Invariant measures in coupled KPZ equations

Tadahisa Funaki

Waseda University/University of Tokyo

June 14, 2017

Stochastic dynamics out of equilibrium, IHP, Paris

Tadahisa Funaki

Waseda University/University of Tokyo

Plan of the talk

- Coupled KPZ (Kardar-Parisi-Zhang) equations
 - Motivation: nonlinear fluctuating hydrodynamics
- Quick overview of results with Hoshino (JFA 273, 2017)
 - Two approximating equations
 - Trilinear condition (T) for coupling constants Γ
 - Invariant measure
 - Global-in-time existence
- Role of (T)
 - Invariant measure, renormalizations (for 4th order terms)
- Extensions of Ertaş-Kardar's example, not satisfying (T) but having Invariant measure

Multi-component coupled KPZ equation

• \mathbb{R}^{d} -valued KPZ eq for $h(t, x) = (h^{\alpha}(t, x))_{\alpha=1}^{d}$ on $\mathbb{T} = [0, 1)$: $\partial_{t}h^{\alpha} = \frac{1}{2}\partial_{x}^{2}h^{\alpha} + \frac{1}{2}\Gamma^{\alpha}_{\beta\gamma}\partial_{x}h^{\beta}\partial_{x}h^{\gamma} + \sigma^{\alpha}_{\beta}\xi^{\beta}$ $(\sigma, \Gamma)_{KPZ}$

• We use Einstein's convention.

• $\xi(t,x) = (\xi^{\alpha}(t,x))_{\alpha=1}^{d} (\equiv \dot{W}(t,x))$ is an \mathbb{R}^{d} -valued space-time Gaussian white noise with covariance structure:

$$E[\xi^{\alpha}(t,x)\xi^{\beta}(s,y)] = \delta^{\alpha\beta}\delta(x-y)\delta(t-s).$$

- Coupled KPZ is ill-posed, since noise is irregular and doesn't match with nonlinear term. ($h \in C_{t,x}^{\frac{1}{4}-,\frac{1}{2}-}$ a.s. when $\Gamma = 0$)
- We need to introduce approximations with smooth noises and renormalization for $(\sigma, \Gamma)_{KPZ}$. Indeed, one can introduce two types of approximations: one is simple, the other is suitable to study invariant measures (d = 1: F-Quastel 2015).

• The constants $\Gamma^{\alpha}_{\beta\gamma}$ satisfy bilinear condition

$$\Gamma^{\alpha}_{\beta\gamma} = \Gamma^{\alpha}_{\gamma\beta}$$
 for all $\alpha, \beta, \gamma,$

and (sometimes) trilinear condition

$$\Gamma^{\alpha}_{\beta\gamma} = \Gamma^{\alpha}_{\gamma\beta} = \Gamma^{\gamma}_{\beta\alpha} \text{ for all } \alpha, \beta, \gamma.$$
 (**T**)

(cf. Ferrari-Sasamoto-Spohn 2013, Kupiainen-Marcozz 2017) $\sigma = (\sigma_{\beta}^{\alpha})$ is an invertible matrix.

Tadahisa Funaki

Since σ is invertible, $\hat{h} = \sigma^{-1}h$ transforms $(\sigma, \Gamma)_{KPZ}$ to $(I, \hat{\Gamma} = \sigma \circ \Gamma)_{KPZ}$, where

$$(\sigma \circ \Gamma)^{\alpha}_{\beta\gamma} := (\sigma^{-1})^{\alpha}_{\alpha'} \Gamma^{\alpha'}_{\beta'\gamma'} \sigma^{\beta'}_{\beta} \sigma^{\gamma'}_{\gamma}.$$

Thus, the KPZ equation with $\sigma = I$ is considered as a canonical form.

- The operation (coordinate change) Γ → σ ∘ Γ keeps the bilinearity, but not the trilinearity.
- We should say (σ, Γ) satisfies trilinear condition, iff $\hat{\Gamma} := \sigma \circ \Gamma$ satisfies (T).
- In the following, we assume $\sigma = I$.

