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Introduction

Microscopic Model : System of oscillators (Hamiltonian dynamics) +
magnetic field + stochastic noise

Goal : Understand

• Behavior of macroscopic energy diffusion
• In particular, the anomalous diffusion in d = 1, 2
• In this talk, we only consider the order of the divergence of thermal
conductivity

• Role of “momentum conservation”
• Role of “sound velocity”



Transport of energy

T TL R

Nj

Thermal conductivity in a stationary non-equilibrium state:

κN =
NJ

(TL − TR)
∼ Nα

J: current per a particle

Normal transport : α = 0, κN → κ < ∞
Fourier’s law : j(x , t) = −κ∂xT (x , t)
Diffusion equation : ∂tT (x , t) = κ

c∆T (x , t)

Anomalous transport : 0 < α < 1 (or κN ∼ logN)
Diffusion equation: ∂tT (x , t) = −c(−∆)cαT (x , t) ??

(Ballistic transport : α = 1)



Model : system of harmonic oscillators (periodic b.c.)

• Zd
N = Zd/NZd

• qx , px ∈ Rd∗
, x ∈ Zd

N (d∗ is not necessarily equal to d)

• H =
∑

x{
|px |2
2 +

∑
|y−x |=1

|qx−qy |2
4 } =:

∑
x Ex

Hamiltonian dynamics (deterministic) :

(0)


dqkx
dt

= ∂pkxH = pkx (k = 1, . . . , d∗)

dpkx
dt

= −∂qkxH = (∆qk)x (k = 1, . . . , d∗)

where (∆F )x =
∑

|y−x |=1(Fy − Fx) for F : Zd
N → R

* The energy transport is ballistic for the deterministic dynamics



Magnetic field for d∗ = 2

Consider the system in a magnetic field with strength B and its direction
is orthogonal to the plane where oscillators move.
Model (I) : Uniform

• Each oscillator has a uniform charge

• Operator : G I =
∑

x(p
2
x∂p1x − p1x∂p2x )

• Generator of the deterministic part : L = A+ BG I

Model (II) : Alternative

• Assume N is even and d = 1

• Each oscillator has a charge with uniform absolute value but its sign
is alternative in x

• Operator : G II =
∑

x(−1)x(p2x∂p1x − p1x∂p2x )

• Generator of the deterministic part : L = A+ BG II

.
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We can also consider the term G comes from Coriolis force in Model (I).



Chain of Oscillators in a magnetic field (d = 1, d∗ = 2)

Uniform

Alternative

p



Model : system of harmonic oscillators in a magnetic field
with uniform charge

• B ̸= 0: strength of the magnetic field

• qx , px ∈ Rd∗
, x ∈ Zd

N (d∗ ≥ 2)

• H =
∑

x{
|px |2
2 +

∑
|y−x |=1

|qx−qy |2
4 }

Hamiltonian dynamics + magnetic field (deterministic) :

(I )



dqkx
dt

= ∂pkxH = pkx (k = 1, . . . , d∗)

dp1x
dt

= −∂q1xH+Bp2x = (∆q1)x+Bp2x

dp2x
dt

= −∂q2xH−Bp1x = (∆q2)x−Bp1x

dpkx
dt

= −∂qkxH = (∆qk)x (k = 3, . . . , d∗)



Model : system of harmonic oscillators in a magnetic field
with alternative charge

• B ̸= 0: strength of the magnetic field

• N : even, d = 1

• qx , px ∈ Rd∗
, x ∈ ZN (d∗ ≥ 2)

• H =
∑

x{
|px |2
2 +

∑
|y−x |=1

|qx−qy |2
4 }

Hamiltonian dynamics + magnetic field (deterministic) :

