Invariant measures in coupled KPZ equations

Tadahisa Funaki

Waseda University/University of Tokyo

$$
\text { June 14, } 2017
$$

Stochastic dynamics out of equilibrium, IHP, Paris

Plan of the talk

■ Coupled KPZ (Kardar-Parisi-Zhang) equations

- Motivation: nonlinear fluctuating hydrodynamics

■ Quick overview of results with Hoshino (JFA 273, 2017)

- Two approximating equations
- Trilinear condition (T) for coupling constants 「
- Invariant measure
- Global-in-time existence
- Role of (T)
- Invariant measure, renormalizations (for 4th order terms)

■ Extensions of Ertaș-Kardar's example, not satisfying (T) but having Invariant measure

Multi-component coupled KPZ equation

■ \mathbb{R}^{d}-valued KPZ eq for $h(t, x)=\left(h^{\alpha}(t, x)\right)_{\alpha=1}^{d}$ on $\mathbb{T}=[0,1)$:

$$
\begin{equation*}
\partial_{t} h^{\alpha}=\frac{1}{2} \partial_{x}^{2} h^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha} \partial_{x} h^{\beta} \partial_{x} h^{\gamma}+\sigma_{\beta}^{\alpha} \xi^{\beta} \tag{KPZ}
\end{equation*}
$$

- We use Einstein's convention.
- $\xi(t, x)=\left(\xi^{\alpha}(t, x)\right)_{\alpha=1}^{d}(\equiv \dot{W}(t, x))$ is an \mathbb{R}^{d}-valued space-time Gaussian white noise with covariance structure:

$$
E\left[\xi^{\alpha}(t, x) \xi^{\beta}(s, y)\right]=\delta^{\alpha \beta} \delta(x-y) \delta(t-s)
$$

- Coupled KPZ is ill-posed, since noise is irregular and doesn't match with nonlinear term. $\left(h \in C_{t, x}^{\frac{1}{4}-, \frac{1}{2}-}\right.$ a.s. when $\left.\Gamma=0\right)$
- We need to introduce approximations with smooth noises and renormalization for $(\sigma, \Gamma)_{K P Z}$. Indeed, one can introduce two types of approximations: one is simple, the other is suitable to study invariant measures ($d=1$: F-Quastel 2015).
- The constants $\Gamma_{\beta \gamma}^{\alpha}$ satisfy bilinear condition

$$
\Gamma_{\beta \gamma}^{\alpha}=\Gamma_{\gamma \beta}^{\alpha} \text { for all } \alpha, \beta, \gamma,
$$

and (sometimes) trilinear condition

$$
\Gamma_{\beta \gamma}^{\alpha}=\Gamma_{\gamma \beta}^{\alpha}=\Gamma_{\beta \alpha}^{\gamma} \text { for all } \alpha, \beta, \gamma .
$$

(cf. Ferrari-Sasamoto-Spohn 2013, Kupiainen-Marcozz 2017)

- $\sigma=\left(\sigma_{\beta}^{\alpha}\right)$ is an invertible matrix.
- Since σ is invertible, $\hat{h}=\sigma^{-1} h$ transforms $(\sigma, \Gamma)_{K P Z}$ to $(I, \hat{\Gamma}=\sigma \circ \Gamma)_{K P Z}$, where

$$
(\sigma \circ \Gamma)_{\beta \gamma}^{\alpha}:=\left(\sigma^{-1}\right)_{\alpha^{\prime}}^{\alpha} \Gamma_{\beta^{\prime} \gamma^{\prime}}^{\alpha^{\prime}} \sigma_{\beta}^{\beta^{\prime}} \sigma_{\gamma}^{\gamma^{\prime}} .
$$

Thus, the KPZ equation with $\sigma=I$ is considered as a canonical form.
■ The operation (coordinate change) $\Gamma \mapsto \sigma \circ \Gamma$ keeps the bilinearity, but not the trilinearity.

