Heat Conduction in Atomic Systems

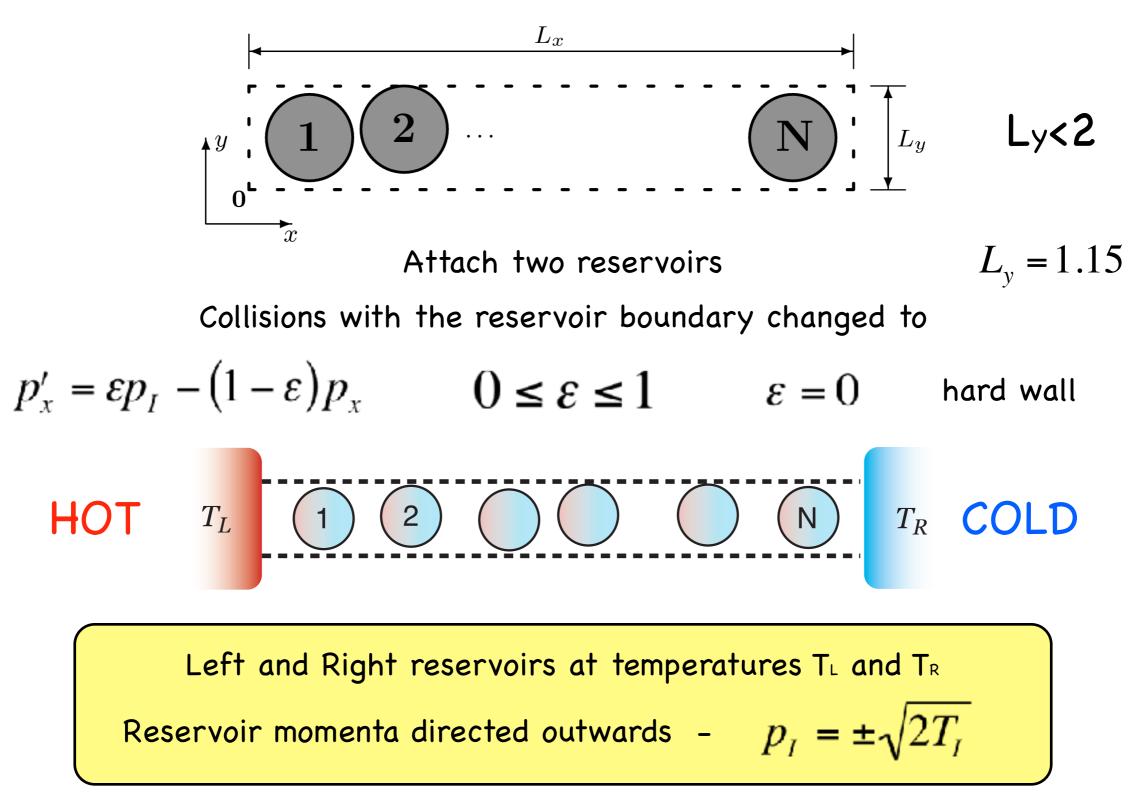
Gary Morriss

School of Physics, University of New South Wales, Australia

Workshop – Numerical aspects of nonequilibrium dynamics, Paris, 2017

Quasi-One-Dimensional Hard Disks

Quasi-One-Dimensional system



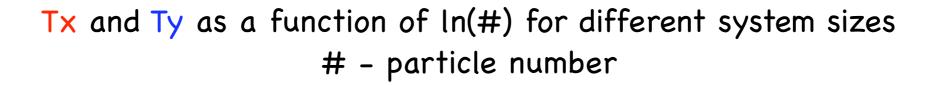
• Typical states: low density 0.03 and high density 0.8

