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Our basic model

System of ±1 Ising spins on the lattice Z × Z: {σ(x, i)}

• On each horizontal line {(x, i), x ∈ Z}, we have a ferromagnetic Kac interaction:

−
1

2
Jγ(x, y)σ(x, i)σ(y, i),

Jγ(x, y) = cγγJ(γ(x − y)),

where J(·) ≥ 0 symmetric, smooth, compact support,
∫
J(r)dr = 1, J(0) > 0.

γ > 0 (scale parameter)

cγ is the normalizing constant:
∑

y ̸=x Jγ(x, y) = 1, for all x

Fix the inverse temperature at the mean field critical value β = 1:

Also in the Lebowitz-Penrose limit no phase transition is present

quad1



• Add a small nearest neighbor vertical interaction

−ϵ σ(x, i)σ(x, i + 1).

Question: Does it lead to phase transition?

Theorem 1

Given any ϵ > 0, for any γ > 0 small enough µ+
γ ̸= µ−

γ , µ
±
γ the plus-minus DLR

measures defined as the thermodynamic limits of the Gibbs measures with plus, respectively

minus, boundary conditions.
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A few comments or questions:

• The model goes back to a system of hard-rods proposed by Kac-Helfand (1960s)

• Related to a one-dimensional quantum spin model with transverse field.

(Aizenman, Klein, Newman (1993); Ioffe, Levit (2012))

• Our motivation was mathematical. But such anisotropic interactions should be natural

in some applications.

• Phase diagram in the Lebowitz-Penrose limit γ → 0? (Cassandro, Colangeli, Presutti)

• When β > 1 there is phase transition for ϵ = γA for any A > 0.

• What if β = 1 and we take ϵ(γ) → 0 ?

• If ϵ(γ) = κγb, for which b do we see a change of behavior in κ?

(Work in progress with T. Mountford for the case of percolation)
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Outline:

• Study the Gibbs measures for a “chessboard” Hamiltonian Hγ,ϵ: some vertical

interactions are removed.

• For Hγ,ϵ we have a two dimensional system with pair of long segments of parallel layers

interacting vertically within the pair (but not with the outside) plus horizontal Kac.

• Preliminary step: look at the mean field free energy function of two layers and its

minimizers; exploit the spontaneous magnetization that emerges.

• This spontaneous magnetization used for the definition of contours (as in the analysis of

the one dimensional Kac interactions below the mean field critical temperature).

• For the chessboard Hamiltonian, and after a proper coarse graining procedure, we are

able to implement the Lebowitz-Penrose procedure and to study the corresponding free

energy functional

• Peierls bounds (Theorem 2) for the weight of contours is transformed in variational

problems for the free energy functional.
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Coarse grained description and contours Length scales and accuracy:

γ
−1/2

, ℓ± = γ
−(1±α)

, ζ = γ
a
, 1 ≫ α ≫ a > 0.

γ−1/2 • to implement coarse graining - procedure to define free energy functionals

ζ, ℓ− and ℓ+ • to define, at the spin level, the plus/ minus regions and then the contours

Partition each layer into intervals of suitable lengths ℓ ∈ {2n, n ∈ Z}.

C
ℓ,i
x = C

ℓ
x × {i} := ([kℓ, (k + 1)ℓ) ∩ Z) × {i}, where k = ⌊x/ℓ⌋

Dℓ,i = {Cℓ,i
kℓ , k ∈ Z}

empirical magnetization on a scale ℓ in the layer i

σ
(ℓ)
(x, i) :=

1

ℓ

∑
y∈Cℓ

x

σ(y, i).

To simplify notation take γ in {2−n, n ∈ N}. We also take γ−α, ℓ± in {2n, n ∈ N+}
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• The “chessboard” Hamiltonian:

Hγ,ϵ = −
1

2

∑
x ̸=y,i

Jγ(x, y)σ(x, i)σ(y, i) − ϵ
∑
x,i

χi,xσ(x, i)σ(x, i + 1),

where

χx,i =

{
1 if ⌊x/ℓ+⌋ + i is even,

0 otherwise.

If χx,i = 1, we say that (x, i) and (x, i + 1) interact vertically; vx,i the site (x, j)

which interacts vertically with (x, i).

• Theorem 1 will follow once we prove that the magnetization in the plus state of the

chessboard Hamiltonian is strictly positive (by the GKS correlation inequalities).

• For Hγ,ϵ we detect a spontaneous magnetization mϵ > 0 in the limit γ → 0.