- We should say (σ, Γ) satisfies trilinear condition, iff $\hat{\Gamma}:=\sigma \circ \Gamma$ satisfies (T).
- In the following, we assume $\sigma=l$.

Two coupled KPZ approximating equations $\quad(d=1$: FQ '15) We replace the noise by smooth one: $\eta^{\varepsilon}=\frac{1}{\varepsilon} \eta\left(\frac{x}{\varepsilon}\right) \rightarrow \delta_{0}$ as usual.

- Approx. eq-1 (usual): $h^{\alpha}=h^{\varepsilon, \alpha}$

$$
\begin{equation*}
\partial_{t} h^{\alpha}=\frac{1}{2} \partial_{x}^{2} h^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} h^{\beta} \partial_{x} h^{\gamma}-c^{\varepsilon} \delta^{\beta \gamma}-B^{\varepsilon, \beta \gamma}\right)+\xi^{\alpha} * \eta^{\varepsilon}, \tag{1}
\end{equation*}
$$

where $c^{\varepsilon}=\frac{1}{\varepsilon}\|\eta\|_{L^{2}(\mathbb{R})}^{2}\left(=O\left(\frac{1}{\varepsilon}\right)\right)$ and $B^{\varepsilon, \beta \gamma}\left(=O\left(\log \frac{1}{\varepsilon}\right)\right.$ in general) is another renormalization factor.

- Approx. eq-2 (suitable to study inv meas): $\tilde{h}^{\alpha}=\tilde{h}^{\varepsilon, \alpha}$
$\partial_{t} \tilde{h}^{\alpha}=\frac{1}{2} \partial_{x}^{2} \tilde{h}^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} \tilde{h}^{\beta} \partial_{x} \tilde{h}^{\gamma}-c^{\varepsilon} \delta^{\beta \gamma}-\tilde{B}^{\varepsilon, \beta \gamma}\right) * \eta_{2}^{\varepsilon}+\xi^{\alpha} * \eta^{\varepsilon}$,
with a renormalization factor $\tilde{B}^{\varepsilon, \beta \gamma}$, where $\eta_{2}^{\varepsilon}=\eta^{\varepsilon} * \eta^{\varepsilon}$.
- The idea behind (2) is the fluctuation-dissipation relation.
- Renorm-factor $c^{\varepsilon} \equiv c_{\epsilon}^{\boldsymbol{V}}=O\left(\frac{1}{\varepsilon}\right)$ is from 2 nd order terms in the expansion, while R-factors $B^{\varepsilon, \beta \gamma}$ and $\tilde{B}^{\varepsilon, \beta \gamma}=O\left(\log \frac{1}{\varepsilon}\right)$ are from 4th order terms involving $C^{\varepsilon}=c_{\epsilon}^{\mathrm{ky}}, D^{\varepsilon}=c_{\epsilon}^{\text {§ }}$.

Quick overview of results on coupled KPZ eq (F-Hoshino, JFA 2017)
■ Convergence of h^{ε} and \tilde{h}^{ε} and Local well-posedness of coupled KPZ eq $(\sigma, \Gamma)_{K P Z}$ by applying paracontrolled calculus due to Gubinelli-Imkeller-Perkowski 2015
(Cole-Hopf doesn't work for coupled eq. in general. In 1D, we used it and showed Boltzmann-Gibbs principle, FQ 2015)

- 2nd approx. fits to identify invariant measure under (T)

■ Global solvability for a.s.-initial data under an invariant measure under (T) (similar to Da Prato-Debussche)
■ Strong Feller property (due to Hairer-Mattingly 2016)
■ Global well-posedness (existence, uniqueness) under (T) ergodicity and uniqueness of invariant measure

- A priori estimates for 1st approximation (1) under (T)

Convergence of h^{ε} and \tilde{h}^{ε} and Local well-posedness of coupled KPZ eq $(\sigma, \Gamma)_{K P Z}($ we take $\sigma=I): \quad \mathcal{C}^{\kappa}=\left(\mathcal{B}_{\infty, \infty}^{\kappa}(\mathbb{T})\right)^{d}, \kappa \in \mathbb{R}$ denotes \mathbb{R}^{d}-valued Besov space on \mathbb{T}.