(II )



dqkx
dt

= ∂pkxH = pkx (k = 1, . . . , d∗)

dp1x
dt

= −∂q1xH+(−1)xBp2x = (∆q1)x+(−1)xBp2x

dp2x
dt

= −∂q2xH−(−1)xBp1x = (∆q2)x−(−1)xBp1x

dpkx
dt

= −∂qkxH = (∆qk)x (k = 3, . . . , d∗)



Conserved quantities

• Ex := |px |2
2 +

∑
|y−x |=1

|qx−qy |2
4 : energy of x

• H =
∑

x Ex

Model (0):
∑

x Ex ,
∑

x p
k
x (k = 1, 2, . . . , d∗)

Model (I) :
∑

x Ex ,
∑

x p
k
x (k = 3, . . . , d∗),

∑
x (p

1
x − Bq2x ),∑

x (p
2
x + Bq1x )

Model (II) :
∑

x Ex ,
∑

x p
k
x (k = 3, . . . , d∗),∑

x :even(p
1
x + p1x+1 − Bq2x + Bq2x+1),

∑
x :even(p

2
x + p2x+1 + Bq1x − Bq1x+1)

•
∑

x p
1
x and

∑
x p

2
x are not conserved for both (I ) and (II )

• The number of conserved quantities are same for all models

• Precisely, there are infinitely many conserved quantities without the
stochastic noise



Micro-canonical state space and micro-canonical measure

• ΩN,E := {(qx , px) ∈ (R2d∗
)N

d
;
∑

x qx = 0,
∑

x px = 0,
∑

x Ex = ENd}
• µN,E : Uniform measure on ΩN,E .

• ⟨·⟩N,E : Expectation w.r.t. µN,E

• ΩN,E and µN,E are invariant for Model (0) and (I)

• For Model (II), we do not consider the micro-canonical state space for
simplicity.

• For the coordinates (qx , px) with periodic b.c.,∫
exp(−βH(q, p))dqdp = ∞ for any β > 0, so we can not consider

the canonical measure.



System of harmonic oscillators (periodic b.c.) for
(r , p)-coordinates

• d = 1

• rx , px ∈ Rd∗
, x ∈ ZN

• Change the coordinates with rx = qx+1 − qx formally in the dynamics
(but qx+N = qx does not hold here)

Hamiltonian dynamics (deterministic) :

(0)


drkx
dt

= pkx+1 − pkx (k = 1, . . . , d∗)

dpkx
dt

= rkx − rkx−1 (k = 1, . . . , d∗)



System of harmonic oscillators in a magnetic field for
(r , p)-coordinates with uniform charge

• B ̸= 0

• d = 1

• rx , px ∈ Rd∗
, x ∈ ZN (d∗ ≥ 2)

Hamiltonian dynamics + magnetic field (deterministic) :

(I )



drkx
dt

= pkx+1 − pkx (k = 1, . . . , d∗)

dp1x
dt

= r1x − r1x−1+Bp2x

dp2x
dt

= r2x − r2x−1−Bp1x

dpkx
dt

= rkx − rkx−1 (k = 3, . . . , d∗)



System of harmonic oscillators in a magnetic field for
(r , p)-coordinates with alternative charge

• B ̸= 0

• N : even, d = 1

• rx , px ∈ Rd∗
, x ∈ ZN (d∗ ≥ 2)

Hamiltonian dynamics + magnetic field (deterministic) :

(II )



drkx
dt

= pkx+1 − pkx (k = 1, . . . , d∗)

dp1x
dt

= r1x − r1x−1+(−1)xBp2x

dp2x
dt

= r2x − r2x−1−(−1)xBp1x

dpkx
dt

= rkx − rkx−1 (k = 3, . . . , d∗)



Conserved quantities

Model (0):
∑

x Ex ,
∑

x p
k
x (k = 1, 2, . . . , d∗),

∑
x r

k
x (k = 1, 2, . . . , d∗)

Model (I) :
∑

x Ex ,
∑

x p
k
x (k = 3, . . . , d∗),

∑
x r

k
x (k = 1, 2, . . . , d∗)

