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Our basic model

System of +1 lIsing spins on the lattice Z X Z: {o(x,i)}

e On each horizontal line {(x, %), x € Z}, we have a ferromagnetic Kac interaction:

1

—5 (@ y)olz,i)o(y, i),

Jy(z,y) = ey J(v(z — y)),

where J(-) > 0 symmetric, smooth, compact support, [ J(r)dr =1, J(0) > 0.
v > 0 (scale parameter)

cy is the normalizing constant: > J,(z,y) =1, forall x

Fix the inverse temperature at the mean field critical value 8 = 1:

Also in the Lebowitz-Penrose limit no phase transition is present



e Add a small nearest neighbor vertical interaction

—eo(x,i)o(x,i+1).

Question: Does it lead to phase transition?

Theorem 1

Given any € > 0, for any v > 0 small enough ,u;r =+ Hoy ,uic the plus-minus DLR
measures defined as the thermodynamic limits of the Gibbs measures with plus, respectively
minus, boundary conditions.



A few comments or questions:

e The model goes back to a system of hard-rods proposed by Kac-Helfand (1960s)

e Related to a one-dimensional quantum spin model with transverse field.
(Aizenman, Klein, Newman (1993); loffe, Levit (2012))

e Our motivation was mathematical. But such anisotropic interactions should be natural
In some applications.

e Phase diagram in the Lebowitz-Penrose limit v — 07 (Cassandro, Colangeli, Presutti)
e When B > 1 there is phase transition for € = v* for any A > 0.

e What if 3 = 1 and we take e(v) — 07

o If e(v) = k~", for which b do we see a change of behavior in x?
(Work in progress with T. Mountford for the case of percolation)



QOutline:

e Study the Gibbs measures for a ‘“chessboard” Hamiltonian H, . some vertical
interactions are removed.

e For H, . we have a two dimensional system with pair of long segments of parallel layers
interacting vertically within the pair (but not with the outside) plus horizontal Kac.

e Preliminary step: look at the mean field free energy function of two layers and its
minimizers; exploit the spontaneous magnetization that emerges.

e This spontaneous magnetization used for the definition of contours (as in the analysis of
the one dimensional Kac interactions below the mean field critical temperature).

e For the chessboard Hamiltonian, and after a proper coarse graining procedure, we are
able to implement the Lebowitz-Penrose procedure and to study the corresponding free
energy functional

e Peierls bounds (Theorem 2) for the weight of contours is transformed in variational
problems for the free energy functional.



Coarse grained description and contours Length scales and accuracy:

_1/2) E:I: = ’Y_(l:ta)) C — ,YCL’ 1 > a > a > 0.

—1/2 o to implement coarse graining - procedure to define free energy functionals

Y
¢, £_ and £ e to define, at the spin level, the plus/ minus regions and then the contours
Partition each layer into intervals of suitable lengths ¢ € {2", n € Z}.

Ch' = x {i} = ([kL, (k + 1)) NZ) x {i}, where k = |z /¢]
DY = {C}} k € 7}

empirical magnetization on a scale £ in the layer 2

oz, 1) = % > oy, ).

yeCy

To simplify notation take v in {27, n € N}. We also take vy~ %, ¢4 in {2",n € N}



e [he “chessboard” Hamiltonian:

1 . :
Hye=— > Iz y)o(z,i)o(y, i) — € > Xiwo(z,i)o(z, i+ 1),

THY,1 x,1

where

0O otherwise.

{1 if |[x/04] 4 i is even,
Xx,i —

If xz: =1, we say that (z, %) and (x, ¢ + 1) interact vertically; v, ; the site (z, j)
which interacts vertically with (x, 7).

e Theorem 1 will follow once we prove that the magnetization in the plus state of the
chessboard Hamiltonian is strictly positive (by the GKS correlation inequalities).

e For H, . we detect a spontaneous magnetization m. > 0 in the limit v — O.
We use m. to define contours.



Natural guess for m.: minimizers of “mean field free energy function” of two layers.

(i) First take two layers of =1 spins whose unique interaction is the n.n.vertical one.
(a system of independent pairs of spins)

o d.(m1, ms2) the limit free energy (as the number of pairs tends to infinity).

Proposition 1. X,, = {—1,1}". Fori =1,2,letm; € {—1+2:j=1,...,n—1}
and
1 01(x)og(x)

Ze,n(mh m2) — Z 1{2221 o;(x)=nm; i:1,2}e‘E .
(O'l,O'Q)GXnXXn

There is a continuous and convex function ¢, defined on [—1, 1] x [—1, 1], with bounded
derivatives on each [—7, 7] X [—r, r] for |[r| < 1, and a constant ¢ > O so that

logn 1 -
S E 1Og Ze,n(m17 m2) S _¢€(m17 m2)’

_qge(mla m2) — C



(ii) Mean field free energy for two layers (reference in the L-P context):

® fe(ml, mg) = —%(mf + mg) + Qge(mla m2)

Proposition 2. For any € > 0 small enough f.(m1, m2) has two minimizers:
+m ¥ := 4+ (m., m.) and there is a constant ¢ > 0 so that

lm. — V3e| < ce®/?.