Theorem 1

(1) Assume $h_{0} \in \cup_{\delta>0} \mathcal{C}^{\delta}$, then a unique solution h^{ε} of (1) exists up to some $T^{\varepsilon} \in(0, \infty]$ and $\bar{T}=\liminf _{\varepsilon \downarrow 0} T^{\varepsilon}>0$ holds. With a proper choice of $B^{\varepsilon, \beta \gamma}$, h^{ε} converges in prob. to some h in $C\left([0, T], \mathcal{C}^{\frac{1}{2}-\delta}\right)$ for every $\delta>0$ and $0<T \leq \bar{T}$.
(2) Similar result holds for the solution \tilde{h}^{ε} of (2) with some limit \tilde{h}. Under proper choices of $B^{\varepsilon, \beta \gamma}$ and $\tilde{B}^{\varepsilon, \beta \gamma}$, we can actually make $h=\tilde{h}$.

$$
\begin{align*}
& \partial_{t} h^{\alpha}=\frac{1}{2} \partial_{x}^{2} h^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} h^{\beta} \partial_{x} h^{\gamma}-c^{\varepsilon} \delta^{\beta \gamma}-B^{\varepsilon, \beta \gamma}\right)+\xi^{\alpha} * \eta^{\varepsilon} \tag{1}\\
& \partial_{t} \tilde{h}^{\alpha}=\frac{1}{2} \partial_{x}^{2} \tilde{h}^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} \tilde{h}^{\beta} \partial_{x} \tilde{h}^{\gamma}-c^{\varepsilon} \delta^{\beta \gamma}-\tilde{B}^{\varepsilon, \beta \gamma}\right) * \eta_{2}^{\varepsilon}+\xi^{\alpha} * \eta^{\varepsilon} \tag{2}
\end{align*}
$$

Results under (T): Cancellation in Log-Renormalizations, Invariant measure $=$ Wiener measure, difference of two limits.

Theorem 2

Assume the trilinear condition (\mathbf{T}).
(1) Then, $B^{\varepsilon, \beta \gamma}, \tilde{B}^{\varepsilon, \beta \gamma}=O(1)$ so that the solutions of (1) with $B=0$ and (2) with $\tilde{B}=0$ converge. In the limit, we have
where

$$
\tilde{h}^{\alpha}(t, x)=h^{\alpha}(t, x)+c^{\alpha} t, \quad 1 \leq \alpha \leq d
$$

$$
c^{\alpha}=\frac{1}{24} \sum_{\gamma, \gamma^{\prime}} \Gamma_{\alpha^{\prime} \alpha^{\prime \prime}}^{\alpha} \Gamma_{\gamma \gamma^{\prime}}^{\alpha^{\prime}} \Gamma_{\gamma \gamma^{\prime}}^{\alpha^{\prime \prime}}
$$

(2) Moreover, the distribution of $\left\{\partial_{x} B\right\}_{x \in \mathbb{T}}$ ($B=$ periodic $B M$) is invariant under the tilt process $u=\partial_{x} h$ (or periodic Wiener measure on the quotient space $\mathcal{C}^{\frac{1}{2}-\delta} / \sim$ where $h \sim h+c$).

