant and different from 0 on each $\partial_{\text {out }, k}(\Gamma)$; write $\partial_{\text {out }, k}^{ \pm}(\Gamma)$, $\operatorname{int}_{k}^{ \pm}(\Gamma)$, $\partial_{\mathrm{in}, k}^{ \pm}(\Gamma)$ if $\Theta= \pm 1$ on the former; observe $\eta= \pm 1$ on $\partial_{\mathrm{in}, k}^{ \pm}(\Gamma)$, resp.

$$
c(\Gamma)=\operatorname{sp}(\Gamma) \cup \bigcup_{k} \operatorname{int}_{k}(\Gamma)
$$

Diluted Gibbs measures Let Λ be a bounded region which is an union of Q-rectangles. $\bar{\sigma}$ external condition s.t. $\eta=1$ in $\partial_{\text {out }}(\Lambda)$
Θ computed on $\left(\sigma_{\Lambda}, \bar{\sigma}\right) ; \partial_{\text {in }}(\Lambda)$ union of all Q-rectangles in Λ connected to Λ^{c}.
The plus diluted Gibbs measure (with boundary conditions $\bar{\sigma}$):

$$
\mu_{\Lambda, \bar{\sigma}}^{+}\left(\sigma_{\Lambda}\right)=\frac{e^{-H_{\gamma, \epsilon}\left(\sigma_{\Lambda} \mid \bar{\sigma}\right)}}{Z_{\Lambda, \bar{\sigma}}^{+}} \mathbf{1}_{\left\{\Theta=1 \text { on } \partial_{\mathrm{in}}(\Lambda)\right\}} .
$$

where

$$
Z_{\Lambda, \bar{\sigma}}^{+}=\sum_{\sigma_{\Lambda}} 1_{\left\{\Theta=1 \text { on } \partial_{\text {in }}(\Lambda)\right\}} e^{-H_{\gamma, \epsilon}\left(\sigma_{\Lambda} \mid \bar{\sigma}\right)}=: Z_{\Lambda, \bar{\sigma}}\left(\Theta=1 \text { on } \partial_{\text {in }}(\Lambda)\right),
$$

Minus diluted Gibbs measure defined analogously.

Peierls estimates for the plus and minus diluted Gibbs measures

$$
W_{\Gamma}(\bar{\sigma}):=\frac{Z_{c(\Gamma) ; \bar{\sigma}}\left(\eta=\eta_{\Gamma} \text { on } \operatorname{sp}(\Gamma) ; \Theta= \pm 1 \text { on each } \partial_{\mathrm{out}, k}^{ \pm}(\Gamma)\right)}{\left.Z_{c(\Gamma) ; \bar{\sigma}}\left(\Theta=1 \text { on } \operatorname{sp}(\Gamma) \text { and on each } \partial_{\mathrm{out}, \mathrm{k}}^{ \pm}(\Gamma)\right\}\right)}
$$

where $Z_{\Lambda, \bar{\sigma}}(\mathcal{A})$ is the partition function in Λ with Hamiltonian $H_{\gamma, \epsilon}$, with boundary conditions $\bar{\sigma}$ and constraint \mathcal{A}.

Theorem 2 (Peierls bound)

There are $c>0, \epsilon_{0}>0$ and $\gamma:(0, \infty) \rightarrow(0, \infty)$ so that for any $0<\epsilon \leq \epsilon_{0}$, $0<\gamma \leq \gamma_{\epsilon}$ and any contour Γ with boundary spins $\bar{\sigma}$

$$
W_{\Gamma}(\bar{\sigma}) \leq e^{-c|\operatorname{sp}(\Gamma)| \gamma^{2 a+4 \alpha}}
$$

- Theorem 1 for the chessboard Hamiltonian follows easily from the Peierls bound (along the lines of the usual proof for n.n. Ising at low temperatures:)

Sketch

Let $\left\{\Lambda_{n}\right\} \nearrow \not \mathbb{Z}^{2}$ an increasing sequence of bounded Q-measurable regions
For γ small enough and all boundary conditions $\bar{\sigma}$ such that $\eta=1$ on $\partial_{\text {out }}\left(\Lambda_{n}\right)$, one gets, by simple counting: (recall $a \ll 1$ and $\alpha \ll 1$)

$$
\mu_{\Lambda_{n}, \bar{\sigma}}^{+}[\Theta(0)<1] \leq \sum_{\Gamma: \operatorname{sp}(\Gamma) \ni 0} N(\Gamma) e^{-c|\operatorname{sp}(\Gamma)| \gamma^{2 a+4 \alpha}}
$$

and

$$
\mu_{\Lambda_{n}, \bar{\sigma}}^{+}[\Theta(0)<1] \leq \sum_{D \ni 0}|D| e^{-\frac{c}{2}|D| \gamma^{-1+2 a+2 \alpha}}
$$

the sum over all connected regions D made of unit cubes with vertices in \mathbb{Z}^{2}, and
the sum vanishes in the limit $\gamma \rightarrow 0$.