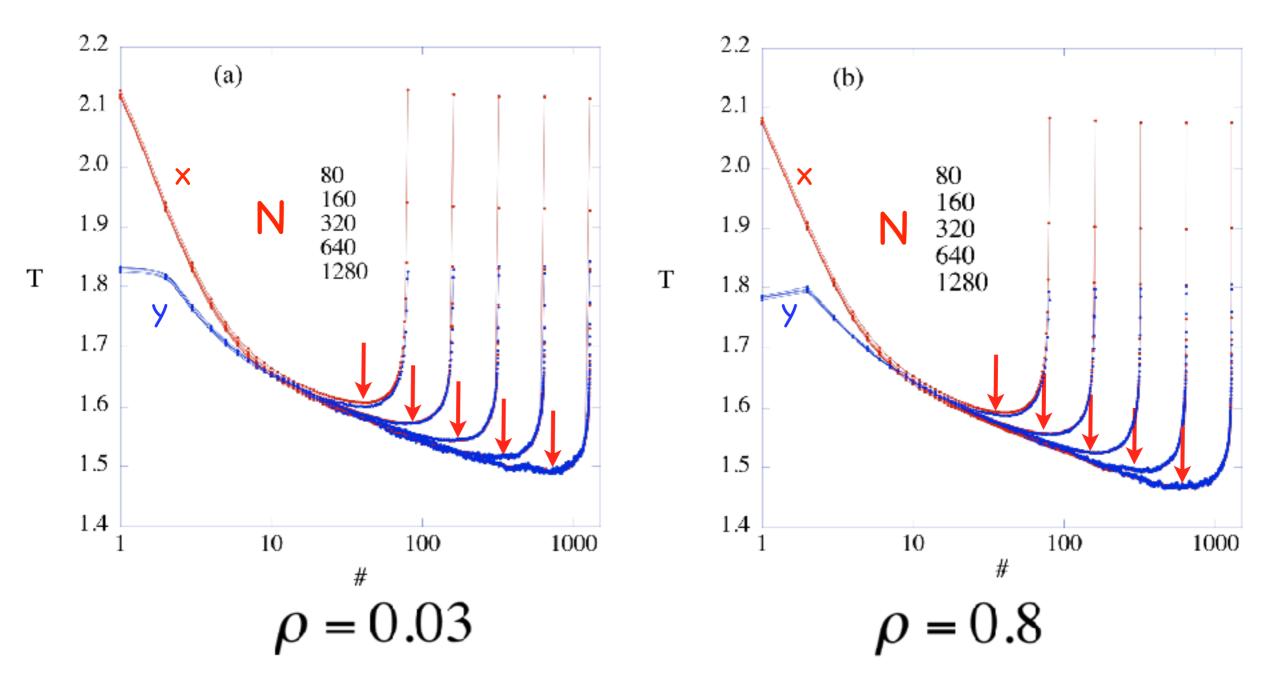
Scaling

Separate bulk effects from boundary effects

Equal Temperature Reservoirs

Equilibrium Temperature Profiles





LHS T gradients indep of N, T centre decreases with ln(N)

