The Polaron Measure A second look

Paris, June 12, 2017

$$
\begin{aligned}
& d Q_{\beta, \gamma, T} \\
& =\frac{1}{Z_{\beta, \gamma, T}} \exp \left[\frac{\beta \gamma}{2} \int_{0}^{T} \int_{0}^{T} \frac{e^{-\gamma|t-s|}}{|x(t)-x(s)|} d t d s\right] d P \\
& =\frac{1}{Z_{\beta, \gamma, T}} \exp \left[\beta \gamma \int_{0}^{T} \int_{0 \leq s<t \leq T} \frac{e^{-\gamma(t-s)}}{|x(t)-x(s)|} d t d s\right] d P
\end{aligned}
$$

$d Q_{\beta, \gamma, T}$

$$
\begin{aligned}
& =\frac{1}{Z_{\beta, \gamma, T}} \exp \left[\frac{\beta \gamma}{2} \int_{0}^{T} \int_{0}^{T} \frac{e^{-\gamma|t-s|}}{|x(t)-x(s)|} d t d s\right] d P \\
& =\frac{1}{Z_{\beta, \gamma, T}} \exp \left[\beta \gamma \int_{0}^{T} \int_{0 \leq s<t \leq T} \frac{e^{-\gamma(t-s)}}{|x(t)-x(s)|} d t d s\right] d P
\end{aligned}
$$

$$
Z_{\beta, \gamma, T}=E^{P}\left[\exp \left[\beta \gamma \iint_{0 \leq s<t<T} \frac{e^{-\gamma(t-s)}}{|x(t)-x(s)|} d t d s\right]\right]
$$

$$
\begin{aligned}
g(\beta, \gamma) & =\lim _{T \rightarrow \infty} \frac{1}{T} \log Z_{\beta, \gamma, T} \\
& =\sup _{Q}\left[E^{Q}\left[\beta \gamma \int_{-\infty}^{0} \frac{e^{\gamma t}}{|x(t)-x(0)|} d t\right]-H(Q \mid P)\right]
\end{aligned}
$$

$$
\begin{aligned}
g(\beta, \gamma) & =\lim _{T \rightarrow \infty} \frac{1}{T} \log Z_{\beta, \gamma, T} \\
& =\sup _{Q}\left[E^{Q}\left[\beta \gamma \int_{-\infty}^{0} \frac{e^{\gamma t}}{|x(t)-x(0)|} d t\right]-H(Q \mid P)\right] \\
\frac{g(\beta, \gamma)}{\beta^{2}} & =\sup _{Q}\left[E^{Q}\left[\int_{-\infty}^{0} \frac{\gamma e^{\gamma t}}{\beta|x(t)-x(0)|} d t\right]-\frac{1}{\beta^{2}} H(Q \mid P)\right] \\
& =\sup _{Q}\left[E^{Q}\left[\int_{-\infty}^{0} \frac{\gamma e^{\gamma t}}{\left|x\left(\beta^{2} t\right)-x(0)\right|} d t\right]-H(Q \mid P)\right] \\
& =g\left(1, \frac{\gamma}{\beta^{2}}\right)
\end{aligned}
$$

- As $\frac{\gamma}{\beta^{2}} \rightarrow 0, x\left(\frac{\beta^{2} t}{\gamma}\right)$ and $x(0)$ become independent.
- As $\frac{\gamma}{\beta^{2}} \rightarrow 0, x\left(\frac{\beta^{2} t}{\gamma}\right)$ and $x(0)$ become independent.
\square Standard Ergodic theory
- As $\frac{\gamma}{\beta^{2}} \rightarrow 0, x\left(\frac{\beta^{2} t}{\gamma}\right)$ and $x(0)$ become independent.
\square Standard Ergodic theory

$$
\lim _{\gamma \rightarrow 0} g(1, \gamma)=\lim _{\beta \rightarrow \infty} \frac{g(\beta, 1)}{\beta^{2}}=c
$$