■ Remark (F-Quastel 2015, stationary case): When $d=1$ (i.e., scalar-valued eq), (T) is automatic and solutions of two approx. eqs without log-renormalizations satisfy

$$
\lim _{\varepsilon \downarrow 0} \tilde{h}^{\varepsilon}=\lim _{\varepsilon \downarrow 0} h^{\varepsilon}+\frac{t}{24}\left(=h_{C H}+\frac{t}{24}\right) .
$$

Global existence for a.s.-initial values under stationary measure

- We assume (T) and initial value $h(0)$ is given by $h(0,0)=0$ and $u(0):=\partial_{x} h(0) \underset{\text { law }}{=}\left(\partial_{x} B\right)_{x \in \mathbb{T}}$. Then, similarly to Da Prato-Debussche, $u=\partial_{x} h$ satisfies

Theorem 3

For every $T>0, p \geq 1, \kappa>0$, we have

$$
E\left[\sup _{t \in[0, T]}\left\|u\left(t ; u_{0}\right)\right\|_{-\frac{1}{2}-\kappa}^{p}\right]<\infty
$$

In particular, $T_{\text {survival }}(u(0))=\infty$ for a.a. $-u(0)$.
■ Global existence for all given $u(0)$: In the scalar-valued case, this is immediate, since the limit is Cole-Hopf solution. Hairer-Mattingly 2016 proved this for coupled eq. by showing the strong Feller property on $\mathcal{C}^{\alpha-1}, \alpha \in\left(0, \frac{1}{2}\right)$.

Cancellation of Log-Renorm's, ${ }^{\text {In }}$ Invariant measure without (T)

- Example (Ertas and Kardar 1992: $d=2$)

$$
\begin{align*}
& \partial_{t} h^{1}=\frac{1}{2} \partial_{x}^{2} h^{1}+\frac{1}{2}\left\{\lambda_{1}\left(\partial_{x} h^{1}\right)^{2}+\lambda_{2}\left(\partial_{x} h^{2}\right)^{2}\right\}+\xi^{1}, \\
& \partial_{t} h^{2}=\frac{1}{2} \partial_{x}^{2} h^{2}+\lambda_{1} \partial_{x} h^{1} \partial_{x} h^{2}+\xi^{2} \tag{EK}
\end{align*}
$$

Γ satisfies (T) only when $\lambda_{1}=\lambda_{2}$.

- However, under the transform $\hat{h}=s h$ with

$$
\begin{gather*}
s=\binom{\lambda_{1}\left(\lambda_{1} \lambda_{2}\right)^{1 / 2}}{\lambda_{1}-\left(\lambda_{1} \lambda_{2}\right)^{1 / 2}},(E K) \text { is transformed into } \\
\partial_{t} \hat{h}^{\alpha}=\frac{1}{2} \partial_{x}^{2} \hat{h}^{\alpha}+\frac{1}{2}\left(\partial_{x} \hat{h}^{\alpha}\right)^{2}+s_{\beta}^{\alpha} \xi^{\beta} . \tag{T}
\end{gather*}
$$

- $\hat{\Gamma}=s \circ \Gamma$ in $\left(E K_{T}\right)$ is given by $\hat{\Gamma}_{\alpha \alpha}^{\alpha}=1,=0$ otherwise, so that $\hat{\Gamma}$ satisfies (T). But, (EK) is the canonical form (with $\sigma=I)$ and not $\left(\mathrm{EK}_{T}\right)$.
- (EK) doesn't satisfy (T).
- However, since nonlinear term is decoupled in ($E^{T} K_{T}$), the Cole-Hopf transform $Z^{\alpha}=\exp \hat{h}^{\alpha}$ works for each component so that global well-posedness follows.
- Log-renormalization factors are unnecessary.
- Invariant measure exists whose marginals are Wiener measures, but the joint distribution of such invariant measure is unclear (presumably non-Gaussian).
- Indeed, with the help of Rellich type theorem, one can easily check the tightness on the space $\mathcal{C}_{0}^{\delta-1} / \sim$ of the Cesàro mean $\mu_{T}=\frac{1}{T} \int_{0}^{T} \mu(t) d t$ of the distributions $\mu(t)$ of $\partial_{x} \hat{h}(t)$ having an initial distribution $\otimes_{\alpha} \mu_{\alpha}$, so that the limit of μ_{T} as $T \rightarrow \infty$ is an invariant measure.
- Invariance of marginals means that of $E[\Phi(h(t))]$ in t only for a subclass of Φ s.t. $\Phi=\Phi\left(h^{\alpha}\right)$ for $\alpha=1$ or 2 .

