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Introduction

Microscopic Model : System of oscillators (Hamiltonian dynamics) +
magnetic field + stochastic noise

T O T @y

Goal : Understand

Behavior of macroscopic energy diffusion
In particular, the anomalous diffusion in d = 1,2

In this talk, we only consider the order of the divergence of thermal
conductivity

Role of “momentum conservation”
Role of “sound velocity”



Transport of energy

TL'W. . .W' TR
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Thermal conductivity in a stationary non-equilibrium state:

NJ
Ky = ———— ~ N¢
N TR)

J: current per a particle

Normal transport : @ =0, ky — kK < 00
Fourier's law : j(x, t) = —k0x T(x, t)
Diffusion equation : 0: T(x,t) = £EAT(x,t)

c

Anomalous transport : 0 < o < 1 (or Ky ~ log N)
Diffusion equation: 0; T (x,t) = —c(—A)%T(x,t) 7?

(Ballistic transport : a = 1)




Model : system of harmonic oscillators (periodic b.c.)

o 24, =179/Nz4

e g, px €RY, x€ Z% (d* is not necessarily equal to d)
2 2

o« H=T{BF + 30, g0 2320 = X &

Hamiltonian dynamics (deterministic) :

k
qu:apkH:pf (k=1,...,d")
(0) ddtk x
Px k *
:—8 H:A X k:].,,d
P g = (B )

where (AF)x =3,y =1(Fy — Fx) for F: Z4 — R

* The energy transport is ballistic for the deterministic dynamics



Magnetic field for d* = 2

Consider the system in a magnetic field with strength B and its direction
is orthogonal to the plane where oscillators move.
Model () : Uniform

e Each oscillator has a uniform charge

e Operator : G/ = Zx(p)%api - pif)pg)

e Generator of the deterministic part : L = A+ BG'
Model (1) : Alternative

e Assume Nisevenand d =1

e Each oscillator has a charge with uniform absolute value but its sign
is alternative in x

e Operator : G/l = ZX(—l)X(piap% - p}(@pg)

o Generator of the deterministic part : L = A+ BG'

We can also consider the term G comes from Coriolis force in Model (1). \




Chain of Oscillators in a magnetic field (d = 1, d* = 2)

Uniform

Alternative




Model : system of harmonic oscillators in a magnetic field

with uniform charge

e B £ 0: strength of the magnetic field
° g, px ERY, x€Z§ (d* >2)
|2

2 —
e H= Zx{|p§| + Z|y_x\:1 lax ey

Hamiltonian dynamics + magnetic field (deterministic) :

(djfzap;;H:pﬁ (k=1,...,d"

0 ‘Z’f — —0H+Bp? = (Aq')x+Bp?
"C’/’f — —0pH-Bpl = (Ag). Bp!
@:—8q§H:(Aqk)X (k=3,...,d%

\ dt



Model : system of harmonic oscillators in a magnetic field

with alternative charge

B # 0: strength of the magnetic field
N :even, d=1
O, px €ERY, x € Zy, (d* > 2)

2 _ 2
H— Ex{|p§| + Z|y—x\:1 |gx 4qu }

Hamiltonian dynamics + magnetic field (deterministic) :

( d k
T —OuH=pt  (k=1...d")
dpl X2 1 X Bp2
Pl —8q§H+(—1) Bp; = (Aq”)x+(—1)"Bpy

(1)

dp? x x
% — —9H—(~1)"Bp = (Aq®)—(—1)"Bp}
d k

dt



Conserved quantities

2 _ 2
o & = |P§\ + 3yt M . energy of x
e H= Zx gX

Model (0): 3" &, Y., pl(k=1,2,...,d%)

Model (1) : X, & S0, pk (k=3.....d%), ¥, (! — Ba?),
> (P2 + Bay)

