Some results on two-dimensional anisotropic Ising spin systems and percolation

Maria Eulália Vares UFRJ, Rio de Janeiro

Based on joint paper / work in progress with L.R. Fontes, D. Marchetti, I. Merola, E. Presutti / T. Mountford

Workshop - IHP - June 2017

Our basic model

System of ± 1 lsing spins on the lattice $\mathbb{Z} \times \mathbb{Z}$: $\{\sigma(x, i)\}$

• On each horizontal line $\{(x, i), x \in \mathbb{Z}\}$, we have a ferromagnetic Kac interaction:

$$-rac{1}{2}J_{\gamma}(x,y)\sigma(x,i)\sigma(y,i),$$

 $J_{\gamma}(x,y) = c_{\gamma}\gamma J(\gamma(x-y)),$

where $J(\cdot) \ge 0$ symmetric, smooth, compact support, $\int J(r)dr = 1$, J(0) > 0. $\gamma > 0$ (scale parameter)

 c_γ is the normalizing constant: $\sum_{y \neq x} J_\gamma(x,y) = 1, \;\; \text{for all} \; x$

Fix the inverse temperature at the mean field critical value $\beta = 1$:

Also in the Lebowitz-Penrose limit no phase transition is present

• Add a small nearest neighbor vertical interaction

$$-\epsilon \ \sigma(x,i)\sigma(x,i+1).$$

Question: Does it lead to phase transition?

Theorem 1

Given any $\epsilon > 0$, for any $\gamma > 0$ small enough $\mu_{\gamma}^+ \neq \mu_{\gamma}^-$, μ_{γ}^\pm the plus-minus DLR measures defined as the thermodynamic limits of the Gibbs measures with plus, respectively minus, boundary conditions.

A few comments or questions:

- The model goes back to a system of hard-rods proposed by Kac-Helfand (1960s)
- Related to a one-dimensional quantum spin model with transverse field. (Aizenman, Klein, Newman (1993); loffe, Levit (2012))

• Our motivation was mathematical. But such anisotropic interactions should be natural in some applications.

- Phase diagram in the Lebowitz-Penrose limit $\gamma \rightarrow 0$? (Cassandro, Colangeli, Presutti)
- When $\beta > 1$ there is phase transition for $\epsilon = \gamma^A$ for any A > 0.
- What if $\beta = 1$ and we take $\epsilon(\gamma) \to 0$?
- If $\epsilon(\gamma) = \kappa \gamma^b$, for which b do we see a change of behavior in κ ? (Work in progress with T. Mountford for the case of percolation)

Outline:

• Study the Gibbs measures for a "chessboard" Hamiltonian $H_{\gamma,\epsilon}$: some vertical interactions are removed.

• For $H_{\gamma,\epsilon}$ we have a two dimensional system with pair of long segments of parallel layers interacting vertically within the pair (but not with the outside) plus horizontal Kac.

• Preliminary step: look at the mean field free energy function of two layers and its minimizers; exploit the spontaneous magnetization that emerges.

• This spontaneous magnetization used for the definition of contours (as in the analysis of the one dimensional Kac interactions below the mean field critical temperature).

• For the chessboard Hamiltonian, and after a proper coarse graining procedure, we are able to implement the Lebowitz-Penrose procedure and to study the corresponding free energy functional

• Peierls bounds (Theorem 2) for the weight of contours is transformed in variational problems for the free energy functional.

Coarse grained description and contours Length scales and accuracy:

$$\gamma^{-1/2}, \ \ell_{\pm} = \gamma^{-(1\pm\alpha)}, \ \zeta = \gamma^a, \qquad 1 \gg \alpha \gg a > 0.$$

 $\gamma^{-1/2}$ • to implement coarse graining - procedure to define free energy functionals ζ , ℓ_{-} and ℓ_{+} • to define, at the spin level, the *plus/ minus* regions and then the contours Partition each layer into intervals of suitable lengths $\ell \in \{2^{n}, n \in \mathbb{Z}\}$.