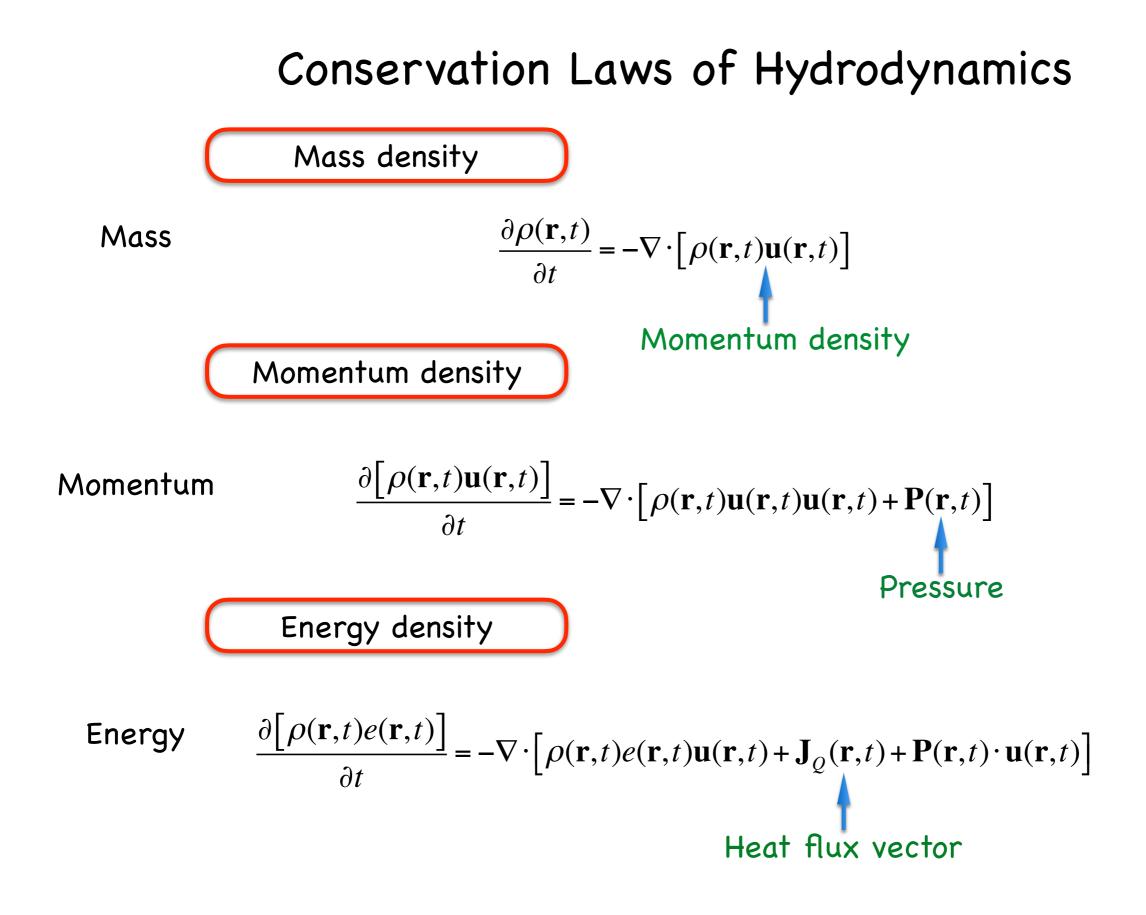
"Equilibrium" QOD Systems

Temperature

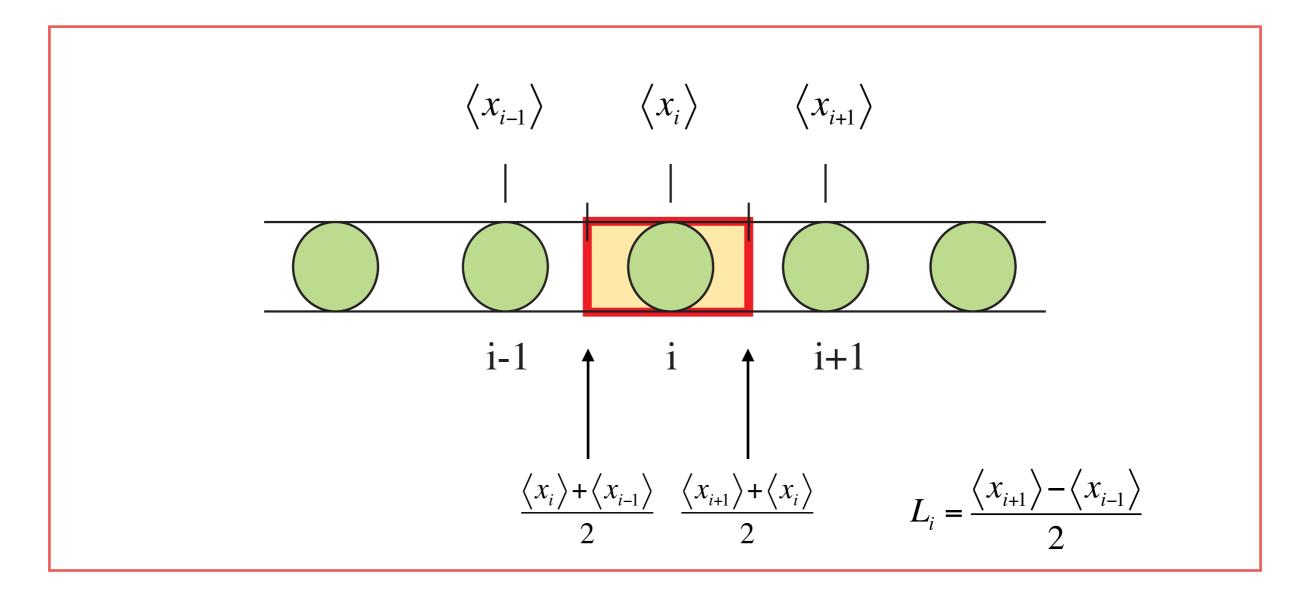
- Centre T decreases with ln(N), characteristic shape.
- Energy input is through x-direction but equilibration with Ty
- Tx-Ty is independent of N and density near reservoirs. Boundary effect involving the first 6 to 8 particles.
- Separate boundary effects from bulk effects.
- Understand scaling with system size.

Micro to Macro

Hydrodynamics - fluid element



Fluid Element



At the ends $\langle x_0 \rangle = 0$ $\langle x_{N+1} \rangle = L_x$ $V_i = L_y L_i$ Local density $\rho_i = 1/L_y L_i$

Local properties determined by the particle.