- As $\frac{\gamma}{\beta^{2}} \rightarrow 0, x\left(\frac{\beta^{2} t}{\gamma}\right)$ and $x(0)$ become independent.
- Standard Ergodic theory

$$
\begin{gathered}
\lim _{\gamma \rightarrow 0} g(1, \gamma)=\lim _{\beta \rightarrow \infty} \frac{g(\beta, 1)}{\beta^{2}}=c \\
c=\sup _{\phi:\|\phi\|_{2}=1}\left[\iint \frac{\phi^{2}(x) \phi^{2}(y)}{|x-y|} d x d y-\frac{1}{2} \int|\nabla \phi|^{2} d x\right]
\end{gathered}
$$

\square it is known that the solution is unique up to translations.
\square it is known that the solution is unique up to translations.
\square If $\beta=1$ and let $\gamma \rightarrow 0$, then the behavior of $Q_{1, \gamma, T}$ is closely related to the behavior as $T \rightarrow \infty$ of

$$
d Q_{T}=\frac{1}{Z(T)} \exp \left[\frac{1}{T} \int_{0}^{T} \int_{0}^{T} \frac{1}{|x(t)-x(s)|} d t d s\right] d P
$$

\square it is known that the solution is unique up to translations.

- If $\beta=1$ and let $\gamma \rightarrow 0$, then the behavior of $Q_{1, \gamma, T}$ is closely related to the behavior as $T \rightarrow \infty$ of

$$
d Q_{T}=\frac{1}{Z(T)} \exp \left[\frac{1}{T} \int_{0}^{T} \int_{0}^{T} \frac{1}{|x(t)-x(s)|} d t d s\right] d P
$$

- It has been studied recently by Bolthausen, König and Mukherjee.
\square It is shown that the distribution of the occupation measures $\frac{1}{t} \int_{0}^{t} \delta_{x(s)} d s$ under Q_{T} converges to the distribution of a random translate $\left[\phi_{0}^{2} * \delta_{z}\right] d x$ of $\phi_{0}^{2} d z$, with z having the distribution $\phi_{0}(z) d z$ suitably normalized.
\square It is shown that the distribution of the occupation measures $\frac{1}{t} \int_{0}^{t} \delta_{x(s)} d s$ under Q_{T} converges to the distribution of a random translate $\left[\phi_{0}^{2} * \delta_{z}\right] d x$ of $\phi_{0}^{2} d z$, with z having the distribution $\phi_{0}(z) d z$ suitably normalized.
\square Since ϕ is unique only up to translation the limit will be a convex combination of translations and they determine the precise limit.

Our goal is to understand the measure

$$
\begin{aligned}
d Q_{\gamma, T} & =\frac{1}{Z(\gamma, T)} \exp \left[\frac{1}{2} \int_{0}^{T} \int_{0}^{T} \frac{\gamma e^{-\gamma|s-t|}}{|x(t)-x(s)|} d s d t\right] d P_{T} \\
& =\frac{1}{Z(\gamma, T)} \exp \left[\int_{0 \leq s<t \leq T} \frac{\gamma e^{-\gamma(t-s)}}{|x(t)-x(s)|} d s d t\right] d P_{T} \\
& =\frac{\Psi(\gamma, T, \omega)}{Z(\gamma, T)} d P_{T}
\end{aligned}
$$

- Our goal is to understand the measure

$$
\begin{aligned}
d Q_{\gamma, T} & =\frac{1}{Z(\gamma, T)} \exp \left[\frac{1}{2} \int_{0}^{T} \int_{0}^{T} \frac{\gamma e^{-\gamma|s-t|}}{|x(t)-x(s)|} d s d t\right] d P_{T} \\
& =\frac{1}{Z(\gamma, T)} \exp \left[\int_{0 \leq s<t \leq T} \frac{\gamma e^{-\gamma(t-s)}}{|x(t)-x(s)|} d s d t\right] d P_{T} \\
& =\frac{\Psi(\gamma, T, \omega)}{Z(\gamma, T)} d P_{T}
\end{aligned}
$$

\square Does the limit $Q_{\gamma}=\lim _{T \rightarrow \infty} Q_{\gamma, T}$ exist? What is it?

