
Multi-time distribution of periodic TASEP

Jinho Baik

University of Michigan

June 2017 @ IHP

Jinho Baik University of Michigan Periodic TASEP



Joint work with Zhipeng Liu (Courant Institute)

1. (Baik, Liu) Fluctuations of TASEP on a ring in relaxation time scale.
arXiv:1605.07102. CPAM

2. (Liu) Height fluctuations of stationary TASEP on a ring in relaxation time
scale. arXiv:1610.04601. AIHP

3. (Baik, Liu) Multi-time distribution of periodic TASEP (in preparation)

Jinho Baik University of Michigan Periodic TASEP



Introduction
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TASEP (Totally Asymmetric Simple Exclusion Process

Height function H(s, t): Associate with and associate with
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KPZ (Kadar-Parisi-Zhang) universality class

TASEP is an example of a model in the KPZ universality class

height fluctuations, spatial correlations, time correlations 1:2:3

Height function H(s, t) for s ∈ R, t ∈ R+

hT (γ, τ) :=
H(c1T

2/3γ,Tτ)− (c2T + c3T
2/3)

c4T 1/3

What is the limiting two–dimensional process?

(γ, τ) 7→ h(γ, τ) = lim
T→∞

hT (γ, τ)
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One-point distribution

Tracy–Widom distributions (from random matrix theory: fluctuations of
the largest eigenvalue) and their variations

Depends on the initial condition

GUE Tracy-Widom for step initial condition

GOE Tracy-Widom for initial condition

Proved for “integrable/solvable” models in the KPZ class

TASEP (totally asymmetric simple exclusion process), ASEP, certain
directed polymers, the KPZ equation, ...
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Equal–time

Fix τ and consider γ 7→ h(γ, τ)

Airy2 process for step initial condition (random matrix interpretation: the
largest eigenvalue process of Hermitian matrix Brownian motion)

Airy1 process for flat initial condition (no random matrix here)

Proved for TASEP and some zero temperature directed polymers

But not for ASEP, positive temperature directed polymers, and KPZ
equation yet.

Prähofer, Spohn, Johansson, Sasamoto, Borodin, Ferrari (mid 2000),
Matetski, Quastel, Remenik (2016), ...
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Multi–time

Slow decorrelation [Ferrari 2008]

Two-time distribution (not rigorous) [Dotsenko 2013]

Two-time distribution (Brownian directed last passage percolation)
[Johansson 2016]

Short time (τ2/τ1 → 1) and long time (τ2/τ1 → 0) asymptotics of time
covariance Cov(h(0, τ1), h(0, τ2)) [Ferrari, Spohn 2016]

Tail of two-time distribution: pτ2/τ1(x1, x2) for large positive x1 and
arbitrary x2 in the short time and long time limits [de Nardis, Le Doussal
2016]

This talk: Multi-time distribution for periodic TASEP
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Periodic TASEP
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Periodic TASEP

L period

N number of particles per period

ρ = N
L

particle density (ρ fixed, L,N large)

t not too large: infinite TASEP (KPZ dynamics)

t too large: finite TASEP (equilibrium dynamics)

crossover: relaxation time scale t = O(L3/2)
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Gwa and Spohn 1992

Derrida and Lebowitz 1998

Priezzhev, Povlotsky, Golinelli, Mallick

Prolhac 2013–2016
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Results
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Periodic step initial condition

1. Multi-time, multi-position joint distribution in the limit t = O(L3/2)

2. A discussion on the one-point distribution

** One-point distribution for three (periodic step, flat, stationary) initial
conditions: Prolhac & Baik–Liu, independently, 2016
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Density profile and shocks

t, L,N →∞ with t = O(L3/2) and ρ = N/L fixed

There are shocks traveling with speed 1− 2ρ. In this talk, assume ρ = 1/2
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Discontinuity O(Lt−1)

When t = O(L3/2), the discontinuity is same order as the height
flcutations
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Fluctuation result

t, L,N →∞ with t = O(L3/2) and ρ = N/L fixed

Joint height distribution P
(
∩m

j=1{H(sj , tj) ≤ hj}
)

Position sj = γjL with γi ∈ [0, 1]