Two coupled KPZ approximating equations (d = 1: FQ' 15)We replace the noise by smooth one: $\eta^{\varepsilon} = \frac{1}{\varepsilon} \eta(\frac{x}{\varepsilon}) \rightarrow \delta_0$ as usual. • Approx. eq-1 (usual): $h^{\alpha} = h^{\varepsilon, \alpha}$ $\partial_t h^{\alpha} = \frac{1}{2} \partial_x^2 h^{\alpha} + \frac{1}{2} \Gamma^{\alpha}_{\beta\gamma} (\partial_x h^{\beta} \partial_x h^{\gamma} - c^{\varepsilon} \delta^{\beta\gamma} - B^{\varepsilon,\beta\gamma}) + \xi^{\alpha} * \eta^{\varepsilon}, \quad (1)$ where $c^{\varepsilon} = \frac{1}{\varepsilon} \|\eta\|_{L^2(\mathbb{R})}^2 (= O(\frac{1}{\varepsilon}))$ and $B^{\varepsilon,\beta\gamma} (= O(\log \frac{1}{\varepsilon}))$ in general) is another renormalization factor. • Approx. eq-2 (suitable to study inv meas): $\tilde{h}^{\alpha} = \tilde{h}^{\varepsilon,\alpha}$ $\partial_t \tilde{h}^{\alpha} = \frac{1}{2} \partial_{\mathsf{v}}^2 \tilde{h}^{\alpha} + \frac{1}{2} \Gamma^{\alpha}_{\beta\gamma} (\partial_{\mathsf{v}} \tilde{h}^{\beta} \partial_{\mathsf{v}} \tilde{h}^{\gamma} - c^{\varepsilon} \delta^{\beta\gamma} - \tilde{B}^{\varepsilon,\beta\gamma}) * \eta_2^{\varepsilon} + \xi^{\alpha} * \eta^{\varepsilon},$ (2)with a renormalization factor $\tilde{B}^{\varepsilon,\beta\gamma}$, where $\eta_2^{\varepsilon} = \eta^{\varepsilon} * \eta^{\varepsilon}$.

- The idea behind (2) is the fluctuation-dissipation relation.
- Renorm-factor $c^{\varepsilon} \equiv c_{\epsilon}^{\nabla} = O(\frac{1}{\varepsilon})$ is from 2nd order terms in the expansion, while R-factors $B^{\varepsilon,\beta\gamma}$ and $\tilde{B}^{\varepsilon,\beta\gamma} = O(\log \frac{1}{\varepsilon})$ are from 4th order terms involving $C^{\varepsilon} = c_{\epsilon}^{\nabla}$, $D^{\varepsilon} = c_{\epsilon}^{\nabla}$.

Quick overview of results on coupled KPZ eq (F-Hoshino, JFA 2017)

- Convergence of h^ε and h^ε and Local well-posedness of coupled KPZ eq (σ, Γ)_{KPZ} by applying paracontrolled calculus due to Gubinelli-Imkeller-Perkowski 2015 (Cole-Hopf doesn't work for coupled eq. in general. In 1D, we used it and showed Boltzmann-Gibbs principle, FQ 2015)
- 2nd approx. fits to identify invariant measure under (T)
- Global solvability for a.s.-initial data under an invariant measure under (T) (similar to Da Prato-Debussche)
- Strong Feller property (due to Hairer-Mattingly 2016)
- Global well-posedness (existence, uniqueness) under (T) ergodicity and uniqueness of invariant measure
- A priori estimates for 1st approximation (1) under (T)

Convergence of h^{ε} and \tilde{h}^{ε} and Local well-posedness of coupled KPZ eq $(\sigma, \Gamma)_{KPZ}$ (we take $\sigma = I$): $\mathcal{C}^{\kappa} = (\mathcal{B}^{\kappa}_{\infty,\infty}(\mathbb{T}))^d$, $\kappa \in \mathbb{R}$ denotes \mathbb{R}^d -valued Besov space on \mathbb{T} .