We use mϵ to define contours.

quad6



Natural guess for mϵ: minimizers of “mean field free energy function” of two layers.

(i) First take two layers of ±1 spins whose unique interaction is the n.n.vertical one.

(a system of independent pairs of spins)

• ϕ̂ϵ(m1,m2) the limit free energy (as the number of pairs tends to infinity).

Proposition 1. Xn = {−1, 1}n. For i = 1, 2, let mi ∈ {−1+ 2j
n : j = 1, . . . , n−1}

and

Zϵ,n(m1,m2) =
∑

(σ1,σ2)∈Xn×Xn

1{
∑n

x=1 σi(x)=nmi i=1,2}e
ϵ
∑n

x=1 σ1(x)σ2(x).

There is a continuous and convex function ϕ̂ϵ defined on [−1, 1]× [−1, 1], with bounded

derivatives on each [−r, r] × [−r, r] for |r| < 1, and a constant c > 0 so that

−ϕ̂ϵ(m1,m2) − c
logn

n
≤

1

n
logZϵ,n(m1,m2) ≤ −ϕ̂ϵ(m1,m2).
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(ii) Mean field free energy for two layers (reference in the L-P context):

• f̂ϵ(m1,m2) := −1
2

(
m2

1 + m2
2

)
+ ϕ̂ϵ(m1,m2)

Proposition 2. For any ϵ > 0 small enough f̂ϵ(m1,m2) has two minimizers:

±m(ϵ) := ±(mϵ,mϵ) and there is a constant c > 0 so that

|mϵ −
√
3ϵ| ≤ cϵ

3/2
.

Moreover, calling f̂ϵ,eq the minimum of f̂ϵ(m), for any ζ > 0 small enough:∣∣∣f̂ϵ(m) − f̂ϵ,eq

∣∣∣ ≥ cζ
2
, for all m such that ∥m − m

(ϵ)∥ ∧ ∥m + m
(ϵ)∥ ≥ ζ.
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Partition Z2 into rectangles {Qγ(k, j) : k, j ∈ Z}, where

Qγ(k, j) =
(
[kℓ+, (k + 1)ℓ+) × [jγ

−α
, (j + 1)γ

−α
)
)
∩ Z2

if k is even

Qγ(k, j) =
(
[kℓ+, (k + 1)ℓ+) × (jγ

−α
, (j + 1)γ

−α
]
)
∩ Z2

if k is odd.

Sometimes write Qx,i = Qγ(k, j) if (x, i) ∈ Qγ(k, j).

Important features

• Spins in Qx,i do not interact vertically with the spins outside,

i.e. vx,i ∈ Qx,i for all (x, i).

• The Qγ(k, j) are squares if lengths are measured in interaction length units.

• The size of the rectangles in interaction length units diverges as γ → 0.
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The random variables η(x, i), θ(x, i) and Θ(x, i) are then defined as follows:

• η(x, i) = ±1 if
∣∣σ(ℓ−)(x, i) ∓ mϵ

∣∣ ≤ ζ;

η(x, i) = 0 otherwise.

• θ(x, i) = 1, [= −1], if η(y, j) = 1, [= −1], for all (y, j) ∈ Qx,i;

θ(x, i) = 0 otherwise.

• Θ(x, i) = 1, [= −1], if η(y, j) = 1, [= −1],

for all (y, j) ∈ ∪u,v∈{−1,0,1}Qγ(k + u, j + v), block 3 × 3 of Q-rectangles

with (k, j) determined by Qx,i = Qγ(k, j).

plus phase: union of all the rectangles Qx,i s.t. Θ(x, i) = 1,

minus phase: union of those where Θ(x, i) = −1,

undetermined phase the rest.

Qγ(k, j) and Qγ(k
′, j′) connected if (k, j) and (k′, j′) are ∗–connected,

i.e. |k − k′| ∨ |j − j′| ≤ 1.
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By choosing suitable boundary conditions: Θ = 1 outside of a compact (Θ = −1

recovered via spin flip).

Given such a σ, contours are the pairs Γ = (sp(Γ), ηΓ), where

sp(Γ) a maximal connected component of the undetermined region,

ηΓ the restriction of η to sp(Γ)

Geometry of contours

ext(Γ) the maximal unbounded connected component of the complement of sp(Γ)

∂out(Γ) the union of the rectangles in ext(Γ) which are connected to sp(Γ).

∂in(Γ) the union of the rectangles in sp(Γ) which are connected to ext(Γ).