Model (I1) : 32, &, S pk (k=3.....d"),
> seven(PE+ Prir — Ba2 + BG2,1), Y seven(P2 + P2y + Bal — Bal )

e > _pland Y, p2 are not conserved for both (/) and (/1)
e The number of conserved quantities are same for all models

o Precisely, there are infinitely many conserved quantities without the
stochastic noise



Micro-canonical state space and micro-canonical measure

o Qe = {(gpe) € (BT, g = 0,5, pu = 0,5, & = EN)
e un,e : Uniform measure on Qp ¢.

e ()ne : Expectation w.r.t. pp e

e Qpne and py ¢ are invariant for Model (0) and (1)

e For Model (1), we do not consider the micro-canonical state space for
simplicity.

e For the coordinates (gx, px) with periodic b.c.,

[ exp(—BH(q, p))dgdp = oo for any 3 > 0, so we can not consider
the canonical measure.



System of harmonic oscillators (periodic b.c.) for

(r, p)-coordinates

[} d:l
° rx,pxeRd*,erN

e Change the coordinates with ry, = gx4+1 — gx formally in the dynamics
(but gx+n = gx does not hold here)

Hamiltonian dynamics (deterministic) :

drk %
(0) I p>I§+1 p)é (k =1, ,d )

d k

&:rk—rk (k=1,...,d")



System of harmonic oscillators in a magnetic field for

(r, p)-coordinates with uniform charge

e B#£0
[} d:l
° rx,pxeRd*,erN (d* >2)

Hamiltonian dynamics + magnetic field (deterministic) :

(drf )
W:PEH—P)I: (k=1,...,d%)
dl
NESL e
) dp2 5, 1
I: Iy _rx—l*BpX
k
k%:rff—rff_l (k=3,...,d")



System of harmonic oscillators in a magnetic field for

(r, p)-coordinates with alternative charge

e B#£0
e \V:even,d=1
o r,px ERY, x€Zy (d*>2)

Hamiltonian dynamics + magnetic field (deterministic) :

"Zf:pfﬂ_pg (k=1,...,d")
” ‘g’t: =l (1) B

P22 (-1yBpl

\(Z);:r’l:r’f_l (k=3,....d"



Conserved quantities

Model (0): 3 &, >, pl(k=1,2,...,d"), > rf(k=12...,d
Model (1) : 3> &, Y., pK(k=3,...,d*), S rk(k=1,2...,d

Model (I1) : 3, & S, pk (k=3,....d"), ¥, rk (k=1.2,....d"),
Zx:even(pi + p)1<+1 + Br)%)' Zx:even(pg( + p>2<+1 - Br)]{)

o > (p — Bg?) and > (p2 + Bg}) are not functions of (r, p)

e The number of conserved quantities are different between Model
(0),(11) and Model (I)

e If d =1 and d* =2, Model (0) and (Il) have five conserved
quantities, but Model (1) has only three conserved quantities



Canonical state space and canonical measure

Qn = {(re, px) € (R2")NV} = R2d"N
pn,g(drdp) = % exp(—5>_, E)drdp =
nxnz*:lgeXP(—5W)drffdp§ for 8 > 0.
(-)n,g : Expectation w.r.t. puy g

e sy g is invariant for Model (0),(1) and (II)

The measure is product because d =1



Stochastic noise (momentum exchange)

For each k € {1,...,d*} and a pair x,y € Z‘,{, satisfying [x — y| = 1,
exchange pX < p}’,‘ with rate v > 0.

e Every conserved quantity is also conserved by the stochastic noise

e Micro-canonical (resp. canonical) state spaces and measures are still
invariant with the stochastic noise

Full generator of our dynamics: L = A+ BG + ¢S where

G =3 (P0p — pr0g), G =3 (—1)(p0p — pr2)

X X

-
SF=3 > > (flg.p™ ) ~f(a.p)

k=1 x |y—x|=1

.
o o303 (F(r e )~ £(rp))

k=1 x |y—x|=1



Thermal conductivity

Infinite system (Formal argument)
o S(x,t) = ((Ex(t) — &)(&(0) — &)) where € = (&)
e () : expectation w.r.t. some shift-invariant equilibrium measure