Theorem 1

(1) Assume $h_0 \in \bigcup_{\delta>0} C^{\delta}$, then a unique solution h^{ε} of (1) exists up to some $T^{\varepsilon} \in (0, \infty]$ and $\overline{T} = \liminf_{\varepsilon \downarrow 0} T^{\varepsilon} > 0$ holds. With a proper choice of $B^{\varepsilon,\beta\gamma}$, h^{ε} converges in prob. to some h in $C([0, T], C^{\frac{1}{2}-\delta})$ for every $\delta > 0$ and $0 < T \leq \overline{T}$. (2) Similar result holds for the solution \tilde{h}^{ε} of (2) with some limit \tilde{h} . Under proper choices of $B^{\varepsilon,\beta\gamma}$ and $\tilde{B}^{\varepsilon,\beta\gamma}$. we can

actually make $h = \tilde{h}$.

$$\partial_t h^{\alpha} = \frac{1}{2} \partial_x^2 h^{\alpha} + \frac{1}{2} \Gamma^{\alpha}_{\beta\gamma} (\partial_x h^{\beta} \partial_x h^{\gamma} - c^{\varepsilon} \delta^{\beta\gamma} - B^{\varepsilon,\beta\gamma}) + \xi^{\alpha} * \eta^{\varepsilon}$$
(1)

$$\partial_t \tilde{h}^{\alpha} = \frac{1}{2} \partial_x^2 \tilde{h}^{\alpha} + \frac{1}{2} \Gamma^{\alpha}_{\beta\gamma} (\partial_x \tilde{h}^{\beta} \partial_x \tilde{h}^{\gamma} - c^{\varepsilon} \delta^{\beta\gamma} - \tilde{B}^{\varepsilon,\beta\gamma}) * \eta_2^{\varepsilon} + \xi^{\alpha} * \eta^{\varepsilon}$$
(2)

Tadahisa Funaki

Results under (T): Cancellation in Log-Renormalizations, Invariant measure = Wiener measure, difference of two limits.

Theorem 2

Assume the trilinear condition (\mathbf{T}) . (1) Then, $B^{\varepsilon,\beta\gamma}, \tilde{B}^{\varepsilon,\beta\gamma} = O(1)$ so that the solutions of (1) with B = 0 and (2) with $\tilde{B} = 0$ converge. In the limit, we have

$$\check{h}^{lpha}(t,x)=h^{lpha}(t,x)+c^{lpha}t,\quad 1\leqlpha\leq d,$$

where

$$c^{lpha} = rac{1}{24} \sum_{\gamma,\gamma'} \Gamma^{lpha}_{lpha' lpha''} \Gamma^{lpha''}_{\gamma\gamma'} \Gamma^{lpha''}_{\gamma\gamma'}.$$

(2) Moreover, the distribution of $\{\partial_x B\}_{x\in\mathbb{T}}$ (B = periodic BM) is invariant under the tilt process $u = \partial_x h$ (or periodic Wiener measure on the quotient space $C^{\frac{1}{2}-\delta}/\sim$ where $h \sim h + c$).

Remark (F-Quastel 2015, stationary case): When d = 1 (i.e., scalar-valued eq), (T) is automatic and solutions of two approx. eqs without log-renormalizations satisfy

$$\lim_{\varepsilon \downarrow 0} \tilde{h}^{\varepsilon} = \lim_{\varepsilon \downarrow 0} h^{\varepsilon} + \frac{t}{24} \left(= h_{CH} + \frac{t}{24} \right).$$

Tadahisa Funaki

Global existence for a.s.-initial values under stationary measure

• We assume (T) and initial value h(0) is given by h(0,0) = 0 and $u(0) := \partial_x h(0) = (\partial_x B)_{x \in \mathbb{T}}$. Then, similarly to Da Prato-Debussche, $u = \partial_x h$ satisfies

Theorem 3

For every
$$T > 0, p \ge 1, \kappa > 0$$
, we have

$$E \begin{bmatrix} \sup_{t \in [0,T]} \|u(t;u_0)\|_{-\frac{1}{2}-\kappa}^{p} \end{bmatrix} < \infty$$

In particular, $T_{survival}(u(0)) = \infty$ for a.a.-u(0).

