Beaucoup de problèmes de mathématiques appliquées peuvent être attaqués par une représentation numériquement efficace des fonctions positives, comme l’optimisation ou le contrôle optimal. L’utilisation de sommes de carrés permet une formulation à base de matrices ou d'opérateurs semi-définis positifs. Dans cet exposé, je montrerai comment les représentations classiques de dimension finie à base de polynômes peuvent être étendues à des espaces de Hilbert, tout en préservant leur efficacité numérique.