Instantaneous microscopic representation of local Fluxes

mass density
$$\rho(\mathbf{r},t) = \sum_{i} m_i \delta(\mathbf{r} - \mathbf{r}_i(t))$$

Lab velocity = thermal + streaming

 $\dot{\mathbf{r}}_i = \mathbf{v}_i + \mathbf{u}(\mathbf{r}_i, t)$

Pressure tensor

$$\mathbf{P}(\mathbf{r},t) = \sum_{i} m_{i} \mathbf{v}_{i} \mathbf{v}_{i} \delta(\mathbf{r}-\mathbf{r}_{i}) - \frac{1}{2} \sum_{i,j} \mathbf{r}_{ij} \mathbf{F}_{ij} \int_{0}^{1} d\lambda \delta(\mathbf{r}-\mathbf{r}_{i}-\lambda \mathbf{r}_{ij})$$

Heat flux vector

$$\mathbf{J}_{\mathcal{Q}}(\mathbf{r},t) = \sum_{i} U_{i} \mathbf{v}_{i} \delta(\mathbf{r} - \mathbf{r}_{i}) - \frac{1}{2} \sum_{i,j} \mathbf{r}_{ij} \mathbf{F}_{ij} \cdot (\mathbf{v}_{i} + \mathbf{u}(\mathbf{r}_{i}) - \mathbf{u}(\mathbf{r})) \int_{0}^{1} d\lambda \delta(\mathbf{r} - \mathbf{r}_{i} - \lambda \mathbf{r}_{ij})$$
$$U_{i} = \frac{1}{2} m v_{i}^{2} + \frac{1}{2} \sum_{j} \phi_{ij}$$

Energy Flows

Local heat flux vector

$$J_{Q}(\mathbf{r},t) = \sum_{i=1}^{N} U_{i} \mathbf{v}_{i} \delta(\mathbf{r} - \mathbf{r}_{i}) - \frac{1}{2} \sum_{i,j}^{N} \hat{\mathbf{r}}_{ij} (\hat{\mathbf{r}}_{ij} \cdot \hat{\mathbf{v}}_{ij}) \hat{\mathbf{r}}_{ij} \cdot (\mathbf{v}_{i} + \mathbf{v}_{j}) \delta(t - t_{ij}) \int_{0}^{1} d\lambda \delta(\mathbf{r} - \mathbf{r}_{i} - \lambda \mathbf{r}_{ij}) d\lambda \delta(\mathbf{r} - \mathbf{r}_{i} - \lambda \mathbf{r}_{ij}) \delta(t - t_{ij}) \delta(t -$$

Approximate integral

$$\int_{0}^{1} dx f(x) \approx \frac{1}{2} (f(0) + f(1))$$

$$J_{\underline{Q}}(\mathbf{r},t) = \sum_{i=1}^{N} U_{i} \mathbf{v}_{i} \delta(\mathbf{r} - \mathbf{r}_{i}) - \left(\frac{1}{4} \sum_{i,j}^{N} \hat{\mathbf{r}}_{ij} (\hat{\mathbf{r}}_{ij} \cdot \hat{\mathbf{v}}_{ij}) \hat{\mathbf{r}}_{ij} \cdot (\mathbf{v}_{i} + \mathbf{v}_{j}) \delta(t - t_{ij}) (\delta(\mathbf{r} - \mathbf{r}_{i}) + \delta(\mathbf{r} - \mathbf{r}_{j}))\right)$$