Model (II) :
∑

x Ex ,
∑

x p
k
x (k = 3, . . . , d∗),

∑
x r

k
x (k = 1, 2, . . . , d∗),∑

x :even(p
1
x + p1x+1 + Br2x ),

∑
x :even(p

2
x + p2x+1 − Br1x )

•
∑

x(p
1
x − Bq2x ) and

∑
x(p

2
x + Bq1x ) are not functions of (r , p)

• The number of conserved quantities are different between Model
(0),(II) and Model (I)

• If d = 1 and d∗ = 2, Model (0) and (II) have five conserved
quantities, but Model (I) has only three conserved quantities



Canonical state space and canonical measure

• ΩN := {(rx , px) ∈ (R2d∗
)N} = R2d∗N

• µN,β(drdp) =
1
Zβ

exp(−β
∑

x Ex)drdp =

ΠxΠ
d∗
k=1

β
2π exp(−β (rkx )

2+(pkx )
2

2 )drkx dp
k
x for β > 0.

• ⟨·⟩N,β : Expectation w.r.t. µN,β

• µN,β is invariant for Model (0),(I) and (II)

• The measure is product because d = 1



Stochastic noise (momentum exchange)

For each k ∈ {1, . . . , d∗} and a pair x , y ∈ Zd
N satisfying |x − y | = 1,

exchange pkx ↔ pky with rate γ > 0.

• Every conserved quantity is also conserved by the stochastic noise

• Micro-canonical (resp. canonical) state spaces and measures are still
invariant with the stochastic noise

Full generator of our dynamics: L = A+ BG + γS where

G (I ) =
∑
x

(p2x∂p1x − p1x∂p2x ), G (II ) =
∑
x

(−1)x(p2x∂p1x − p1x∂p2x )

Sf =
d∗∑
k=1

∑
x

∑
|y−x |=1

(f (q, px ,y ,k)− f (q, p))

or
d∗∑
k=1

∑
x

∑
|y−x |=1

(f (r , px ,y ,k)− f (r , p))



Thermal conductivity

Infinite system (Formal argument)

• S(x , t) := ⟨(Ex(t)− E)(E0(0)− E)⟩ where E = ⟨E0⟩
• ⟨·⟩ : expectation w.r.t. some shift-invariant equilibrium measure

• κk,l := limt→∞
1

2E2t

∑
x∈Zd xkx lS(x , t)

Green-Kubo formula :

κk,l = lim
t→∞

1

2tE2

∑
x∈Zd

⟨(
∫ t

0
jx ,x+ek (s)ds)(

∫ t

0
j0,el (s

′)ds ′)⟩

=
1

E2

∑
x∈Zd

∫ ∞

0
⟨jx ,x+ek (t)j0,el (0)⟩dt = δk,lκ

1,1 = κδk,l

• jx ,x+ek (t) : energy current from x to x + ek at time t

• If the energy fluctuation diffuses normally, 0 < κ < ∞
• By the symmetry (even for B ̸= 0), κk,k = κ for any k = 1, 2, . . . , d



Thermal conductivity: Finite size approximation

Periodic b.c.

κN(t) :=
1

2tE2

∑
x∈Zd

N

⟨(
∫ t

0
jx ,x+e1(s)ds)(

∫ t

0
j0,e1(s

′)ds ′)⟩N,E(β)

=
1

2tE2Nd

∫ t

0

∫ t

0
⟨J(s)J(s ′)⟩N,E(β)dsds

′

where J(s) =
∑

x∈Zd
N
jx ,x+e1(s)

Formally κ = limt→∞ limN→∞ κN(t)

The stationary non-equilibrium state

κN := lim
|TL−TR |→0,TL,TR→T (E)(T (β))

N⟨JN⟩
TL − TR

where JN is the stationary energy flux with system size N per a particle.