- Our goal is to understand the measure

$$
\begin{aligned}
d Q_{\gamma, T} & =\frac{1}{Z(\gamma, T)} \exp \left[\frac{1}{2} \int_{0}^{T} \int_{0}^{T} \frac{\gamma e^{-\gamma|s-t|}}{|x(t)-x(s)|} d s d t\right] d P_{T} \\
& =\frac{1}{Z(\gamma, T)} \exp \left[\int_{0 \leq s<t \leq T} \frac{\gamma e^{-\gamma(t-s)}}{|x(t)-x(s)|} d s d t\right] d P_{T} \\
& =\frac{\Psi(\gamma, T, \omega)}{Z(\gamma, T)} d P_{T}
\end{aligned}
$$

- Does the limit $Q_{\gamma}=\lim _{T \rightarrow \infty} Q_{\gamma, T}$ exist? What is it?
- How mixing is it?
\square What about the distribution of $\frac{x(T)-x(0)}{\sqrt{T}}$ under $Q_{\gamma, T}$ or Q_{γ} ?
- What about the distribution of $\frac{x(T)-x(0)}{\sqrt{T}}$ under $Q_{\gamma, T}$ or Q_{γ} ?
- Is there a CLT?
- What about the distribution of $\frac{x(T)-x(0)}{\sqrt{T}}$ under $Q_{\gamma, T}$ or Q_{γ} ?
- Is there a CLT?
\square What is the limiting variance $\sigma^{2}(\gamma)$
- What about the distribution of $\frac{x(T)-x(0)}{\sqrt{T}}$ under $Q_{\gamma, T}$ or Q_{γ} ?
- Is there a CLT?
\square What is the limiting variance $\sigma^{2}(\gamma)$
- How does the variance behave as $\gamma \rightarrow 0$?
- What about the distribution of $\frac{x(T)-x(0)}{\sqrt{T}}$ under $Q_{\gamma, T}$ or Q_{γ} ?
- Is there a CLT?
\square What is the limiting variance $\sigma^{2}(\gamma)$
- How does the variance behave as $\gamma \rightarrow 0$?
- According to a heuristic argument of Spohn,

$$
\sigma^{2}(\gamma)=c \gamma^{2}+o\left(\gamma^{2}\right)
$$

- It turns out that the distribution of $\frac{x(T)-x(0)}{\sqrt{T}}$ under
$Q_{\gamma, T}$ is a convex combination of spherically symmetric Gaussians, i.e. $N(0, \theta I)$ with a random θ, $0 \leq \theta \leq 1$, having a distribution depending on γ and T.
- It turns out that the distribution of $\frac{x(T)-x(0)}{\sqrt{T}}$ under
$Q_{\gamma, T}$ is a convex combination of spherically symmetric Gaussians, i.e. $N(0, \theta I)$ with a random θ, $0 \leq \theta \leq 1$, having a distribution depending on γ and T.
- By a law of large numbers, as $T \rightarrow \infty, \theta \rightarrow \sigma^{2}(\gamma)$ in probability
- It turns out that the distribution of $\frac{x(T)-x(0)}{\sqrt{T}}$ under
$Q_{\gamma, T}$ is a convex combination of spherically symmetric Gaussians, i.e. $N(0, \theta I)$ with a random θ, $0 \leq \theta \leq 1$, having a distribution depending on γ and T.
- By a law of large numbers, as $T \rightarrow \infty, \theta \rightarrow \sigma^{2}(\gamma)$ in probability
- It is a messy formula. We have not succeeded yet in unearthing its behavior as $\gamma \rightarrow 0$. We may as well take $\gamma=1$ and proceed.