• Θ is constant and different from 0 on ∂out(Γ)

• Γ is plus if Θ = 1 on ∂out(Γ); η = 1 on ∂in(Γ). Analogously for minus contours.

intk(Γ), k = 1, . . . , kΓ the bounded maximal connected components (if any) of the

complement of sp(Γ),
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∂in,k(Γ) the union of all rectangles in sp(Γ) which are connected to intk(Γ).

∂out,k(Γ) is the union of all the rectangles in intk(Γ) which are connected to sp(Γ).

• Θ is constant and different from 0 on each ∂out,k(Γ); write ∂±
out,k(Γ), int±k (Γ),

∂±
in,k(Γ) if Θ = ±1 on the former; observe η = ±1 on ∂±

in,k(Γ), resp.

c(Γ) = sp(Γ) ∪
∪
k

intk(Γ).

Diluted Gibbs measures Let Λ be a bounded region which is an union of Q-rectangles.

σ̄ external condition s.t. η = 1 in ∂out(Λ)

Θ computed on (σΛ, σ̄); ∂in(Λ) union of all Q-rectangles in Λ connected to Λc.

The plus diluted Gibbs measure (with boundary conditions σ̄):

µ
+
Λ,σ̄(σΛ) =

e−Hγ,ϵ(σΛ|σ̄)

Z+
Λ,σ̄

1{Θ=1 on ∂in(Λ)}.

where

Z
+
Λ,σ̄ =

∑
σΛ

1{Θ=1 on ∂in(Λ)}e
−Hγ,ϵ(σΛ|σ̄)

=: ZΛ,σ̄(Θ = 1 on ∂in(Λ)),

Minus diluted Gibbs measure defined analogously.
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Peierls estimates for the plus and minus diluted Gibbs measures

WΓ(σ̄) :=
Zc(Γ);σ̄(η = ηΓ on sp(Γ);Θ = ±1 on each ∂±

out,k(Γ))

Zc(Γ);σ̄(Θ = 1 on sp(Γ) and on each ∂±
out,k(Γ)})

,

where ZΛ,σ̄(A) is the partition function in Λ with Hamiltonian Hγ,ϵ, with boundary

conditions σ̄ and constraint A.

Theorem 2 (Peierls bound)

There are c > 0, ϵ0 > 0 and γ· : (0,∞) → (0,∞) so that for any 0 < ϵ ≤ ϵ0,

0 < γ ≤ γϵ and any contour Γ with boundary spins σ̄

WΓ(σ̄) ≤ e
−c|sp(Γ)|γ2a+4α

.
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• Theorem 1 for the chessboard Hamiltonian follows easily from the Peierls bound

(along the lines of the usual proof for n.n. Ising at low temperatures:)

Sketch

Let {Λn} ↗ Z2 an increasing sequence of bounded Q-measurable regions

For γ small enough and all boundary conditions σ̄ such that η = 1 on ∂out(Λn), one

gets, by simple counting: (recall a << 1 and α << 1)

µ
+
Λn,σ̄

[
Θ(0) < 1

]
≤

∑
Γ:sp(Γ)∋0

N(Γ)e
−c|sp(Γ)|γ2a+4α

.

and

µ
+
Λn,σ̄

[
Θ(0) < 1

]
≤

∑
D∋0

|D|e−
c
2|D|γ−1+2a+2α

the sum over all connected regions D made of unit cubes with vertices in Z2, and

the sum vanishes in the limit γ → 0.

• By the spin flip symmetry: there are at least two DLR measures.

• By ferromagnetic inequalities: µ+
γ ̸= µ−

γ in Theorem 1.
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Reduction of Peierls bounds to a variational problem

• A Lebowitz-Penrose theorem for the spin model corresponding to Hγ,ϵ.

(coarse graining procedure / free energy functional)

ZΛ,σ̄(A) :=
∑
σΛ∈A

e
−Hγ,ϵ(σΛ | σ̄)

,

where σ̄ is a spin configuration in the complement of Λ and A is a set of configurations

in Λ defined in terms of the values of ηΛ.

• Coarse-grain on the scale γ−1/2.

M
γ−1/2 the possible values of the empirical magnetizations σ(γ−1/2), i.e.