kinetic

potential

Heat flux per unit volume

$$J_{Q}(t) = \frac{1}{V} \int_{V} d\mathbf{r} J_{Q}(\mathbf{r}, t)$$

Fixed Temperature Gradient

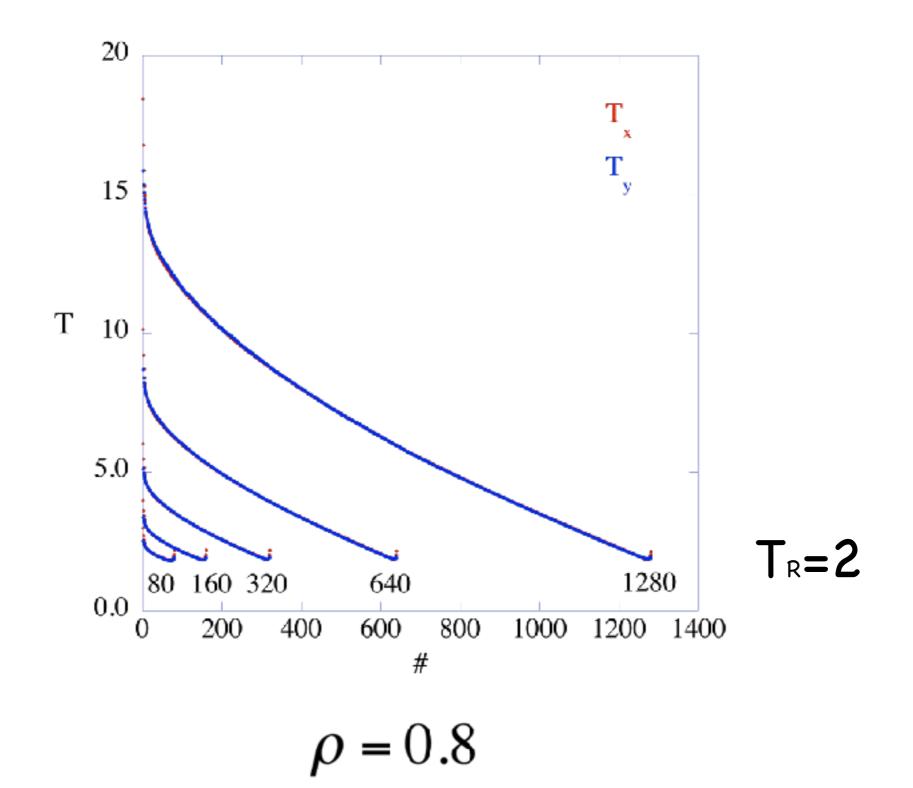
$$\nabla T = \frac{T_R - T_L}{L_x} = \frac{2 - 3}{86.95652} = -0.01150$$

$$T_L = T_R - \left(\frac{\nabla T}{\rho L_y}\right)N$$

constant

 $T_R=2$ T_L changes with N

Temperature Profiles at fixed external gradient



Instantaneous microscopic representation of total Fluxes

Integrate over volume

$$\mathbf{J}_{\mathcal{Q}}V = \sum_{i} U_{i}\mathbf{v}_{i} - \frac{1}{2}\sum_{i,j}\mathbf{r}_{ij}\mathbf{F}_{ij} \cdot \mathbf{v}_{i}$$

Energy balance

Energy entering from reservoir I=L,R

$$\Delta e_I = \frac{1}{2} \left(p_x'^2 - p_x^2 \right) = \frac{\varepsilon}{2} \left[\varepsilon p_I^2 + 2(\varepsilon - 1) p_I p_x + (\varepsilon - 2) p_x^2 \right]$$

Energy entering from the left is equal and opposite to energy entering from the right

$$\Delta e_L = -\Delta e_R$$

Average heat flux/volume

Energy balance

$$\overline{J}_{Q} = \frac{1}{T} \int_{0}^{T} J_{Q}(t) dt \qquad \overline{J}_{Q} = \frac{\Delta e_{L}}{L_{y}} = -\frac{\Delta e_{R}}{L_{y}}$$

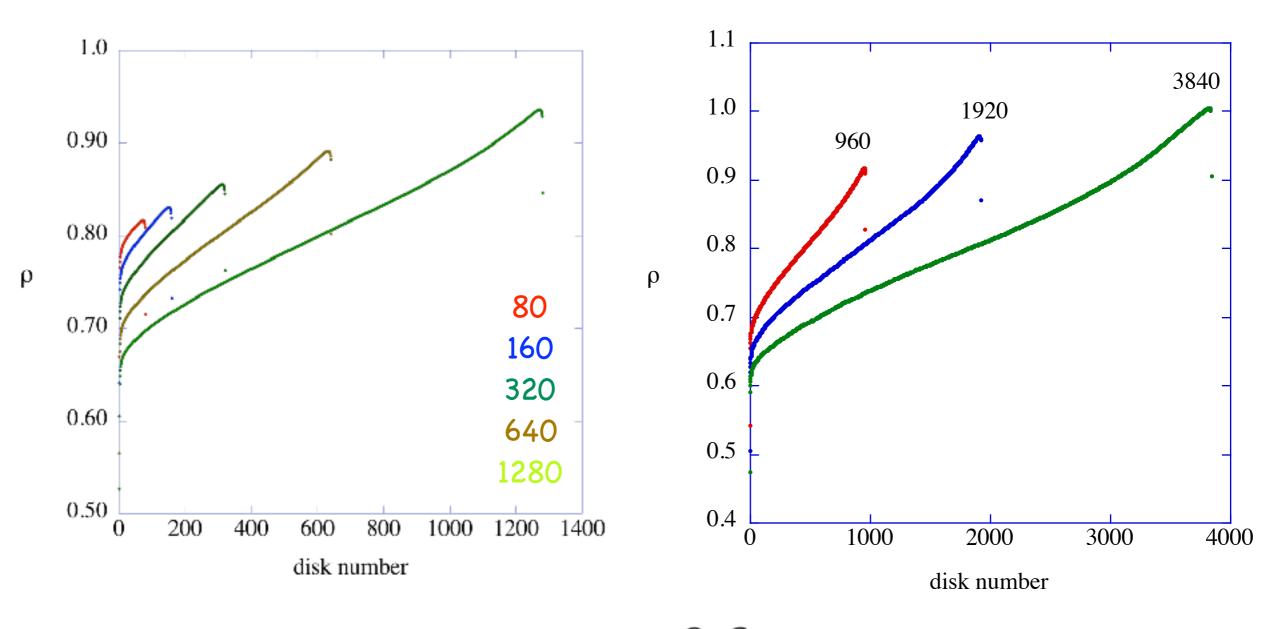
Energy Balance Results – constant gradient