$$C_x^{\ell,i} = C_x^\ell \times \{i\} := ([k\ell, (k+1)\ell) \cap \mathbb{Z}) \times \{i\}, \text{ where } k = \lfloor x/\ell \rfloor$$
$$\mathcal{D}^{\ell,i} = \{C_{k\ell}^{\ell,i}, k \in \mathbb{Z}\}$$

empirical magnetization on a scale ℓ in the layer i

$$\sigma^{(\ell)}(x,i) := rac{1}{\ell} \sum_{y \in C_x^\ell} \sigma(y,i).$$

To simplify notation take γ in $\{2^{-n}, n \in \mathbb{N}\}$. We also take $\gamma^{-\alpha}$, ℓ_{\pm} in $\{2^n, n \in \mathbb{N}_+\}$

• The "chessboard" Hamiltonian:

$$H_{\gamma,\epsilon} = -\frac{1}{2} \sum_{x \neq y,i} J_{\gamma}(x,y) \sigma(x,i) \sigma(y,i) - \epsilon \sum_{x,i} \chi_{i,x} \sigma(x,i) \sigma(x,i+1),$$

where

$$\chi_{x,i} = egin{cases} 1 & ext{if } \lfloor x/\ell_+
floor + i ext{ is even}, \ 0 & ext{otherwise}. \end{cases}$$

If $\chi_{x,i} = 1$, we say that (x, i) and (x, i + 1) interact vertically; $v_{x,i}$ the site (x, j) which interacts vertically with (x, i).

• Theorem 1 will follow once we prove that the magnetization in the plus state of the chessboard Hamiltonian is strictly positive (by the GKS correlation inequalities).

• For $H_{\gamma,\epsilon}$ we detect a spontaneous magnetization $m_{\epsilon} > 0$ in the limit $\gamma \to 0$. We use m_{ϵ} to define contours. Natural guess for m_{ϵ} : minimizers of "mean field free energy function" of two layers.

(i) First take two layers of ± 1 spins whose unique interaction is the n.n.vertical one. (a system of independent pairs of spins)

• $\hat{\phi}_{\epsilon}(m_1, m_2)$ the limit free energy (as the number of pairs tends to infinity).

Proposition 1. $X_n = \{-1, 1\}^n$. For i = 1, 2, let $m_i \in \{-1 + \frac{2j}{n} : j = 1, \dots, n-1\}$ and

$$Z_{\epsilon,n}(m_1, m_2) = \sum_{(\sigma_1, \sigma_2) \in X_n \times X_n} \mathbf{1}_{\{\sum_{x=1}^n \sigma_i(x) = nm_i \ i=1,2\}} e^{\epsilon \sum_{x=1}^n \sigma_1(x)\sigma_2(x)}$$

There is a continuous and convex function $\hat{\phi}_{\epsilon}$ defined on $[-1, 1] \times [-1, 1]$, with bounded derivatives on each $[-r, r] \times [-r, r]$ for |r| < 1, and a constant c > 0 so that

$$-\hat{\phi}_\epsilon(m_1,m_2)-crac{\log n}{n}\leq rac{1}{n}\log Z_{\epsilon,n}(m_1,m_2)\leq -\hat{\phi}_\epsilon(m_1,m_2).$$

(ii) Mean field free energy for two layers (reference in the L-P context):

•
$$\hat{f}_{\epsilon}(m_1, m_2) := -\frac{1}{2} \Big(m_1^2 + m_2^2 \Big) + \hat{\phi}_{\epsilon}(m_1, m_2)$$

Proposition 2. For any $\epsilon > 0$ small enough $\hat{f}_{\epsilon}(m_1, m_2)$ has two minimizers: $\pm m^{(\epsilon)} := \pm (m_{\epsilon}, m_{\epsilon})$ and there is a constant c > 0 so that

$$|m_{\epsilon} - \sqrt{3\epsilon}| \le c\epsilon^{3/2}.$$

Moreover, calling $\hat{f}_{\epsilon,eq}$ the minimum of $\hat{f}_{\epsilon}(m)$, for any $\zeta > 0$ small enough:

$$\left|\hat{f}_{\epsilon}(m) - \hat{f}_{\epsilon,\mathrm{eq}}\right| \geq c\zeta^{2}, \quad ext{for all } m ext{ such that } \|m - m^{(\epsilon)}\| \wedge \|m + m^{(\epsilon)}\| \geq \zeta.$$