- By the spin flip symmetry: there are at least two DLR measures.
- By ferromagnetic inequalities: $\mu_{\gamma}^{+} \neq \mu_{\gamma}^{-}$in Theorem 1.

Reduction of Peierls bounds to a variational problem

- A Lebowitz-Penrose theorem for the spin model corresponding to $H_{\gamma, \epsilon}$. (coarse graining procedure / free energy functional)

$$
Z_{\Lambda, \bar{\sigma}}(\mathcal{A}):=\sum_{\sigma_{\Lambda} \in \mathcal{A}} e^{-H_{\gamma, \epsilon}\left(\sigma_{\Lambda} \mid \bar{\sigma}\right)}
$$

where $\bar{\sigma}$ is a spin configuration in the complement of Λ and \mathcal{A} is a set of configurations in Λ defined in terms of the values of η_{Λ}.

- Coarse-grain on the scale $\gamma^{-1 / 2}$.
$M_{\gamma^{-1 / 2}}$ the possible values of the empirical magnetizations $\sigma^{\left(\gamma^{-1 / 2}\right)}$, i.e.

$$
M_{\gamma^{-1 / 2}}=\left\{-1,-1+2 \gamma^{1 / 2}, \ldots, 1-2 \gamma^{1 / 2}, 1\right\}
$$

and

$$
\mathcal{M}_{\Lambda}:=\left\{m(\cdot) \in\left(M_{\gamma^{-1 / 2}}\right)^{\Lambda}: m(\cdot) \text { is constant on each } C^{\gamma^{-1 / 2}, i} \subseteq \Lambda\right\}
$$

The free energy functional (on Λ with boundary conditions \bar{m}) defined on $[-1,1]^{\Lambda}$

$$
\begin{aligned}
F_{\Lambda, \gamma}(m \mid \bar{m}) & =\frac{1}{2} \sum_{(x, i) \in \Lambda} \hat{\phi}_{\epsilon}\left(m(x, i), m\left(v_{x, i}\right)\right) \\
& -\frac{1}{2} \sum_{(x, i) \neq(y, i) \in \Lambda} J_{\gamma}(x, y) m(x, i) m(y, i) \\
& -\sum_{(x, i) \in \Lambda,(y, i) \notin \Lambda} J_{\gamma}(x, y) m(x, i) \bar{m}(y, i)
\end{aligned}
$$

Recall: $v_{x, i} \in \Lambda$ for each $(x, i) \in \Lambda$ since there are no vertical interactions between a Q-rectangle and the outside.

Theorem 3. There is a constant c so that

$$
\log Z_{\Lambda}(\bar{\sigma} ; \mathcal{A}) \leq-\inf _{m \in \mathcal{M}_{\Lambda} \cap \mathcal{A}} F_{\Lambda, \gamma}(m \mid \bar{m})+c|\Lambda| \gamma^{1 / 2} \log \gamma^{-1}
$$

where $\bar{m}(x, i)=\bar{\sigma}^{\gamma^{-1 / 2}}(x, i),(x, i) \notin \Lambda$. Moreover, for any $m \in \mathcal{M}_{\Lambda} \cap \mathcal{A}$

$$
\log Z_{\Lambda}(\bar{\sigma} ; \mathcal{A}) \geq-F_{\Lambda, \gamma}(m \mid \bar{m})-c|\Lambda| \gamma^{1 / 2} \log \gamma^{-1}
$$

Of course in the upper bound can replace \mathcal{M}_{Λ} by $[-1,1]^{\Lambda}$.

Peierls bound. Sketch of the proof.

Upper bound for the numerator: must show that the excess free energy due to the constraint on $\eta=\eta_{\Gamma}$ is much larger than the error terms in Theorem 3.