Time tj = 2τjL
3/2 satisfying 0 < τ1 < · · · < τm

Height hj = 1
2
tj − xjL

1/2 with xj ∈ R

Theorem

P
(
∩m

j=1{H(sj , tj) ≤ hj}
)
→ F(x1, · · · , xm; (γ1, τ1), · · · , (γm, τm))
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Limiting joint distribution

F(x1, · · · , xm) = 1
(2πi)m

∮
· · ·
∮
C(z)D(z)

∏m
i=1

dzi
zi

Nested circles |zm| < · · · < |z1| < 1

C(z) has simple poles at zi = zi+1

C(z) =

[
m−1∏
i=1

zi
zi+1 − zi

][
m∏
i=1

Ai (zi )

Ai−1(zi )

]
Q(z)

where Ai (z) = e−
√

2
π (xi Li3/2(z)+τi Li5/2(z)). Q(z) is analytic, Q(0) 6= 0, and

it does not depend on xi , τi , γi .
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D(z) has an isolated singularity at zi = 0

D(z) = det(1−K) where K = K1K2

Give |z | < 1, consider the zeros of the equation e−w2/2 = z

Denote the set of zeros by Lz ∪ Rz .
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(m = 3) K1 : `2(Rz1)⊕ `2(Lz2)⊕ `2(Rz3)→ `2(Lz1)⊕ `2(Rz2)⊕ `2(Lz3)
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Using ξi ∈ Lzi and ηi ∈ Rzi , the matrix kernel is of form (for m = 5)

K1 =


K1(ξ1, η1) K1(ξ1, ξ2)
K1(η2, η1) K1(η2, ξ2)

K1(ξ3, η3) K1(ξ3, ξ4)
K1(η4, η3) K1(η4, ξ4)

K1(ξ5, η5)


Set Fi (w) = exp

(
− 1

3
τiw

3 + 1
2
γiw

2 + xiw
)

The 2× 2 blocks are (Re(ξ) < 0 and Re(η) > 0)[
K1(ξ, η) K1(ξ, ξ′)
K1(η′, η) K1(η′, ξ′)

]
=

[
Fi (ξ)

Fi−1(ξ)
0

0 Fi (η
′)

Fi+1(η
′)

] [
f (ξ) 0

0 g(η′)

] [ 1
ξ−η

1
ξ−ξ′

1
η′−η

1
η′−ξ′

] [
h(ξ) 0

0 j(η′)

]
where f , g , h, j depend also on z , z ′ but do not depend on xi , τi , γi
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One-point distribution F(x ; (γ, τ))

Formal computation shows:

τ → 0: F(τ 1/3x + γ2

4τ2/3
; (γ, τ))→

{
FGUE (x) γ 6= 1/2

FGUE (x)2 γ = 1/2

τ →∞: F(
√
2τ1/6

π1/4 (x + τ); (γ, τ))→ 1√
2π

∫ x

−∞ e−y2/2dy
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Conjecture

For m-point multi-time distribution, if the ε→ 0 limit of

F(ε1/3τ
1/3
1 x1, · · · , ε1/3τ 2/3m xm; (ε2/3τ

2/3
1 γ1, ετ1), · · · , (ε2/3τ 2/3m γm, ετm))

exists, we expect that it is the limiting multi-time distribution of the usual
infinite TASEP, and hence presumably of the KPZ universality class.
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Very brief discussion on the proof (finite time formula)
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The limit is obtained from an exact finite-time formula, which has a
parallel structure

We compute the multi-time distribution of particle locations xk(t)

TASEP in the configuration space XL,N = {xN < · · · < x1 < xN + L}

Step 1. Find the transition probability PY (X ; t) explicitly using coordinate
Bethe ansatz method

Step 2. Compute the multi-point distribution explicitly by summing the
transition probability

Step 3. Simplify the formula for the periodic step initial condition
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Schütz (1997): Computed transition probability for TASEP using
coordinate Bethe ansatz

Rákos and Schütz (2005): Using Schütz’s formula, reproduced
Johansson’s result (the Fredholm determinant formula for the 1-point
distribution for step initial condition)

Borodin, Ferrari, Prähofer and Sasamoto (2007–2008): Using Schütz’s
formula, obtained Fredholm determinant formula for equal-time processes
(and space-like points). They also extended the method to a few other
models.