M
γ−1/2 = {−1,−1 + 2γ

1/2
, ..., 1 − 2γ

1/2
, 1}

and

MΛ := {m(·) ∈ (M
γ−1/2)

Λ
: m(·) is constant on each C

γ−1/2,i ⊆ Λ}.
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The free energy functional (on Λ with boundary conditions m̄) defined on [−1, 1]Λ

FΛ,γ(m|m̄) =
1

2

∑
(x,i)∈Λ

ϕ̂ϵ(m(x, i),m(vx,i))

−
1

2

∑
(x,i)̸=(y,i)∈Λ

Jγ(x, y)m(x, i)m(y, i)

−
∑

(x,i)∈Λ, (y,i)/∈Λ

Jγ(x, y)m(x, i)m̄(y, i),

Recall: vx,i ∈ Λ for each (x, i) ∈ Λ since there are no vertical interactions between a

Q–rectangle and the outside.

Theorem 3. There is a constant c so that

logZΛ(σ̄;A) ≤ − inf
m∈MΛ∩A

FΛ,γ(m|m̄) + c|Λ|γ1/2
log γ

−1
,

where m̄(x, i) = σ̄γ−1/2
(x, i), (x, i) /∈ Λ. Moreover, for any m ∈ MΛ ∩ A

logZΛ(σ̄;A) ≥ −FΛ,γ(m|m̄) − c|Λ|γ1/2
log γ

−1
.

Of course in the upper bound can replace MΛ by [−1, 1]Λ.

quad16



Peierls bound. Sketch of the proof.

Upper bound for the numerator: must show that the excess free energy due to the

constraint on η = ηΓ is much larger than the error terms in Theorem 3.

• Important: to show that can restrict to infimum over smooth functions

i.e. |m(x, i) − mℓ−(x, i)| < cγα far from the boundary of sp(Γ).

∆0 = sp(Γ) minus internal boundaries

inf
m∈[−1,1]Λ∩A

Fsp(Γ),γ(m|m̄) ≥ Φ∆0
+ Φ∆in

(m̄σext) +
∑
k

Φ
+

∆+
k

(m̄σ
I+
k

)

+
∑
k

Φ
−
∆−
k

(m̄σ
I−
k

),

where

Φ∆0
= inf

{
F

∗
∆0,γ

(m)
∣∣∣ m ∈ [−1, 1]

∆0, |m − m
(ℓ−)| ≤ cγ

α
, η(·;m) = ηΓ(·),

}
and

F
∗
∆0,γ

(m) =
∑

(x,i)∈∆0

{−
1

2
m(x, i)

2
+

1

2
ϕ̂ϵ(m(x, i),m(vx,i))}

+
1

4

∑
(x,i)̸=(y,i)∈∆0

Jγ(x, y)(m(x, i) − m(y, i))
2
, (I)

quad17



We omit any details about the other terms (boundaries).

Will get the following upper bound for the numerator in the Peierls weight:

Zc(Γ);σ̄(η = ηΓ on sp(Γ);Θ = ±1 on each ∂
±
out,k(Γ))

≤ e
−Φ∆0

+c|Λ|γ1/2 log γ−1

× e
−Φ∆in

(m̄σext){
∏

Z
+
(I

+
k )}{

∏
Z

+
(I

−
k )}.

• spin flip symmetry was used here!

Key point: lower bound on Φ∆0
(follows from Proposition 2).

Φ∆0
≥ f̂ϵ,eq

|∆0|
2

+ c
|∆0|

γ−(1+α)γ−α
γ
−(1−α)

min{γα
; γ

2a}.

(two basic situations contribute here in each Q in ∆0 (or a neighbor): at least one vertical

pair, or a change of sign in the same layer - in η)

quad18



• For the lower bound on the denominator of the Peierls weight:

By computing the free energy functional on a suitable test function m on sp(Γ) we

get:

(need to take care about a term as the last one on the r.h.s. of (I) but with

(x, i) ∈ ∆0, (y, i) /∈ ∆0)

Zc(Γ);σ̄(η = 1 on sp(Γ);Θ = ±1 on each ∂
±
k (Γ))

≥ e
−f̂ϵ,eq

|∆0|
2 −c(|sp(Γ)|γ1/2

× e
−Φ∆in

(m̄σext){
∏

Z
+
(I

+
k )}{

∏
Z

+
(I

−
k )}.

The comparison of upper and lower bounds gives Theorem 2

quad19



Comments

For the corresponding percolation problem we can get something about the ’critical

exponent’ for ϵ(γ).

Work in progress with Tom Mountford

For the moment we have: If ϵ(γ) = cγ2/5 with c small, then there is no percolation.

In progress: If ϵ(γ) = c̄γ2/5 with c̄ large, then percolation.
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