Moreover, calling fe,eq the minimum of fe(m) for any ¢ > 0 small enough:

Fo(m) = feeq| = cC?, for all m such that ||m — m 9| A [|m + m'9| > ¢.



Partition Z” into rectangles {Q.(k,j): k,j € Z}, where
Q(k,5) = (Ikls, (k+1)€4) x [77 ™, (G + )7 ")) NZ* if k is even

Qq(k,3) = ([, (b + 1)) x (77, (G + Dy 1) N2 if k is odd.

Sometimes write Q,; = Q~(k, 7) if (z,7) € Q,(k, 7).
Important features

e Spins in (Q, ; do not interact vertically with the spins outside,
e vy € Qg forall (x,1).

e The Q+(k, j) are squares if lengths are measured in interaction length units.

e The size of the rectangles in interaction length units diverges as v — O.



The random variables n(x, i), 8(x, i) and ©(x, i) are then defined as follows:

o n(z,i) = £1if |0\ (z,3) Fm| < ¢
n(xz, 1) = 0 otherwise.

o O(x,1) =1, [=—1],ifn(y,5) =1, [= —1], for all (y,7) € Qu,;
0(x,i) = O otherwise.

o O(z,7) =1 [=—-1],ifn(y,7) =1, [= —1],
for all (y,J) € Uy wef-1,0,13Q~(k + u,j + v), block 3 x 3 of QQ-rectangles
with (k, 7) determined by Q4 = Q~(k, j).

plus phase: union of all the rectangles Q. ; s.t. ©(x,:) = 1,
minus phase: union of those where ©(x,i) = —1,
undetermined phase the rest.

Q~(k,7) and Q- (k', 7") connected if (k, 7) and (k', j') are x—connected,
ie. |[k—K|V]j—71]<1.



By choosing suitable boundary conditions: © = 1 outside of a compact (@ = —1
recovered via spin flip).

Given such a o, contours are the pairs I' = (sp(I"), nr), where
sp(I") a maximal connected component of the undetermined region,
nr the restriction of 7 to sp(I)

Geometry of contours
ext(I") the maximal unbounded connected component of the complement of sp(I")
Oout (I') the union of the rectangles in ext(I") which are connected to sp(I').
Oin(I") the union of the rectangles in sp(I") which are connected to ext(I").

e O is constant and different from 0 on Oyt (T)

e [isplusif © =1 on Oyut(I'); 7 = 1 on O;n(I"). Analogously for minus contours.

intg(I"),k = 1,..., kr the bounded maximal connected components (if any) of the
complement of sp(I"),



Oin k(T") the union of all rectangles in sp(I") which are connected to inty(I").
Oout, k(1) is the union of all the rectangles in intx(I") which are connected to sp(I").
e O is constant and different from 0 on each Oyt x(I'); write Qitk(F), int;t(I‘),

8i,k(F) if © = +1 on the former; observe n = 41 on Qflk(F) resp.

c¢(I') = sp(T") U | intx(T).

Diluted Gibbs measures Let A be a bounded region which is an union of (Q-rectangles.
o external condition s.t. 7 = 1 in Ouut(A)

© computed on (op, d); Oin(A) union of all @Q-rectangles in A connected to A°.

The plus diluted Gibbs measure (with boundary conditions &):

e~ Hr.c(oplo)

,LLX,E,(UA) = - lio=10n0,, ()}
Zy 5

where
ZX,& — Z 1{@:10n 8in(A)}€_H%6(UA|&) =: ZA,5(@ = 1 on 8in(A)),
OA

Minus diluted Gibbs measure defined analogously.



Peierls estimates for the plus and minus diluted Gibbs measures

Zr):5(n =mnr on sp(I'); ® = =1 on each 8$1t’k(F))
Z.1):5(© = 1 on sp(I') and on each 83;1:’1{(1")}) ’

Wr(a') =

where Zj 5(A) is the partition function in A with Hamiltonian H, ., with boundary
conditions & and constraint A.