Global existence for all given u(0): In the scalar-valued case, this is immediate, since the limit is Cole-Hopf solution. Hairer-Mattingly 2016 proved this for coupled eq. by showing the strong Feller property on C^{α-1}, α ∈ (0, ½).

Cancellation of Log-Renorm's, [∃]Invariant measure without (T)

• Example (Ertaş and Kardar 1992: d = 2)

$$\partial_t h^1 = \frac{1}{2} \partial_x^2 h^1 + \frac{1}{2} \{ \lambda_1 (\partial_x h^1)^2 + \lambda_2 (\partial_x h^2)^2 \} + \xi^1, \\ \partial_t h^2 = \frac{1}{2} \partial_x^2 h^2 + \lambda_1 \partial_x h^1 \partial_x h^2 + \xi^2$$
 (EK)

Γ satisfies (T) only when $\lambda_1 = \lambda_2$. However, under the transform $\hat{h} = sh$ with $s = \begin{pmatrix} \lambda_1 & (\lambda_1\lambda_2)^{1/2} \\ \lambda_1 & -(\lambda_1\lambda_2)^{1/2} \end{pmatrix}$, (EK) is transformed into

$$\partial_t \hat{h}^{\alpha} = \frac{1}{2} \partial_x^2 \hat{h}^{\alpha} + \frac{1}{2} (\partial_x \hat{h}^{\alpha})^2 + s^{\alpha}_{\beta} \xi^{\beta}.$$
 (EK_T)

- (EK) doesn't satisfy (T).
- However, since nonlinear term is decoupled in (EK_T), the Cole-Hopf transform Z^α = exp h^{ˆα} works for each component so that global well-posedness follows.

Log-renormalization factors are unnecessary.

- Invariant measure exists whose marginals are Wiener measures, but the joint distribution of such invariant measure is unclear (presumably non-Gaussian).
- Indeed, with the help of Rellich type theorem, one can easily check the tightness on the space $C_0^{\delta-1}/\sim$ of the Cesàro mean $\mu_T = \frac{1}{T} \int_0^T \mu(t) dt$ of the distributions $\mu(t)$ of $\partial_x \hat{h}(t)$ having an initial distribution $\otimes_{\alpha} \mu_{\alpha}$, so that the limit of μ_T as $T \to \infty$ is an invariant measure.
- Invariance of marginals means that of E[Φ(h(t))] in t only for a subclass of Φ s.t. Φ = Φ(h^α) for α = 1 or 2.

Reason of cancellation of log-renormalization factors • Formulas of Renormalization factors $B^{\varepsilon,\beta\gamma}, \tilde{B}^{\varepsilon,\beta\gamma}$

$$B^{\varepsilon,\beta\gamma} = F^{\beta\gamma}C^{\varepsilon} + 2G^{\beta\gamma}D^{\varepsilon}, \ \tilde{B}^{\varepsilon,\beta\gamma} = F^{\beta\gamma}\tilde{C}^{\varepsilon} + 2G^{\beta\gamma}\tilde{D}^{\varepsilon},$$

where

$$\begin{split} F^{\beta\gamma} &= \Gamma^{\beta}_{\gamma_{1}\gamma_{2}}\Gamma^{\gamma}_{\gamma_{1}\gamma_{2}}, \ G^{\beta\gamma} = \Gamma^{\beta}_{\gamma_{1}\gamma_{2}}\Gamma^{\gamma_{1}}_{\gamma\gamma_{2}}, \\ C^{\varepsilon} + 2D^{\varepsilon} &= -\frac{1}{12} + O(\varepsilon), \quad \tilde{C}^{\varepsilon} + 2\tilde{D}^{\varepsilon} = 0, \\ (c^{\varepsilon} &= c^{\mathbf{v}}_{\epsilon}, C^{\varepsilon} = c^{\mathbf{v}}_{\epsilon}, D^{\varepsilon} = c^{\mathbf{v}}_{\epsilon}) \end{split}$$

Trilinear condition (T) ⇔ "F = G" ⇔ B, B̃ = O(1)
But, for cancellation of log-renormalization factors, what we really need is: "ΓB, ΓB̃ = O(1)". This holds if ΓF = ΓG.