Reason of cancellation of log-renormalization factors

■ Formulas of Renormalization factors $B^{\varepsilon, \beta \gamma}, \tilde{B}^{\varepsilon, \beta \gamma}$

$$
B^{\varepsilon, \beta \gamma}=F^{\beta \gamma} C^{\varepsilon}+2 G^{\beta \gamma} D^{\varepsilon}, \quad \tilde{B}^{\varepsilon, \beta \gamma}=F^{\beta \gamma} \tilde{C}^{\varepsilon}+2 G^{\beta \gamma} \tilde{D}^{\varepsilon},
$$

where

$$
\begin{gathered}
F^{\beta \gamma}=\Gamma_{\gamma_{1} \gamma_{2}}^{\beta} \Gamma_{\gamma_{1} \gamma_{2}}^{\gamma}, G^{\beta \gamma}=\Gamma_{\gamma_{1} \gamma_{2}}^{\beta} \Gamma_{\gamma_{1}}^{\gamma_{1}}, \\
C^{\varepsilon}+2 D^{\varepsilon}=-\frac{1}{12}+O(\varepsilon), \quad \tilde{C}^{\varepsilon}+2 \tilde{D}^{\varepsilon}=0, \\
\left(c^{\varepsilon}=c_{\epsilon}^{\vee}, C^{\varepsilon}=c_{\epsilon}^{\text {ソy }}, D^{\varepsilon}=c_{\epsilon}^{\text {® }}\right)
\end{gathered}
$$

■ Trilinear condition $(T) \Longleftrightarrow " F=G " \Longleftrightarrow B, \tilde{B}=O(1)$
■ But, for cancellation of log-renormalization factors, what we really need is: " $Г В,\lceil\tilde{B}=O(1)$ ". This holds if $\Gamma F=\Gamma G$.

$$
\begin{align*}
& \partial_{t} h^{\alpha}=\frac{1}{2} \partial_{x}^{2} h^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} h^{\beta} \partial_{x} h^{\gamma}-c^{\varepsilon} \delta^{\beta \gamma}-B^{\varepsilon, \beta \gamma}\right)+\xi^{\alpha} * \eta^{\varepsilon} \tag{1}\\
& \partial_{t} \tilde{h}^{\alpha}=\frac{1}{2} \partial_{x}^{2} \tilde{h}^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} \tilde{h}^{\beta} \partial_{x} \tilde{h}^{\gamma}-c^{\varepsilon} \delta^{\beta \gamma}-\tilde{B}^{\varepsilon, \beta \gamma}\right) * \eta_{2}^{\varepsilon}+\xi^{\alpha} * \eta^{\varepsilon} \tag{2}
\end{align*}
$$

■ "ГF $=\Gamma G$ " holds iff Γ satisfies the condition

$$
\Gamma_{\beta \gamma}^{\alpha} \Gamma_{\gamma_{1} \gamma_{2}}^{\beta} \Gamma_{\gamma_{1} \gamma_{2}}^{\gamma}=\Gamma_{\beta \gamma}^{\alpha} \Gamma_{\gamma_{1} \gamma_{2}}^{\beta} \Gamma_{\gamma \gamma_{2}}^{\gamma_{1}}, \quad{ }_{\alpha}
$$

- This holds under (T) and also for Ertaş-Kardar's example.