$$
d Q_{T}=\frac{1}{Z(T)} \exp \left[\int_{0 \leq s<t \leq T} \frac{e^{-(t-s)}}{|x(t)-x(s)|} d s d t\right] d P_{T}
$$

$$
\begin{aligned}
& d Q_{T}=\frac{1}{Z(T)} \exp \left[\int_{0 \leq s<t \leq T} \frac{e^{-(t-s)}}{|x(t)-x(s)|} d s d t\right] d P_{T} \\
& Z(T)=\int \exp \left[\int_{0 \leq s<t \leq T} \frac{e^{-(t-s)}}{|x(t)-x(s)|} d s d t\right] d P_{T}
\end{aligned}
$$

$$
\begin{gathered}
d Q_{T}=\frac{1}{Z(T)} \exp \left[\int_{0 \leq s<t \leq T} \frac{e^{-(t-s)}}{|x(t)-x(s)|} d s d t\right] d P_{T} \\
Z(T)=\int \exp \left[\int_{0 \leq s<t \leq T} \frac{e^{-(t-s)}}{|x(t)-x(s)|} d s d t\right] d P_{T}
\end{gathered}
$$

\square Expand the exponential.

$$
\Psi(T, \omega)=\exp \left[\int_{0 \leq s<t \leq T} \frac{e^{-(t-s)}}{|x(t)-x(s)|} d s d t\right]
$$

$$
\begin{array}{r}
\Psi(T, \omega)=\sum_{n=0}^{\infty} \frac{1}{n!} \int_{0 \leq s_{1} \leq t_{1} \leq T} \cdots \int_{0 \leq s_{n} \leq t_{n} \leq T} \\
\frac{e^{-\sum_{i=1}^{n}\left(t_{i}-s_{i}\right)}}{\prod_{i=1}^{n}\left|x\left(s_{i}\right)-x\left(t_{i}\right)\right|} \Pi d s_{i} \Pi d t t_{i}
\end{array}
$$

$$
\begin{gathered}
\Psi(T, \omega)=\sum_{n=0}^{\infty} \frac{1}{n!} \int_{0 \leq s_{1} \leq t_{1} \leq T} \cdots \int_{0 \leq s_{n} \leq t_{n} \leq T} \\
\frac{e^{-\sum_{i=1}^{n}\left(t_{i}-s_{i}\right)}}{\Pi_{i=1}^{n}\left|x\left(s_{i}\right)-x\left(t_{i}\right)\right|} \Pi d s_{i} \Pi d t_{i} \\
\frac{1}{\|x\|}=\sqrt{\frac{2}{\pi}} \int e^{-\frac{\tau^{2}\|x\|^{2}}{2}} d \tau
\end{gathered}
$$

$$
\begin{gathered}
\Psi(T, \omega)=\sum_{n=0}^{\infty} \frac{1}{n!} \int_{0 \leq s_{1} \leq t_{1} \leq T} \cdots \int_{0 \leq s_{n} \leq t_{n} \leq T} \\
\frac{e^{-\sum_{i=1}^{n}\left(t_{i}-s_{i}\right)}}{\Pi_{i=1}^{n}\left|x\left(s_{i}\right)-x\left(t_{i}\right)\right|} \Pi d s_{i} \Pi d t_{i} \\
\frac{1}{\|x\|}=\sqrt{\frac{2}{\pi}} \int e^{-\frac{\tau^{2}\|x\|^{2}}{2}} d \tau \\
\int_{0 \leq s<t \leq T} e^{-(t-s)} d t d s=T-1+e^{-T}=q(T)
\end{gathered}
$$

$$
\begin{aligned}
\Psi(T, \omega) & =\sum_{n=0}^{\infty} \frac{q(T)^{n}}{n!} \\
& \frac{1}{q(T)} \int_{-T \leq s_{1} \leq t_{1} \leq T} \cdots \frac{1}{q(T)} \int_{-T \leq s_{n} \leq t_{n} \leq T} e^{-\sum_{i=1}^{n}\left|s_{i}-t_{i}\right|} \\
& \int_{0}^{\infty} \cdots \int_{0}^{\infty} \exp \left[-\frac{1}{2} \sum_{i=1}^{n} \tau_{i}^{2}\left\|x\left(s_{i}\right)-x\left(t_{i}\right)\right\|^{2}\right] \\
& \Pi d s_{i} \Pi d t_{i} \Pi \sqrt{\frac{2}{\pi}} d \tau_{i}
\end{aligned}
$$