Tracy and Widom (2008–2009): ASEP, 1-point distribution
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Step 1. Find the transition probability PY (X ; t) explictly

For X and Y in {xN < · · · < x1 < xN + L},

PY (X ; t) =

∮
det

[
1

L

∑
w

w i−j+1(w + 1)−xi+yj−i+jetw

w + ρ

]
N×N

dz

2πiz

Sum over the roots of wN(w + 1)L−N = zL

Compare with Schütz formula:

PTASEP
Y (X ; t) = det

[∮
w i−j+1(w + 1)−xi+yj−i+jetw

]
N×N
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Step 2. Compute m-point distribution function for general initial condition

PY (∩m
i=1{xki (ti ) ≥ ai})

=
∑
· · ·
∑

PY (X (1); t1)PX (1)(X
(2); t2 − t1) · · ·PX (m−1)(X

(m); tm − tm−1)

The ith sum is over all x
(i)
N < · · · < x

(i)
1 < x

(i)
N + L satisfying x

(i)
ki
≥ ai . The

result is

1

(2πi)m

∮
· · ·
∮
C(z, k)DY (z, k, t, a)

m∏
i=1

dzi
zi

where

DY (z) = det

[ ∑
w1,··· ,wm

w−i
1 (w1 + 1)yi+i−1w−j

m∏m
`=2(w` − w`−1)

m∏
`=1

w`(w` + 1)

L(w` + ρ)
g`(w`)

]
N×N

with

g`(w) =
w k`(w + 1)−a`−k`−1et`w

w k`−1(w + 1)−a`−1−k`−1−1et`−1w
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Step 3. Simplify further for step initial condition

Set yi = −i + 1. Then

DY (z) = det

[ ∑
w1,··· ,wm

w−i
1 w−j

m∏m
`=2(w` − w`−1)

m∏
`=1

g`(w`)

]
N×N

This simplifies to a Fredholm determinant. Here we need to take
|zi | < r0 := ρρ(1− ρ)1−ρ for all i .
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Slightly longer discussion
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Step 2

Inserting the Schütz-like formual

PY (X ; t) =

∮
det

[
1

L

∑
w

w i−j+1(w + 1)−xi+yj−i+jetw

w + ρ

]
N×N

dz

2πiz

from Step 1 into

PY (∩m
i=1{xki (ti ) ≥ ai})

=
∑
· · ·
∑

PY (X (1); t1)PX (1)(X
(2); t2 − t1) · · ·PX (m−1)(X

(m); tm − tm−1)

(sums over all x
(i)
N < · · · < x

(i)
1 < x

(i)
N + L satisfying x

(i)
ki
≥ ai ), we need to

evaluate ∑
{xN<···<x1<xN+L}∩{xk≥a}

det
[
w j

i (wi + 1)−xj−j
]

det
[
(w ′i )−j(w ′i + 1)xj+j

]
where wN

i (wi + 1)L−N = zL, and (w ′i )N(w ′i + 1)L−N = (z ′)L
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Key lemma:∑
{xN<···<x1<xN+L}∩{xk≥a}

det
[
w j

i (wi + 1)−xj−j
]

det
[
(w ′i )−j(w ′i + 1)xj+j

]

=

(
z ′

z

)(k−1)L(
1−

( z

z ′

)L)N−1
[

N∏
j=1

(
w ′j
wj

)N−k+1
(w ′j + 1)a−1−N+k

(wj + 1)a−2−N+k

]
det

[
1

w ′i′ − wi

]

when wN
i (wi + 1)L−N = zL, and (w ′i )N(w ′i + 1)L−N = (z ′)L
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Step 3

For the step initial condition, the Step 2 formula becomes

DY (z) = det

[ ∑
w1,··· ,wm

w−i
1 w−j

m∏m
`=2(w` − w`−1)

m∏
`=1

g`(w`)

]
N×N

where the sum is over all roots wN
i (wi + 1)L−N = zLi .

Take |zi | < r0

Expand the det of the sum as sums of dets

Sums are over N-tuples of roots w
(j)
i ,

j = 1, · · · ,N.

For w
(j)
i on the right circle, use

hole-particle duality.

The result is the series expansion of a
Fredholm determinant.
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Thank you for attention
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