Relation between κ, κN(t) and κN

Assume the limit lim
N→∞

κN(t) := κ(t) exists.

In the regime κ < ∞, the following is generally expected:

• lim
t→∞

κ(t) = lim
N→∞

κN = κ

In the regime κ = ∞, the followings are generally expected:

• lim
t→∞

κ(t) = lim
N→∞

κN = ∞

• If κ(t) ∼ tβ and κN ∼ Nα and the sound velocity is not zero, then
β = α

• More generally, κ(tN) ∼ κN as N → ∞ where tN is a proper time
scaling

• If the energy spreads with tδ in width at time t, then (tN)
δ ∼ N since

at time tN , the periodic boundary starts to effect

• Therefore, heuristically, tN ∼ N if the sound velocity is not zero

• If the sound velocity is vanishing, we can not predict the relation of β
and α so far



Dispersion relation and the sound velocity

Model (0): B = 0

• ωθ =
√

4
∑d

k=1 sin
2(πθk)

• vs := limθ→0 |∂θ1ωθ| > 0

Model (I) d∗ = 2

• ω̃θ =
√

ω2
θ + (B2 )

2 ± B
2

• vs = limθ→0 |∂θ1ω̃θ| = limθ→0 |4π sin(πθ1) cos(πθ1)√
ω2
θ+(B

2
)2

| = 0

Model (I) d∗ ≥ 3

• ω̃θ, ωθ

• vs > 0 and vs = 0

Model (II)

• ω̃θ = ±
√

4+B2−
√

(4+B2)2−16ω(θ)2

2 ∼ ± 4
4+B2ωθ as θ → 0

• vs = limθ→0 |∂θω̃θ| > 0



Sound speed in Model (I) and (II) in d = 1, d∗ = 2

−200 −100 0 100 200
i

C
εε
(i
,t
)

t= 50
t=100
t=150
t=200

C
εε
(i
,t
)

t= 50
t=100
t=150
t=200

case (II)

case (I)

By Shuji Tamaki



Previous results for Model (0) and related models

Model (0) (Basile-Bernardin-Olla(06,09), Jara-Komorowski-Olla(15))

• For d = 1, κ(t) ∼ t1/2 as t → ∞
• For d = 2, κ(t) ∼ log t as t → ∞
• For d ≥ 3, limt→∞ κ(t) < ∞

+ pinning potential (Basile-Bernardin-Olla(06,09),
Jara-Komorowski-Olla(15))

• For d ≥ 1, limt→∞ κ(t) < ∞
The momentum flip noise (Simon(13), Komorowski-Olla-Simon(16))

• For d ≥ 1, limt→∞ κ(t) < ∞
non-acoustic interaction potential (Komorowski-Olla(16))

• For d ≥ 1, limt→∞ κ(t) < ∞

• d∗ does not play any role (Only the case d = d∗ has been studied)

• Fractional heat eq. or heat eq. are derived rigorously for all models in
d = 1.



Role of momentum conservation and the sound velocity

Model (0)

vs ̸= 0,
∑

x p
k
x are conserved ⇒ Anomalous

Model (0) + pinning potential

vs = 0,
∑

x p
k
x are not conserved ⇒ Normal

velocity flip noise

vs ̸= 0,
∑

x p
k
x are not conserved ⇒ Normal

non-acoustic chain
vs = 0,

∑
x p

k
x are conserved ⇒ Normal

Model (I) and Model (II)

vs = 0 (or vs > 0),
∑

x p
k
x are not conserved ⇒ Normal??



Main result

.
Theorem (Saito-S,2017)
..

.

. ..

.

.