- Important: to show that can restrict to infimum over smooth functions
i.e. $\left|m(x, i)-m^{\ell}(x, i)\right|<c \gamma^{\alpha}$ far from the boundary of $\operatorname{sp}(\Gamma)$.
$\Delta_{0}=\mathrm{sp}(\Gamma)$ minus internal boundaries

$$
\begin{aligned}
& \inf _{m \in[-1,1]^{\Lambda} \cap \mathcal{A}} F_{\mathrm{sp}(\Gamma), \gamma}(m \mid \bar{m}) \geq \Phi_{\Delta_{0}} \\
&+\Phi_{\Delta_{\mathrm{in}}}\left(\bar{m}_{\sigma_{\mathrm{ext}}}\right)+\sum_{k} \Phi_{\Delta_{k}^{+}}^{+}\left(\bar{m}_{\sigma_{I_{k}^{+}}}\right) \\
&+\sum_{k} \Phi_{\Delta_{k}^{-}}^{-}\left(\bar{m}_{\sigma_{I_{k}^{-}}}\right)
\end{aligned}
$$

where

$$
\Phi_{\Delta_{0}}=\inf \left\{F_{\Delta_{0}, \gamma}^{*}(m)\left|m \in[-1,1]^{\Delta_{0}},\left|m-m^{\left(\ell_{-}\right)}\right| \leq c \gamma^{\alpha}, \eta(\cdot ; m)=\eta_{\Gamma}(\cdot),\right\}\right.
$$

and

$$
\begin{align*}
F_{\Delta_{0}, \gamma}^{*}(m) & =\sum_{(x, i) \in \Delta_{0}}\left\{-\frac{1}{2} m(x, i)^{2}+\frac{1}{2} \hat{\phi}_{\epsilon}\left(m(x, i), m\left(v_{x, i}\right)\right)\right\} \\
& +\frac{1}{4} \sum_{(x, i) \neq(y, i) \in \Delta_{0}} J_{\gamma}(x, y)(m(x, i)-m(y, i))^{2} \tag{I}
\end{align*}
$$

We omit any details about the other terms (boundaries).
Will get the following upper bound for the numerator in the Peierls weight:

$$
\begin{aligned}
& Z_{c(\Gamma) ; \bar{\sigma}}\left(\eta=\eta_{\Gamma} \text { on } \operatorname{sp}(\Gamma) ; \Theta= \pm 1 \text { on each } \partial_{\mathrm{out}, k}^{ \pm}(\Gamma)\right) \\
& \quad \leq e^{-\Phi_{\Delta_{0}}+c|\Lambda| \gamma^{1 / 2} \log \gamma^{-1}} \\
& \quad \times e^{-\Phi_{\Delta_{\mathrm{in}}}\left(\bar{m} \sigma_{\mathrm{ext}}\right)}\left\{\prod Z^{+}\left(I_{k}^{+}\right)\right\}\left\{\prod Z^{+}\left(I_{k}^{-}\right)\right\} .
\end{aligned}
$$

- spin flip symmetry was used here!

Key point: lower bound on $\Phi_{\Delta_{0}}$ (follows from Proposition 2).

$$
\Phi_{\Delta_{0}} \geq \hat{f}_{\epsilon, \mathrm{eq}} \frac{\left|\Delta_{0}\right|}{2}+c \frac{\left|\Delta_{0}\right|}{\gamma^{-(1+\alpha)} \gamma^{-\alpha}} \gamma^{-(1-\alpha)} \min \left\{\gamma^{\alpha} ; \gamma^{2 a}\right\}
$$

(two basic situations contribute here in each Q in Δ_{0} (or a neighbor): at least one vertical pair, or a change of sign in the same layer - in η)

- For the lower bound on the denominator of the Peierls weight:

By computing the free energy functional on a suitable test function m on $\operatorname{sp}(\Gamma)$ we get:
(need to take care about a term as the last one on the r.h.s. of (I) but with $\left.(x, i) \in \Delta_{0},(y, i) \notin \Delta_{0}\right)$

$$
\begin{aligned}
& Z_{c(\Gamma) ; \bar{\sigma}}\left(\eta=1 \text { on } \operatorname{sp}(\Gamma) ; \Theta= \pm 1 \text { on each } \partial_{k}^{ \pm}(\Gamma)\right) \\
& \quad \geq e^{-\hat{f}_{\epsilon, \mathrm{eq}} \frac{\left|\Delta_{0}\right|}{2}-c\left(|\operatorname{sp}(\Gamma)| \gamma^{1 / 2}\right.} \\
& \quad \times e^{-\Phi_{\Delta_{\mathrm{in}}}\left(\bar{m}_{\sigma_{\mathrm{ext}}}\right)}\left\{\prod Z^{+}\left(I_{k}^{+}\right)\right\}\left\{\prod Z^{+}\left(I_{k}^{-}\right)\right\}
\end{aligned}
$$

The comparison of upper and lower bounds gives Theorem 2

Comments

For the corresponding percolation problem we can get something about the 'critical exponent' for $\epsilon(\gamma)$.

Work in progress with Tom Mountford
For the moment we have: If $\epsilon(\gamma)=c \gamma^{2 / 5}$ with c small, then there is no percolation.
In progress: If $\epsilon(\gamma)=\bar{c} \gamma^{2 / 5}$ with \bar{c} large, then percolation.