Theorem 2 (Peierls bound)

There are ¢ > 0, ¢g > 0 and ~. : (0,00) — (0, 00) so that for any 0 < € < ¢,
0 < v < 7. and any contour I' with boundary spins &

WF(5') < 6—C|SP(F)|72a+4a .



e Theorem 1 for the chessboard Hamiltonian follows easily from the Peierls bound
(along the lines of the usual proof for n.n. Ising at low temperatures:)

Sketch
Let {A,} 7 Z? an increasing sequence of bounded Q-measurable regions

For v small enough and all boundary conditions & such that n = 1 on Oyut(A,,), one
gets, by simple counting: (recall a << 1 and a << 1)

2a+4a
wio. [@(0) < 1] < S N(D)eckemRTTE
I':sp(I")30

and
_%‘D|7—1+2a—|—20¢

ih,.[000) < 1] <37 IDJe
D3>0

the sum over all connected regions D made of unit cubes with vertices in Z?, and
the sum vanishes in the limit v — O.

e By the spin flip symmetry: there are at least two DLR measures.

e By ferromagnetic inequalities: ,uj; # ., in Theorem 1.



Reduction of Peierls bounds to a variational problem

e A Lebowitz-Penrose theorem for the spin model corresponding to H, ..
(coarse graining procedure / free energy functional)

ZA’a-(A) P Z e—ny,e(O'Alﬁ)’

O'AE.A

where & is a spin configuration in the complement of A and A is a set of configurations
in A defined in terms of the values of n,.

e Coarse-grain on the scale 7_1/2.

—1/2, .
M’y_l/g the possible values of the empirical magnetizations o ) ie.

M 15 ={-1,-1+27"% . 1 -2y 1}

and

1/

~1/2 .
My = {m(-) € (Mv_l/g)A : m(-) is constant on each C7 " C A}.



The free energy functional (on A with boundary conditions /) defined on [—1, 1]*

Frs(mlm) = = 7 dulm(e,i), m(v..))

(z,3)EA

_% S I y)m(z, d)m(y, i)

(z,0)#(y,9) €A

- > Jy(@,y)ym(z, i)m(y, i),

(z,i)eN, (y,i)¢A

Recall: v, ; € A for each (z,7) € A since there are no vertical interactions between a
(Q—-rectangle and the outside.

Theorem 3. There is a constant ¢ so that

_ < _ _ 1/2 1
log Zx(7; A) < me}\al/t;mA Fa~r(m|m) + c|Aly " “log~y 7,

where m(x,i) = 67_1/2(@ i), (x,1) € A. Moreover, for any m € My N A

log Zpy(0; A) > —FA(m|m) — c|A|’y1/2 log v .

Of course in the upper bound can replace My by [—1, 1]A.



Peierls bound. Sketch of the proof.

Upper bound for the numerator: must show that the excess free energy due to the
constraint on m = mr is much larger than the error terms in Theorem 3.

e Important: to show that can restrict to infimum over smooth functions
ie. |[m(x,i) —m'—(z,1)| < cy* far from the boundary of sp(T").
Ay = sp(I") minus internal boundaries

inf F, mlm) > ®s. +Pa (M, )+ &t (m,
me[-1,1]4nA P TIm) 2 Pag Ain(Moc) ; A;( Ilj)

+ @, (Mo ),
k k k

where

P, = inf {FZM(m) | m € [—1, 1120, m — m“)| < ev®, n(sm) = ne(.), }

and
Flpn(m) = S {-gmle)* + 5ddmle, i), m(va))}
(z,3)EAQ
oY L@l —m, )R ()

(z,3)#(y,1) EAQ



We omit any details about the other terms (boundaries).

Will get the following upper bound for the numerator in the Peierls weight:

Zr).5(n =mnr on sp(I'); ® = 1 on each Qit,k,(F))

1/2 1

< €—<I>A0+C|A|’y log ~

x e oM (TT 2 (Eh [T 24 )}

e spin flip symmetry was used here!

Key point: lower bound on ® A, (follows from Proposition 2).

[ Ao [ Ao —(1-a)

r . o,  2a
q)AO > fe,eqT + C,Y—(l—l—oz),y—oz mln{ﬁf y Y }

(two basic situations contribute here in each @ in A (or a neighbor): at least one vertical
pair, or a change of sign in the same layer - in )



e For the lower bound on the denominator of the Peierls weight:

By computing the free energy functional on a suitable test function m on sp(I") we
get:

(need to take care about a term as the last one on the r.h.s. of (I) but with

(z,1) € Ao, (y,1) & Do)

Zr);5(m=1on sp(I'); ® = =1 on each a,;'t(r))

. A
S g fecal P —c(lspmht/?

x e M (TT 2 H] T 24 )}

The comparison of upper and lower bounds gives Theorem 2



Comments

For the corresponding percolation problem we can get something about the 'critical
exponent’ for e(7y).

Work in progress with Tom Mountford

For the moment we have: If e(y) = cv*/% with ¢ small, then there is no percolation.

In progress: If e(vy) = cv2/® with ¢ large, then percolation.