Kl i 1 Kyl
o K= 1Mt o0 5am D ezd XX S(X, t)

Green-Kubo formula :

= im s S s 905 [ o))

x€Z4

1 e .
=2 > / (jxxrex (t)o,e (0))dt = 6y k™t = Ky
0

x€Z4

* juxte/(t) : energy current from x to x + e at time t
o If the energy fluctuation diffuses normally, 0 < xk < oo
o By the symmetry (even for B # 0), k% = i for any k =1,2,...,d



Thermal conductivity: Finite size approximation

Periodic b.c.

kn(t) = 2t£2 Z (/ Jxerel(S)dS /./061( ,)d5/)>/\/,g(ﬂ)

xEZd

t
- 21‘82I\/d/0 /0 (J(5)I(s")) g3y dsds’

where J(s) = erz;{,.jx,X—Fa(s)
Formally x = lim;— o0 limy o0 mn(t)

The stationary non-equilibrium state

N{JIn)

KN = Im e
| TL—Tr|=0, T, Tr—=T(ENTB) TL — Tr

where Jy is the stationary energy flux with system size N per a particle.



Relation between k, rky(t) and ky

Assume the limit lim rkp(t) := k(t) exists.
N—o0

In the regime k < o0, the following is generally expected:

tILrgo k(t) = Nlinoo KN = K

In the regime k = oo, the followings are generally expected:

tIer;o k(t) = Nlinoo KN = 00

If x(t) ~ t% and ky ~ N® and the sound velocity is not zero, then
8=«

More generally, x(ty) ~ ky as N — oo where ty is a proper time
scaling

If the energy spreads with t° in width at time t, then (ty)? ~ N since
at time ty, the periodic boundary starts to effect

Therefore, heuristically, ty ~ N if the sound velocity is not zero

If the sound velocity is vanishing, we can not predict the relation of §
and « so far



Dispersion relation and the sound velocity

Model (0): B=0
° wy = \/4 S sin?(wok)

o vs:=limg_o |Opwy| >0
Model (1) d* = 2

o Gp=JW}+(5)P*5

47rsin(7r01)cos(ﬂ'91)‘ -0
Vet

o vs = limp_o |0p1&p| = limg_o |

Model (1) d* > 3

® (g, wy

e vs>0and vs =0
Model (I1)

.« 5y — i\/4+B2_‘ /(4+232)‘z_16w(9)z’ N i4+432w9 s 50

o vs = limp_g |Opig| > 0




Sound speed in Model (I) and (Il) in d =1,d* =2

By Shuji Tamaki

Cee(iy )

case (II)' | | —t= 50

A

ol
—_
oF
e}
[\
O
e}

200 —100




Previous results for Model (0) and related models

Model (0) (Basile-Bernardin-Olla(06,09), Jara-Komorowski-Olla(15))
o Ford =1, r(t) ~ t'/? as t — oo
e For d =2, k(t) ~logtast— oo
e For d > 3, limi o0 k() < 00

+ pinning potential (Basile-Bernardin-Olla(06,09),
Jara-Komorowski-Olla(15))

e Ford>1, limi o k() < 00

The momentum flip noise (Simon(13), Komorowski-Olla-Simon(16))

e Ford>1, limi o k() < 00

non-acoustic interaction potential (Komorowski-Olla(16))

e Ford>1, limi o k() < 00

e d* does not play any role (Only the case d = d* has been studied)

e Fractional heat eq. or heat eq. are derived rigorously for all models in
d=1.



Role of momentum conservation and the sound velocity

Model (0)
vs #0, > pk are conserved = Anomalous

Model (0) + pinning potential
ve =0, Y pk are not conserved = Normal

velocity flip noise
vs #0, > pk are not conserved = Normal

non-acoustic chain
vs =0, > pk are conserved = Normal

Model (1) and Model (II)
vs =0 (or vs > 0), >, pX are not conserved = Normal??