$$\begin{aligned} \partial_t h^{\alpha} &= \frac{1}{2} \partial_x^2 h^{\alpha} + \frac{1}{2} \Gamma^{\alpha}_{\beta\gamma} (\partial_x h^{\beta} \partial_x h^{\gamma} - c^{\varepsilon} \delta^{\beta\gamma} - B^{\varepsilon,\beta\gamma}) + \xi^{\alpha} * \eta^{\varepsilon} \\ \partial_t \tilde{h}^{\alpha} &= \frac{1}{2} \partial_x^2 \tilde{h}^{\alpha} + \frac{1}{2} \Gamma^{\alpha}_{\beta\gamma} (\partial_x \tilde{h}^{\beta} \partial_x \tilde{h}^{\gamma} - c^{\varepsilon} \delta^{\beta\gamma} - \tilde{B}^{\varepsilon,\beta\gamma}) * \eta_2^{\varepsilon} + \xi^{\alpha} * \eta^{\varepsilon} \end{aligned}$$
(1)

Tadahisa Funaki

• " $\Gamma F = \Gamma G$ " holds iff Γ satisfies the condition

$$\Gamma^{\alpha}_{\beta\gamma}\Gamma^{\beta}_{\gamma_{1}\gamma_{2}}\Gamma^{\gamma}_{\underline{\gamma_{1}\gamma_{2}}}=\Gamma^{\alpha}_{\beta\gamma}\Gamma^{\beta}_{\gamma_{1}\gamma_{2}}\Gamma^{\gamma_{1}}_{\underline{\gamma\gamma_{2}}},\quad ^{\forall}\alpha$$

This holds under (T) and also for Ertaş-Kardar's example.
We can summarize as

$$\begin{array}{l} (T) \iff ``F = G'' \\ \implies ``\Gamma F = \Gamma G'' \\ \iff \text{Cancellation of log-renormalization factors} \end{array}$$

Tadahisa Funaki

Infinitesimal invariance (to explain the role of (T))

- $\mathcal{L} = \mathcal{L}_0 + \mathcal{A}$: genetaror of KPZ eq ($\sigma = I$).
- L₀ is the generator of OU-part, while A is that of nonlinear part (we ignore renormalization factors):

$$\mathcal{L}_{0}\Phi = \frac{1}{2}\sum_{\alpha} \left\{ \int_{\mathbb{T}} D_{h^{\alpha}(x)}^{2} \Phi \, dx + \int_{\mathbb{T}} \ddot{h}^{\alpha}(x) D_{h^{\alpha}(x)} \Phi \, dx \right\}$$
$$\mathcal{A}\Phi = \frac{1}{2}\sum_{\alpha,\beta,\gamma} \Gamma_{\beta\gamma}^{\alpha} \int_{\mathbb{T}} \dot{h}^{\beta}(x) \dot{h}^{\gamma}(x) D_{h^{\alpha}(x)} \Phi \, dx,$$

and
$$\dot{h}^{\beta}(x) := \partial_{x}h^{\beta}(x), \ddot{h}^{\alpha}(x) := \partial_{x}^{2}h^{\alpha}(x)$$

The infinitesimal invariance $(ST)_{\mathcal{L}}$ for ν
 $\underset{\text{def}}{\longleftrightarrow} ``\int \mathcal{L}\Phi d\nu = 0, \forall \Phi$ ''

Tadahisa Funaki

If the invariant measure ν is Gaussian, (ST)_{L0} is the condition for 2nd order Wiener chaos of Φ, while (ST)_A is that for 3rd order Wiener chaos of Φ. Therefore, the condition (ST)_L is separated into two conditions:

$$(ST)_{\mathcal{L}} \iff (ST)_{\mathcal{L}_0} + (ST)_{\mathcal{A}}$$

• \mathcal{L}_0 is OU-op and $(ST)_{\mathcal{L}_0}$ determines $\nu =$ Wiener meas.