Partition \mathbb{Z}^2 into rectangles $\{Q_\gamma(k,j)\colon k,j\in\mathbb{Z}\}$, where

$$\begin{split} Q_{\gamma}(k,j) &= \left([k\ell_{+},(k+1)\ell_{+}) \times [j\gamma^{-\alpha},(j+1)\gamma^{-\alpha}) \right) \cap \mathbb{Z}^{2} \text{ if } k \text{ is even} \\ Q_{\gamma}(k,j) &= \left([k\ell_{+},(k+1)\ell_{+}) \times (j\gamma^{-\alpha},(j+1)\gamma^{-\alpha}] \right) \cap \mathbb{Z}^{2} \text{ if } k \text{ is odd.} \end{split}$$

Sometimes write $Q_{x,i} = Q_{\gamma}(k,j)$ if $(x,i) \in Q_{\gamma}(k,j)$.

Important features

• Spins in $Q_{x,i}$ do not interact vertically with the spins outside, i.e. $v_{x,i} \in Q_{x,i}$ for all (x, i).

- The $Q_{\gamma}(k, j)$ are squares if lengths are measured in interaction length units.
- The size of the rectangles in interaction length units diverges as $\gamma \to 0$.

The random variables $\eta(x,i)$, $\theta(x,i)$ and $\Theta(x,i)$ are then defined as follows:

- $\eta(x,i) = \pm 1$ if $\left|\sigma^{(\ell_{-})}(x,i) \mp m_{\epsilon}\right| \leq \zeta;$ $\eta(x,i) = 0$ otherwise.
- $\theta(x,i) = 1$, [=-1], if $\eta(y,j) = 1$, [=-1], for all $(y,j) \in Q_{x,i}$; $\theta(x,i) = 0$ otherwise.
- $\Theta(x, i) = 1$, [= -1], if $\eta(y, j) = 1$, [= -1], for all $(y, j) \in \bigcup_{u,v \in \{-1,0,1\}} Q_{\gamma}(k+u, j+v)$, block 3×3 of Q-rectangles with (k, j) determined by $Q_{x,i} = Q_{\gamma}(k, j)$.

plus phase: union of all the rectangles $Q_{x,i}$ s.t. $\Theta(x,i) = 1$, minus phase: union of those where $\Theta(x,i) = -1$, undetermined phase the rest.

 $Q_{\gamma}(k,j)$ and $Q_{\gamma}(k',j')$ connected if (k,j) and (k',j') are *-connected, i.e. $|k - k'| \vee |j - j'| \leq 1$.

By choosing suitable boundary conditions: $\Theta = 1$ outside of a compact ($\Theta = -1$ recovered via spin flip).

Given such a σ , contours are the pairs $\Gamma = (\operatorname{sp}(\Gamma), \eta_{\Gamma})$, where sp(Γ) a maximal connected component of the undetermined region, η_{Γ} the restriction of η to sp(Γ)

Geometry of contours

ext(Γ) the maximal unbounded connected component of the complement of $\operatorname{sp}(\Gamma)$ $\partial_{\operatorname{out}}(\Gamma)$ the union of the rectangles in $\operatorname{ext}(\Gamma)$ which are connected to $\operatorname{sp}(\Gamma)$. $\partial_{\operatorname{in}}(\Gamma)$ the union of the rectangles in $\operatorname{sp}(\Gamma)$ which are connected to $\operatorname{ext}(\Gamma)$.

- Θ is constant and different from 0 on $\partial_{\mathrm{out}}(\Gamma)$
- Γ is plus if $\Theta = 1$ on $\partial_{out}(\Gamma)$; $\eta = 1$ on $\partial_{in}(\Gamma)$. Analogously for minus contours.

 $\operatorname{int}_k(\Gamma), k = 1, \ldots, k_{\Gamma}$ the bounded maximal connected components (if any) of the complement of $\operatorname{sp}(\Gamma)$,

 $\partial_{\mathrm{in},k}(\Gamma)$ the union of all rectangles in $\mathrm{sp}(\Gamma)$ which are connected to $\mathrm{int}_k(\Gamma)$.

 $\partial_{\mathrm{out},k}(\Gamma)$ is the union of all the rectangles in $\mathrm{int}_k(\Gamma)$ which are connected to $\mathrm{sp}(\Gamma)$.