Main result

Theorem (Saito-S,2017)
Model (1), d* = 2

o Ford=1, r(t) ~ tY/* as t - 0

e Ford =2, k(t) ~logt ast— oo

e Ford >3, limsup,_,. x(t) < 0o
Model (1), d* > 3

Ford =1, k(t) ~ t'/? as t — oo
Ford =2, k(t) ~logt as t — oo
For d > 3, limsup,_,, k(t) < o0

For the case d* = 2 where v; = 0 and Y, pX are not conserved,
anomalous behavior appears.

New universality class appears.

For d* > 3 the conservation of 3" _p¥(k > 3) plays some role
The result holds for micro-canonical and canonical measures.




Main result

Theorem (Saito-5,2017)
Model (11), d* > 2

Assume B? + 4 > 16+2. Then,
e Ford=1, r(t) ~t'/? as t = oo

e Even for the case d* = 2 where > pX are not conserved for any k,
the order t1/2 appears.

e The condition on the parameter may be technical.



Current-Current correlation

Let C(t) = limy—oo 77 (J(£)J(0)).
Theorem (Saito-S,2017)

Model (1) For any d and d* > 2,

C(t) = Cl(t) T Cg(t) I C3(t) == (d* = 2)C4(t)

where Cy(t) ~ t~9/?cos(Bt), Go(t) ~ t~ /271, Gy(t) ~ t79/471/2,
Ca(t) ~ t=9/2,

Model (Il) For d =1 and d* > 2,

C(t) ~ t71/2

e From above, the behavior of x(t) follows straightforwardly.

e Ci(t) is the oscillation term



Numerical simulation for the decay of the current-current

correlation in d =1,d* =2

By Shuji Tamaki 1077
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“Pinning type effect” of magnetic field for Model (1)

Let P! :=>" pland P2:=> p2. Then,

dP?

—— =BP

dt 2
dP?

—— = —BP..
dt

Namely, if the dynamics is in equilibrium (P!) = (P?) = 0.

Since the current of the conserved quantity r¥ is pX, it implies there is no
Euler scaling dynamics for k = 1,2. Moreover, form the above, the
current-current correlation for rk is explicitly calculated as cos(Bt).



Relation between «(t) and ky for d =1, d* =2

Model (I)

Numerical simulation for the system in a stationary non-equilibrium state
shows that rp ~ N3/8 which implies ty ~ N3/2. It may imply that the
heat mode spreads in the width t2/3 at time t. But so far, it is not clear
what is the role of v, 3 and & where ty = N? in the macroscopic equation
for the energy fluctuation diffusion.

Model (II)

Numerical simulation for the system in a stationary non-equilibrium state
shows that rpy ~ N'/2 which implies ty ~ N. This is consistent with the
non-vanishing sound velocity.



Numerical simulation for sy

100 ©
By Shuji Tamaki o
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Sketch of the proof

e Follow the strategy of Basile-Bernardin-Olla (2006)

e Solve a poisson equation (A — L)u = J explicitly

e Asymptotic analysis of the inverse Laplace transform of the
current-current correlation function



Summary and open problems

Summary

Our model in a magnetic field : the momentum is not conserved, the
sound velocity is vanishing for some case

Question : Anomalous behavior of the thermal conductivity of the
energy in d = 1,2 appears or not?

Result : Anomalous behavior appears. Moreover, a new universality
class appears at least in the sense of the asymptotic behavior of the
thermal conductivity

Conclusion 1 : the momentum conservation is not necessary for the
anomalous behavior

Conclusion 2 : the non-vanishing sound velocity is not necessary for
the anomalous behavior

Open problems

What is the equation for the diffusion of the macroscopic energy
fluctuation? Proper space-time scaling? (in progress)

How to predict ty?

NFHT can be applied to this class with some generalization?