Tadahisa Funaki

Trilinear condition (T) $\iff \nu$ satisfies $(ST)_{\mathcal{A}}$

J

We have the integration-by-parts formula for ν = Wiener measure (actually we need to discuss at ε-level):

$$\int \mathcal{A} \Phi d
u = -rac{1}{2} \Gamma^{lpha}_{eta\gamma} c^{eta\gamma}_{lpha},$$

where

$$c^{\beta\gamma}_{lpha}\equiv c^{\beta\gamma}_{lpha}(\Phi):=E^{
u}\left[\Phi\int_{\mathbb{T}}\dot{h}^{eta}(x)\dot{h}^{\gamma}(x)\ddot{h}^{lpha}(x)dx
ight].$$

(1) (bilinearity) c^{βγ}_α = c^{γβ}_α
(2) (integration by parts on T) c^{βγ}_α + c^{γα}_β + c^{γα}_γ = 0
In particular, c^{αα}_α = 0,[∀] α. When d = 1, this implies (ST)_A: ∫ AΦdν = 0 for [∀]Φ.

• (F: LNM **2137**, 2015) If Γ satisfies (T), by (2) for $c_{\alpha}^{\beta\gamma}$

$$\Gamma^{lpha}_{eta\gamma}c^{eta\gamma}_{lpha}=rac{1}{3}\Gamma^{lpha}_{eta\gamma}(c^{eta\gamma}_{lpha}+c^{\gammalpha}_{eta}+c^{lphaeta}_{\gamma})=0$$

Therefore, (T) implies $(ST)_{A}$.

Conversely, $(ST)_{\mathcal{A}}$ implies (T). In fact, by (2) for $c_{\alpha}^{\beta\gamma}$

$$-2\int \mathcal{A}\Phi d\nu = \sum_{\alpha\neq\beta} (\Gamma^{\alpha}_{\beta\beta} - \Gamma^{\beta}_{\alpha\beta}) c^{\beta\beta}_{\alpha} + 2\sum_{\alpha>\beta>\gamma} (\Gamma^{\alpha}_{\beta\gamma} - \Gamma^{\gamma}_{\alpha\beta}) c^{\beta\gamma}_{\alpha} + 2\sum_{\beta>\alpha>\gamma} (\Gamma^{\alpha}_{\beta\gamma} - \Gamma^{\gamma}_{\alpha\beta}) c^{\beta\gamma}_{\alpha}$$

and
$$c_{\alpha}^{\beta\beta}, c_{\alpha}^{\beta\gamma}(\alpha > \beta > \gamma, \beta > \alpha > \gamma)$$
 move freely.

Tadahisa Funaki

Ertaş-Kardar's example does not satisfy (T), but has an invariant measure. This should be "non-separating class" and the invariant measure is presumably non-Gaussian (but has Gaussian marginal). Extensions of Ertaş-Kardar's example

• Consider KPZ (
$$\sigma = I, \Gamma$$
).

This has an invariant measure if $\exists s \in GL(d)$, \exists decomposition $\Delta = \bigcup_{i=1}^{k} I_i$ (disjoint) of $\{1, \ldots, d\}$ such that

Γ does not satisfy (T) in general.

One can prove infinitesimal invariance for subclasses of Φ . (e.g., reflection-inv or shift-inv for each component)

Conjecture: For every Γ , invariant measure exists.

Summary of the talk.

1 Coupled KPZ equation (with $\sigma = I$):

$$\partial_t h^{\alpha} = \frac{1}{2} \partial_x^2 h^{\alpha} + \frac{1}{2} \Gamma^{\alpha}_{\beta\gamma} \partial_x h^{\beta} \partial_x h^{\gamma} + \xi^{\alpha}, \quad x \in \mathbb{T}.$$

- 2 For [∀]Γ, convergence of two approximating solutions h^ε, h[˜]^ε and local well-posedness of coupled KPZ eq (σ, Γ).
- 3 For Γ satisfying (T), Wiener measure is invariant and global well-posedness of KPZ holds.
- 4 $(T) \iff "F = G" \iff (ST)_{\mathcal{A}}$ for Wiener meas. ν $\implies "\Gamma F = \Gamma G" \iff$ Cancellation of log-renormalization factors
- 5 Extensions of Ertaş-Kardar's example

Thank you for your attention!

Tadahisa Funaki

Waseda University/University of Tokyo