Model (I), d∗ = 2

• For d = 1, κ(t) ∼ t1/4 as t → ∞
• For d = 2, κ(t) ∼ log t as t → ∞
• For d ≥ 3, lim supt→∞ κ(t) < ∞

Model (I), d∗ ≥ 3

• For d = 1, κ(t) ∼ t1/2 as t → ∞
• For d = 2, κ(t) ∼ log t as t → ∞
• For d ≥ 3, lim supt→∞ κ(t) < ∞

• For the case d∗ = 2 where vs = 0 and
∑

x p
k
x are not conserved,

anomalous behavior appears.
• New universality class appears.
• For d∗ ≥ 3 the conservation of

∑
x p

k
x (k ≥ 3) plays some role

• The result holds for micro-canonical and canonical measures.



Main result

.
Theorem (Saito-S,2017)
..

.

. ..

.

.

Model (II), d∗ ≥ 2

Assume B2 + 4 > 16γ2. Then,

• For d = 1, κ(t) ∼ t1/2 as t → ∞

• Even for the case d∗ = 2 where
∑

x p
k
x are not conserved for any k,

the order t1/2 appears.

• The condition on the parameter may be technical.



Current-Current correlation

Let C (t) = limN→∞
1
Nd ⟨J(t)J(0)⟩.

.
Theorem (Saito-S,2017)
..

.

. ..

.

.

Model (I) For any d and d∗ ≥ 2,

C (t) = C1(t) + C2(t) + C3(t) + (d∗ − 2)C4(t)

where C1(t) ∼ t−d/2 cos(Bt), C2(t) ∼ t−d/2−1, C3(t) ∼ t−d/4−1/2,
C4(t) ∼ t−d/2.

Model (II) For d = 1 and d∗ ≥ 2,

C (t) ∼ t−1/2

• From above, the behavior of κ(t) follows straightforwardly.

• C1(t) is the oscillation term



Numerical simulation for the decay of the current-current
correlation in d = 1, d∗ = 2
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τ
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t
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“Pinning type effect” of magnetic field for Model (I)

Let P1 :=
∑

x p
1
x and P2 :=

∑
x p

2
x . Then,

dP1

dt
= BP2

dP2

dt
= −BP1.

Namely, if the dynamics is in equilibrium ⟨P1⟩ = ⟨P2⟩ = 0.

Since the current of the conserved quantity rkx is pkx , it implies there is no
Euler scaling dynamics for k = 1, 2. Moreover, form the above, the
current-current correlation for rk is explicitly calculated as cos(Bt).



Relation between κ(t) and κN for d = 1, d∗ = 2

Model (I)
Numerical simulation for the system in a stationary non-equilibrium state
shows that κN ∼ N3/8 which implies tN ∼ N3/2. It may imply that the
heat mode spreads in the width t2/3 at time t. But so far, it is not clear
what is the role of α, β and δ where tN = Nδ in the macroscopic equation
for the energy fluctuation diffusion.

t

t
3

2

Model (II)
Numerical simulation for the system in a stationary non-equilibrium state
shows that κN ∼ N1/2 which implies tN ∼ N. This is consistent with the
non-vanishing sound velocity.



Numerical simulation for κN

By Shuji Tamaki
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Sketch of the proof

• Follow the strategy of Basile-Bernardin-Olla (2006)

• Solve a poisson equation (λ− L)u = J explicitly

• Asymptotic analysis of the inverse Laplace transform of the
current-current correlation function



Summary and open problems

Summary
• Our model in a magnetic field : the momentum is not conserved, the
sound velocity is vanishing for some case

• Question : Anomalous behavior of the thermal conductivity of the
energy in d = 1, 2 appears or not?

• Result : Anomalous behavior appears. Moreover, a new universality
class appears at least in the sense of the asymptotic behavior of the
thermal conductivity

• Conclusion 1 : the momentum conservation is not necessary for the
anomalous behavior

• Conclusion 2 : the non-vanishing sound velocity is not necessary for
the anomalous behavior

Open problems
• What is the equation for the diffusion of the macroscopic energy
fluctuation? Proper space-time scaling? (in progress)

• How to predict tN?
• NFHT can be applied to this class with some generalization?