• Θ is constant and different from 0 on each $\partial_{\operatorname{out},k}(\Gamma)$; write $\partial_{\operatorname{out},k}^{\pm}(\Gamma)$, $\operatorname{int}_{k}^{\pm}(\Gamma)$, $\partial_{\operatorname{in},k}^{\pm}(\Gamma)$ if $\Theta = \pm 1$ on the former; observe $\eta = \pm 1$ on $\partial_{\operatorname{in},k}^{\pm}(\Gamma)$, resp.

$$c(\Gamma) = \operatorname{sp}(\Gamma) \cup \bigcup_k \operatorname{int}_k(\Gamma).$$

Diluted Gibbs measures Let Λ be a bounded region which is an union of Q-rectangles. $\bar{\sigma}$ external condition s.t. $\eta = 1$ in $\partial_{out}(\Lambda)$

 Θ computed on $(\sigma_{\Lambda}, \bar{\sigma})$; $\partial_{in}(\Lambda)$ union of all Q-rectangles in Λ connected to Λ^c .

The plus diluted Gibbs measure (with boundary conditions $\bar{\sigma}$):

$$\mu_{\Lambda,\bar{\sigma}}^{+}(\sigma_{\Lambda}) = \frac{e^{-H_{\gamma,\epsilon}(\sigma_{\Lambda}|\bar{\sigma})}}{Z_{\Lambda,\bar{\sigma}}^{+}} \mathbf{1}_{\{\Theta=1 \text{ on } \partial_{\mathrm{in}}(\Lambda)\}}.$$

where

$$Z_{\Lambda,\bar{\sigma}}^{+} = \sum_{\sigma_{\Lambda}} \mathbf{1}_{\{\Theta=1 \text{ on } \partial_{\mathrm{in}}(\Lambda)\}} e^{-H_{\gamma,\epsilon}(\sigma_{\Lambda}|\bar{\sigma})} =: Z_{\Lambda,\bar{\sigma}}(\Theta = 1 \text{ on } \partial_{\mathrm{in}}(\Lambda)),$$

Minus diluted Gibbs measure defined analogously.

Peierls estimates for the plus and minus diluted Gibbs measures

$$W_{\Gamma}(\bar{\sigma}) := \frac{Z_{c(\Gamma);\bar{\sigma}}(\eta = \eta_{\Gamma} \text{ on } \operatorname{sp}(\Gamma); \Theta = \pm 1 \text{ on each } \partial^{\pm}_{\operatorname{out},k}(\Gamma))}{Z_{c(\Gamma);\bar{\sigma}}(\Theta = 1 \text{ on } \operatorname{sp}(\Gamma) \text{ and on each } \partial^{\pm}_{\operatorname{out},k}(\Gamma)\})},$$

where $Z_{\Lambda,\bar{\sigma}}(\mathcal{A})$ is the partition function in Λ with Hamiltonian $H_{\gamma,\epsilon}$, with boundary conditions $\bar{\sigma}$ and constraint \mathcal{A} .

Theorem 2 (Peierls bound)

There are c > 0, $\epsilon_0 > 0$ and $\gamma_{\cdot} : (0, \infty) \to (0, \infty)$ so that for any $0 < \epsilon \leq \epsilon_0$, $0 < \gamma \leq \gamma_{\epsilon}$ and any contour Γ with boundary spins $\bar{\sigma}$

$$W_{\Gamma}(\bar{\sigma}) \leq e^{-c|\operatorname{sp}(\Gamma)|\gamma^{2a+4\alpha}}$$

• Theorem 1 for the chessboard Hamiltonian follows easily from the Peierls bound (along the lines of the usual proof for n.n. Ising at low temperatures:)

Sketch

Let $\{\Lambda_n\} \nearrow \mathbb{Z}^2$ an increasing sequence of bounded Q-measurable regions

For γ small enough and all boundary conditions $\bar{\sigma}$ such that $\eta = 1$ on $\partial_{out}(\Lambda_n)$, one gets, by simple counting: (recall $a \ll 1$ and $\alpha \ll 1$)

$$\mu_{\Lambda_n,\bar{\sigma}}^+ \Big[\Theta(0) < 1 \Big] \le \sum_{\Gamma: \operatorname{sp}(\Gamma) \ni 0} N(\Gamma) e^{-c|\operatorname{sp}(\Gamma)|\gamma^{2a+4\alpha}}$$

and

$$\mu_{\Lambda_{n},\bar{\sigma}}^{+} \Big[\Theta(0) < 1 \Big] \le \sum_{D \ni 0} |D| e^{-\frac{c}{2} |D| \gamma^{-1 + 2a + 2\alpha}}$$

the sum over all connected regions D made of unit cubes with vertices in \mathbb{Z}^2 , and

the sum vanishes in the limit $\gamma \rightarrow 0$.