 $\rho = 0.8$

	Kinetic	Potential	Total	Left	Right
Ν	JQx(K)	JQx(P)	JQx	$\Delta e_L/L_y$	$\Delta e_R/L_y$
80	0.037981	0.208039	0.24602	0.24888	0.24888
160	0.053149	0.289119	0.34227	0.34425	0.34424
320	0.075735	0.407122	0.48286	0.48426	0.48425
640	0.11193	0.59120	0.70313	0.70413	0.70413
1280	0.17402	0.89712	1.07114	1.07174	1.07217
2560	0.27940	1.40366	1.68306	1.68335	1.68349

Both kinetic and potential contributions are significant

Density profiles

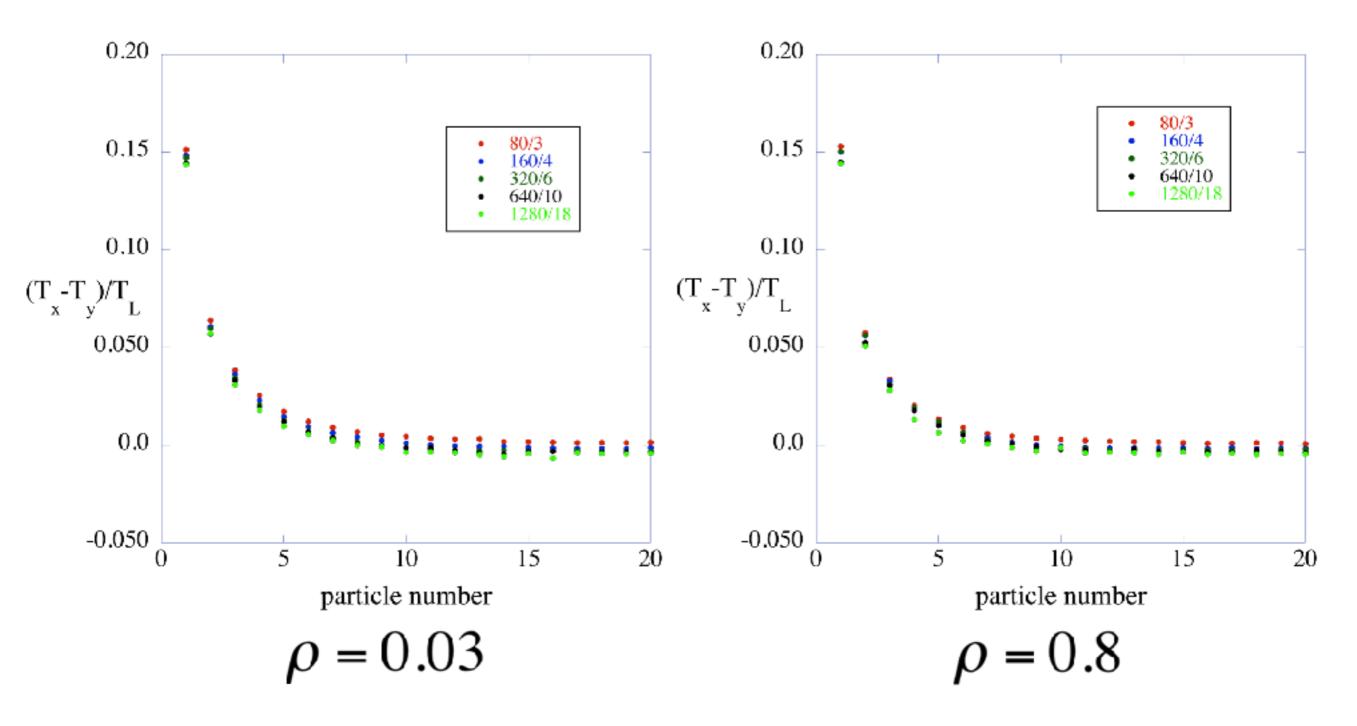


 $\rho = 0.8$

maximum density 1.0628

solidification at cold end for larger N?