■ We can summarize as

$$
\begin{aligned}
(T) & \Longleftrightarrow " F=G " \\
& \Longrightarrow " \Gamma F=\Gamma G "
\end{aligned}
$$

\Longleftrightarrow Cancellation of log-renormalization factors

Infinitesimal invariance (to explain the role of (T))

- $\mathcal{L}=\mathcal{L}_{0}+\mathcal{A}$: genetaror of KPZ eq $(\sigma=I)$.
- \mathcal{L}_{0} is the generator of OU-part, while \mathcal{A} is that of nonlinear part (we ignore renormalization factors):

$$
\begin{aligned}
\mathcal{L}_{0} \Phi & =\frac{1}{2} \sum_{\alpha}\left\{\int_{\mathbb{T}} D_{h^{\alpha}(x)}^{2} \Phi d x+\int_{\mathbb{T}} \ddot{h}^{\alpha}(x) D_{h^{\alpha}(x)} \Phi d x\right\} \\
\mathcal{A} \Phi & =\frac{1}{2} \sum_{\alpha, \beta, \gamma} r_{\beta \gamma}^{\alpha} \int_{\mathbb{T}}^{\alpha} \dot{h}^{\beta}(x) \dot{h}^{\gamma}(x) D_{h^{\alpha}(x)} \Phi d x, \\
\text { and } \dot{h}^{\beta}(x) & :=\partial_{x} h^{\beta}(x), \ddot{h}^{\alpha}(x):=\partial_{x}^{2} h^{\alpha}(x) .
\end{aligned}
$$

- The infinitesimal invariance $(S T)_{\mathcal{L}}$ for ν

$$
\underset{\operatorname{def}}{\Longleftrightarrow} " \int \mathcal{L} \Phi d \nu=0,{ }^{\forall} \Phi "
$$

- If the invariant measure ν is Gaussian, $(S T)_{\mathcal{L}_{0}}$ is the condition for 2 nd order Wiener chaos of Φ, while $(S T)_{\mathcal{A}}$ is that for 3rd order Wiener chaos of Φ. Therefore, the condition $(S T)_{\mathcal{L}}$ is separated into two conditions:

$$
(S T)_{\mathcal{L}} \Longleftrightarrow(S T)_{\mathcal{L}_{0}}+(S T)_{\mathcal{A}}
$$

- \mathcal{L}_{0} is OU -op and $(S T)_{\mathcal{L}_{0}}$ determines $\nu=$ Wiener meas.

Trilinear condition $(T) \Longleftrightarrow \nu$ satisfies $(S T)_{\mathcal{A}}$
■ We have the integration-by-parts formula for $\nu=$ Wiener measure (actually we need to discuss at ε-level):

$$
\int \mathcal{A} \Phi d \nu=-\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha} c_{\alpha}^{\beta \gamma},
$$

where

$$
c_{\alpha}^{\beta \gamma} \equiv c_{\alpha}^{\beta \gamma}(\Phi):=E^{\nu}\left[\Phi \int_{\mathbb{T}} \dot{h}^{\beta}(x) \dot{h}^{\gamma}(x) \ddot{h}^{\alpha}(x) d x\right] .
$$

- (1) (bilinearity) $c_{\alpha}^{\beta \gamma}=c_{\alpha}^{\gamma \beta}$
(2) (integration by parts on \mathbb{T}) $c_{\alpha}^{\beta \gamma}+c_{\beta}^{\gamma \alpha}+c_{\gamma}^{\alpha \beta}=0$
- In particular, $c_{\alpha}^{\alpha \alpha}=0,{ }^{\forall} \alpha$. When $d=1$, this implies $(S T)_{\mathcal{A}}: \int \mathcal{A} \Phi d \nu=0$ for ${ }^{\forall} \Phi$.