- By the spin flip symmetry: there are at least two DLR measures.
- By ferromagnetic inequalities: $\mu_{\gamma}^+ \neq \mu_{\gamma}^-$ in Theorem 1.

Reduction of Peierls bounds to a variational problem

• A Lebowitz-Penrose theorem for the spin model corresponding to $H_{\gamma,\epsilon}$. (coarse graining procedure / free energy functional)

$$Z_{\Lambda,\bar{\sigma}}(\mathcal{A}) := \sum_{\sigma_{\Lambda} \in \mathcal{A}} e^{-H_{\gamma,\epsilon}(\sigma_{\Lambda} \mid \bar{\sigma})},$$

where $\bar{\sigma}$ is a spin configuration in the complement of Λ and \mathcal{A} is a set of configurations in Λ defined in terms of the values of η_{Λ} .

• Coarse-grain on the scale $\gamma^{-1/2}.$ $M_{\gamma^{-1/2}}$ the possible values of the empirical magnetizations $\sigma^{(\gamma^{-1/2})}$, i.e.

$$M_{\gamma^{-1/2}} = \{-1, -1 + 2\gamma^{1/2}, ..., 1 - 2\gamma^{1/2}, 1\}$$

and

$$\mathcal{M}_\Lambda:=\{m(\cdot)\in (M_{\gamma^{-1/2}})^\Lambda:\ m(\cdot) ext{ is constant on each } C^{\gamma^{-1/2},i}\subseteq\Lambda\}.$$

The free energy functional (on Λ with boundary conditions \bar{m}) defined on $[-1,1]^{\Lambda}$

$$egin{aligned} F_{\Lambda,\gamma}(m|ar{m}) &=& rac{1}{2}\sum_{(x,i)\in\Lambda}\hat{\phi}_{\epsilon}(m(x,i),m(v_{x,i})) \ && -& rac{1}{2}\sum_{(x,i)
eq(y,i)\in\Lambda}J_{\gamma}(x,y)m(x,i)m(y,i) \ && -& \sum_{(x,i)\in\Lambda,\;(y,i)
eq\Lambda}J_{\gamma}(x,y)m(x,i)ar{m}(y,i), \end{aligned}$$

Recall: $v_{x,i} \in \Lambda$ for each $(x, i) \in \Lambda$ since there are no vertical interactions between a Q-rectangle and the outside.

Theorem 3. There is a constant c so that

$$\log Z_{\Lambda}(\bar{\sigma};\mathcal{A}) \leq -\inf_{m \in \mathcal{M}_{\Lambda} \cap \mathcal{A}} F_{\Lambda,\gamma}(m|\bar{m}) + c|\Lambda|\gamma^{1/2}\log\gamma^{-1},$$

where $\bar{m}(x,i) = \bar{\sigma}^{\gamma^{-1/2}}(x,i)$, $(x,i) \notin \Lambda$. Moreover, for any $m \in \mathcal{M}_{\Lambda} \cap \mathcal{A}$

$$\log Z_{\Lambda}(\bar{\sigma};\mathcal{A}) \geq -F_{\Lambda,\gamma}(m|\bar{m}) - c|\Lambda|\gamma^{1/2}\log\gamma^{-1}.$$

Of course in the upper bound can replace \mathcal{M}_{Λ} by $[-1,1]^{\Lambda}$.

Peierls bound. Sketch of the proof.

Upper bound for the numerator: must show that the excess free energy due to the constraint on $\eta = \eta_{\Gamma}$ is much larger than the error terms in Theorem 3.