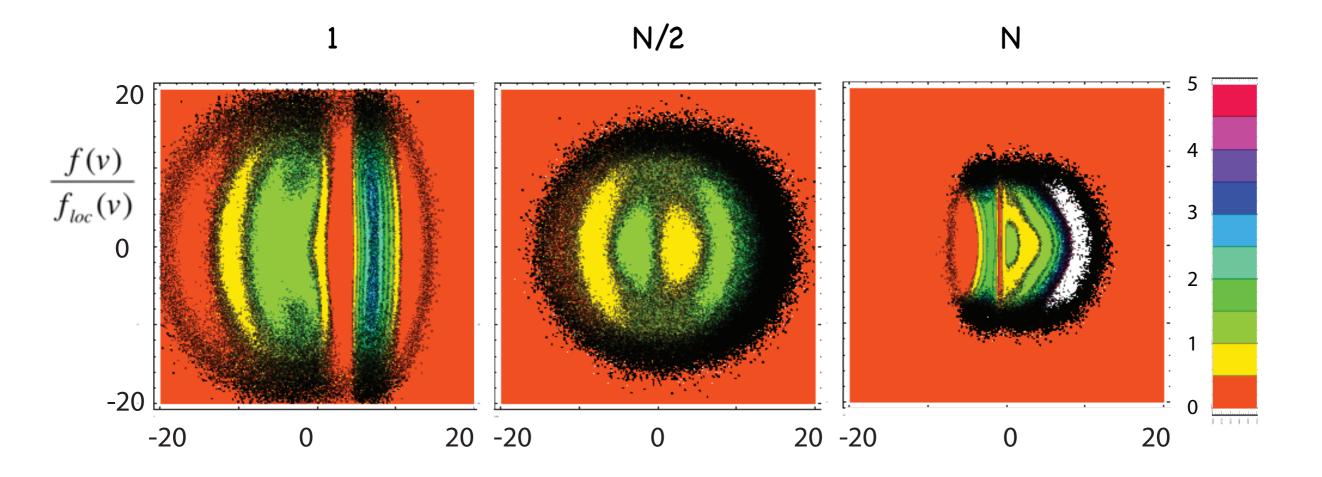
Temperature Difference Profiles



Scales with particle number – independent of density Same as equal reservoir scaling!

N=80 TL=34 TR=2 rho=0.8

Velocity probability density divided by local equilibrium density for particle 1, N/2 and N in a QOD system of N disks connected to two reservoirs with different temperatures



Halo region is where statistics are poor and probabilities vary wildly from point-to-point, Orange is less than one half. White is off scale, greater than 5.

Kinetic Entropy

Entropy Changes

Change in Entropy density

$$s(\mathbf{r},t) = -k\int d\mathbf{v}f\ln f$$

$$\frac{\partial}{\partial t}s(r,t) = -k\frac{\partial}{\partial t}\int d\mathbf{v}f\ln f = -k\int d\mathbf{v}\frac{\partial f}{\partial t}(1+\ln f)$$

Use Boltzmann equation

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} = \left(\frac{\partial f}{\partial t}\right)_{coll} = J[f] \qquad \text{Collision}$$

$$\frac{\partial}{\partial t}s(r,t) = -k\int d\mathbf{v} \left(-\mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + J[f]\right) (1+\ln f)$$
$$= k\frac{\partial}{\partial \mathbf{r}} \cdot \int d\mathbf{v} \mathbf{v} f (1+\ln f) - k\int d\mathbf{v} J[f] (1+\ln f)$$