\square We denote by Δ the collection of intervals $\left\{\left[s_{i}, t_{i}\right]\right\}$ and for $\theta=\left\{\tau_{i} \geq 0\right\}$ define

We denote by Δ the collection of intervals $\left\{\left[s_{i}, t_{i}\right]\right\}$ and for $\theta=\left\{\tau_{i} \geq 0\right\}$ define

$$
k(s, t: n, \Delta, \theta\})=\sum_{i=1}^{n} \tau_{i}^{2} \chi_{\left[s_{i}, t_{i}\right]}(s) \chi_{\left[s_{i}, t_{i}\right]}(t)
$$

- We denote by Δ the collection of intervals $\left\{\left[s_{i}, t_{i}\right]\right\}$ and for $\theta=\left\{\tau_{i} \geq 0\right\}$ define

$$
k(s, t: n, \Delta, \theta\})=\sum_{i=1}^{n} \tau_{i}^{2} \chi_{\left[s_{i}, t_{i}\right]}(s) \chi_{\left[s_{i}, t_{i}\right]}(t)
$$

and the quadratic form

$$
\int_{0}^{T}\left|f^{\prime}(t)\right|^{2} d t
$$

$$
+\int_{0}^{T} \int_{0}^{T} \sum_{i=1}^{n} \tau_{i}^{2} \chi_{\left[s_{i}, t_{i}\right]}(s) \chi_{\left[s_{i}, t_{i}\right]}(t) f^{\prime}(s) f^{\prime}(t) d s d t
$$

- $|\operatorname{det}(I+K)|^{\frac{3}{2}}$ is the normalizing factor needed

$$
\exp \left[-\frac{1}{2} \int_{0}^{T} \sum_{i=1}^{n} \tau_{i}^{2} \chi_{\left[s_{i}, t_{i}\right]}(s) \chi_{\left[s_{i}, t_{i}\right]}(t) f^{\prime}(s) f^{\prime}(t) d s d t\right]
$$

- $|\operatorname{det}(I+K)|^{\frac{3}{2}}$ is the normalizing factor needed

$$
\exp \left[-\frac{1}{2} \int_{0}^{T} \sum_{i=1}^{n} \tau_{i}^{2} \chi_{\left[s_{i}, t_{i}\right]}(s) \chi_{\left[s_{i}, t_{i}\right]}(t) f^{\prime}(s) f^{\prime}(t) d s d t\right]
$$

$-|\operatorname{det}(I+K)|^{-\frac{3}{2}}$ is the weight.
$-|\operatorname{det}(I+K)|^{\frac{3}{2}}$ is the normalizing factor needed

$$
\exp \left[-\frac{1}{2} \int_{0}^{T} \sum_{i=1}^{n} \tau_{i}^{2} \chi_{\left[s_{i}, t_{i}\right]}(s) \chi_{\left[s_{i}, t_{i}\right]}(t) f^{\prime}(s) f^{\prime}(t) d s d t\right]
$$

$\square|\operatorname{det}(I+K)|^{-\frac{3}{2}}$ is the weight.

- We have a Poisson point process on the space of intervals $[s, t] \subset[0, T]$ with intensity $e^{-(t-s)} d s d t$ on $0 \leq s<t \leq T$.
$-|\operatorname{det}(I+K)|^{\frac{3}{2}}$ is the normalizing factor needed

$$
\left.\exp \left[-\frac{1}{2} \int_{0}^{T} \sum_{i=1}^{n} \tau_{i}^{2} \chi_{\left[s_{i}, t_{i}\right]}\right](s) \chi_{\left[s_{i}, t_{i}\right]}(t) f^{\prime}(s) f^{\prime}(t) d s d t\right]
$$

$\square|\operatorname{det}(I+K)|^{-\frac{3}{2}}$ is the weight.