■ (F: LNM 2137, 2015) If Γ satisfies (T), by (2) for $c_{\alpha}^{\beta \gamma}$

$$
\Gamma_{\beta \gamma}^{\alpha} c_{\alpha}^{\beta \gamma}=\frac{1}{3} \Gamma_{\beta \gamma}^{\alpha}\left(c_{\alpha}^{\beta \gamma}+c_{\beta}^{\gamma \alpha}+c_{\gamma}^{\alpha \beta}\right)=0
$$

Therefore, (T) implies $(S T)_{\mathcal{A}}$.
■ Conversely, $(S T)_{\mathcal{A}}$ implies (T). In fact, by (2) for $\delta_{\alpha}^{\beta \gamma}$

$$
\begin{aligned}
-2 \int \mathcal{A} \Phi d \nu= & \sum_{\alpha \neq \beta}\left(\Gamma_{\beta \beta}^{\alpha}-\Gamma_{\alpha \beta}^{\beta}\right) c_{\alpha}^{\beta \beta} \\
& +2 \sum_{\alpha>\beta>\gamma}\left(\Gamma_{\beta \gamma}^{\alpha}-\Gamma_{\alpha \beta}^{\gamma}\right) c_{\alpha}^{\beta \gamma}+2 \sum_{\beta>\alpha>\gamma}\left(\Gamma_{\beta \gamma}^{\alpha}-\Gamma_{\alpha \beta}^{\gamma}\right) c_{\alpha}^{\beta \gamma}
\end{aligned}
$$

and $c_{\alpha}^{\beta \beta}, c_{\alpha}^{\beta \gamma}(\alpha>\beta>\gamma, \beta>\alpha>\gamma)$ move freely.

■ Ertaș-Kardar's example does not satisfy (T), but has an invariant measure. This should be "non-separating class" and the invariant measure is presumably non-Gaussian (but has Gaussian marginal).

Extensions of Ertaș-Kardar's example
■ Consider KPZ ($\sigma=\boldsymbol{I}, \Gamma$).

- This has an invariant measure if ${ }^{\exists} s \in G L(d),{ }^{\exists}$ decomposition $\Delta=\cup_{i=1}^{k} I_{i}$ (disjoint) of $\{1, \ldots, d\}$ such that
- $s \circ \Gamma$ is decoupled under Δ, i.e., $(s \circ \Gamma)_{\beta \gamma}^{\alpha}=0$ if $\{\alpha, \beta, \gamma\} \not \subset I_{i}$ for ${ }^{\forall} i$
- $\left(\sigma_{i}, s \circ \Gamma \mid l_{i}\right)$ are trilinear i.e., $\sigma_{i} \in G L\left(\left|I_{i}\right|\right)$ and $\sigma_{i} \circ\left(\left.s \circ \Gamma\right|_{i}\right)$ satisfy (T),
where $\sigma_{i}=\sqrt{\left(\sum_{\gamma=1}^{d} s_{\gamma}^{\alpha} s_{\gamma}^{\beta}\right)_{\alpha, \beta \in I_{i}}}$ and $\left.\Gamma\right|_{I_{i}}=\left.\left(\Gamma_{\beta \gamma}^{\alpha}\right)\right|_{\alpha, \beta, \gamma \in I_{i}}$.
■ 「 does not satisfy (T) in general.
One can prove infinitesimal invariance for subclasses of Φ. (e.g., reflection-inv or shift-inv for each component)

Conjecture: For every Γ, invariant measure exists.

Summary of the talk.

1 Coupled KPZ equation (with $\sigma=I$):

$$
\partial_{t} h^{\alpha}=\frac{1}{2} \partial_{x}^{2} h^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha} \partial_{x} h^{\beta} \partial_{x} h^{\gamma}+\xi^{\alpha}, \quad x \in \mathbb{T}
$$

2 For ${ }^{\forall} \Gamma$, convergence of two approximating solutions $h^{\varepsilon}, \tilde{h}^{\varepsilon}$ and local well-posedness of coupled KPZ eq (σ, Γ).

3 For 「 satisfying (T), Wiener measure is invariant and global well-posedness of KPZ holds.
$4(T) \Longleftrightarrow " F=G " \Longleftrightarrow(S T)_{\mathcal{A}}$ for Wiener meas. ν $\Longrightarrow " \Gamma F=\Gamma G " \Longleftrightarrow$ Cancellation of log-renormalization factors

5 Extensions of Ertaș-Kardar's example

Thank you for your attention!