• Important: to show that can restrict to infimum over smooth functions i.e. $|m(x,i) - m^{\ell_-}(x,i)| < c\gamma^{\alpha}$ far from the boundary of $\operatorname{sp}(\Gamma)$. $\Delta_0 = \operatorname{sp}(\Gamma)$ minus internal boundaries

$$\inf_{m \in [-1,1]^{\Lambda} \cap \mathcal{A}} F_{\operatorname{sp}(\Gamma),\gamma}(m|\bar{m}) \geq \Phi_{\Delta_0} + \Phi_{\Delta_{\operatorname{in}}}(\bar{m}_{\sigma_{\operatorname{ext}}}) + \sum_k \Phi_{\Delta_k^+}^+(\bar{m}_{\sigma_{I_k^+}}) + \sum_k \Phi_{\Delta_k^-}^-(\bar{m}_{\sigma_{I_k^-}}),$$

where

$$\Phi_{\Delta_0} = \inf \left\{ F^*_{\Delta_0,\gamma}(m) \mid m \in [-1,1]^{\Delta_0}, |m-m^{(\ell_-)}| \le c\gamma^{\alpha}, \ \eta(\cdot;m) = \eta_{\Gamma}(\cdot), \right\}$$

and

$$F_{\Delta_{0},\gamma}^{*}(m) = \sum_{(x,i)\in\Delta_{0}} \{-\frac{1}{2}m(x,i)^{2} + \frac{1}{2}\hat{\phi}_{\epsilon}(m(x,i),m(v_{x,i}))\} + \frac{1}{4}\sum_{(x,i)\neq(y,i)\in\Delta_{0}} J_{\gamma}(x,y)(m(x,i)-m(y,i))^{2}, \quad (I)$$

We omit any details about the other terms (boundaries).

Will get the following upper bound for the numerator in the Peierls weight:

$$Z_{c(\Gamma);\bar{\sigma}}(\eta = \eta_{\Gamma} \text{ on } \operatorname{sp}(\Gamma); \Theta = \pm 1 \text{ on each } \partial^{\pm}_{\operatorname{out},k}(\Gamma))$$

$$\leq e^{-\Phi_{\Delta_0} + c|\Lambda|\gamma^{1/2}\log\gamma^{-1}}$$

$$\times e^{-\Phi_{\Delta_{\operatorname{in}}}(\bar{m}\sigma_{\operatorname{ext}})} \{\prod Z^+(I_k^+)\} \{\prod Z^+(I_k^-)\}.$$

• spin flip symmetry was used here!

Key point: lower bound on Φ_{Δ_0} (follows from Proposition 2).

$$\Phi_{\Delta_0} \geq \hat{f}_{\epsilon, eq} \frac{|\Delta_0|}{2} + c \frac{|\Delta_0|}{\gamma^{-(1+\alpha)} \gamma^{-\alpha}} \gamma^{-(1-\alpha)} \min\{\gamma^{\alpha}; \gamma^{2a}\}.$$

(two basic situations contribute here in each Q in Δ_0 (or a neighbor): at least one vertical pair, or a change of sign in the same layer - in η)

• For the lower bound on the denominator of the Peierls weight:

By computing the free energy functional on a suitable test function m on $\operatorname{sp}(\Gamma)$ we get:

(need to take care about a term as the last one on the r.h.s. of (I) but with $(x,i)\in \Delta_0,~(y,i)\notin \Delta_0$)

$$Z_{c(\Gamma);\bar{\sigma}}(\eta = 1 \text{ on } \operatorname{sp}(\Gamma); \Theta = \pm 1 \text{ on each } \partial_k^{\pm}(\Gamma))$$

$$\geq e^{-\hat{f}_{\epsilon,\operatorname{eq}}\frac{|\Delta_0|}{2} - c(|\operatorname{sp}(\Gamma)|\gamma^{1/2})}$$

$$\times e^{-\Phi_{\Delta_{\operatorname{in}}}(\bar{m}\sigma_{\operatorname{ext}})} \{\prod Z^+(I_k^+)\} \{\prod Z^+(I_k^-)\}.$$

The comparison of upper and lower bounds gives Theorem 2

Comments

For the corresponding percolation problem we can get something about the 'critical exponent' for $\epsilon(\gamma)$.

Work in progress with Tom Mountford

For the moment we have: If $\epsilon(\gamma) = c \gamma^{2/5}$ with c small, then there is no percolation.

In progress: If $\epsilon(\gamma) = \bar{c}\gamma^{2/5}$ with \bar{c} large, then percolation.