- We have a Poisson point process on the space of intervals $[s, t] \subset[0, T]$ with intensity $e^{-(t-s)} d s d t$ on $0 \leq s<t \leq T$.
\square These intervals form clusters. Do not percolate.
- Can think of them as birth and death processes. Birth rate and death rate are nearly 1 .
- Can think of them as birth and death processes. Birth rate and death rate are nearly 1.
- There is aging, Birth rate falls and death rate goes up with t especially when $T-t$ is not large.
- Can think of them as birth and death processes. Birth rate and death rate are nearly 1.
\square There is aging, Birth rate falls and death rate goes up with t especially when $T-t$ is not large.
- The population starts from 0 at time 0 . Births and deaths occur creating a dynasty because they overlap until every one dies
- Can think of them as birth and death processes. Birth rate and death rate are nearly 1.
\square There is aging, Birth rate falls and death rate goes up with t especially when $T-t$ is not large.
- The population starts from 0 at time 0 . Births and deaths occur creating a dynasty because they overlap until every one dies
\square A new dynasty is born. After some waiting.
- Can think of them as birth and death processes. Birth rate and death rate are nearly 1.
\square There is aging, Birth rate falls and death rate goes up with t especially when $T-t$ is not large.
- The population starts from 0 at time 0 . Births and deaths occur creating a dynasty because they overlap until every one dies
\square A new dynasty is born. After some waiting.
- It is a renewal process making the Kernel k block diagonal with well controlled block sizes.
- Can think of them as birth and death processes. Birth rate and death rate are nearly 1.
- There is aging, Birth rate falls and death rate goes up with t especially when $T-t$ is not large.
- The population starts from 0 at time 0 . Births and deaths occur creating a dynasty because they overlap until every one dies
- A new dynasty is born. After some waiting.
- It is a renewal process making the Kernel k block diagonal with well controlled block sizes.
\square But the measure has to be weighted with $\operatorname{Det}|I+K|^{-\frac{3}{2}}$
\square It factors as well.
- It factors as well.
\square There are empty periods and busy periods. Empty ones are exponential. The cluster has a distribution that has to be weighted with $\operatorname{Det}|I+K|^{-\frac{3}{2}}$
- It factors as well.
\square There are empty periods and busy periods. Empty ones are exponential. The cluster has a distribution that has to be weighted with $\operatorname{Det}|I+K|^{-\frac{3}{2}}$
- The variance in the empty period is the length of the interval. $E[L(e)]=E[V(e)]=1$
- It factors as well.
\square There are empty periods and busy periods. Empty ones are exponential. The cluster has a distribution that has to be weighted with $\operatorname{Det}|I+K|^{-\frac{3}{2}}$
- The variance in the empty period is the length of the interval. $E[L(e)]=E[V(e)]=1$
- In the busy period it is random has random length with $E[L(b)]=\ell$ and $E[V(b)]=v \leq \ell$
- It factors as well.
- There are empty periods and busy periods. Empty ones are exponential. The cluster has a distribution that has to be weighted with $\operatorname{Det}|I+K|^{-\frac{3}{2}}$
- The variance in the empty period is the length of the interval. $E[L(e)]=E[V(e)]=1$
- In the busy period it is random has random length with $E[L(b)]=\ell$ and $E[V(b)]=v \leq \ell$
- CLT is valid with $\sigma^{2}=\frac{v+1}{\ell+1}$

There is a slight dependence issue.

\square There is a slight dependence issue.

- The lengths of periods of waiting for a new dynasty, as well as the length and structure of any dynasty, depends on the time left $(T-t)$
\square There is a slight dependence issue.
- The lengths of periods of waiting for a new dynasty, as well as the length and structure of any dynasty, depends on the time left $(T-t)$
- The birth rate at time t is $\left(1-e^{-(T-t)}\right) d t$ and the death rate is a similar perturbation of 1 that is large as $t \rightarrow T$.
\square There is a slight dependence issue.
- The lengths of periods of waiting for a new dynasty, as well as the length and structure of any dynasty, depends on the time left $(T-t)$
- The birth rate at time t is $\left(1-e^{-(T-t)}\right) d t$ and the death rate is a similar perturbation of 1 that is large as $t \rightarrow T$.
- The dependence disappears as $T \rightarrow \infty$

Last Slide

THE END