Entropy Changes

$$\frac{\partial}{\partial t}s(r,t) = k\frac{\partial}{\partial \mathbf{r}} \cdot \int d\mathbf{v}\mathbf{v}f(1+\ln f) - k\int d\mathbf{v}J[f](1+\ln f)$$

$$k\int d\mathbf{v}\mathbf{v}f(1+\ln f) = k\int d\mathbf{v}\mathbf{v}f + k\int d\mathbf{v}\mathbf{v}f\ln f = k\mathbf{u} - \mathbf{j}_s$$
Local fluid velocity
$$\mathbf{u} = \int d\mathbf{v}\mathbf{v}f$$
Entropy flux
$$\mathbf{j}_s = -k\int d\mathbf{v}\mathbf{v}f\ln f$$

$$\frac{\partial}{\partial t}s + \frac{\partial}{\partial \mathbf{r}} \cdot \mathbf{j}_s = -k\int d\mathbf{v} \left(1 + \ln f\right) J[f] = \sigma_{ent}$$

BGK Approximation

Collision operator

Changes in Entropy

$$\frac{\partial s}{\partial t} + \nabla \cdot \mathbf{j}_s = \sigma_{ent}$$

LHS conservation equation

RHS source terms

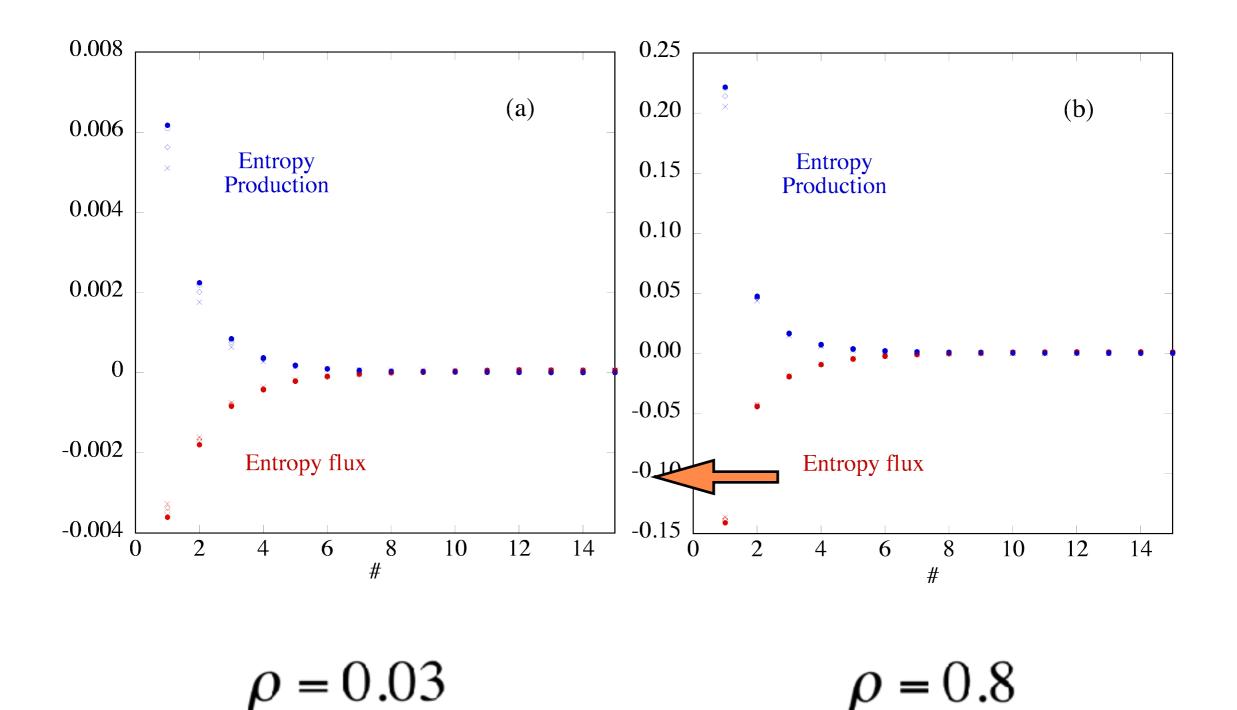
Steady state
$$\frac{\partial s}{\partial t} = 0$$

QOD system

$$\frac{\partial}{\partial x} j_s(x) = \sigma_{ent}(x)$$

Entropy Production and Entropy Flux

Independent of system size - depends on particle #



Simulations Constant external gradient $\rho = 0.8$

N	TL	TR	Lx	В
80	3	2	86.95652	8
160	4	2	173.91304	8
320	6	2	347.82609	8
640	10	2	695.65218	18
960	14	2	1043.47827	20
1280	18	2	1391.30436	16
1920	26	2	2086.95654	16
2560	34	2	2782.60871	18
3840	50	2	4173.91308	16
5120	66	2	5565.21742	24
10240	130	2	11130.43484	24

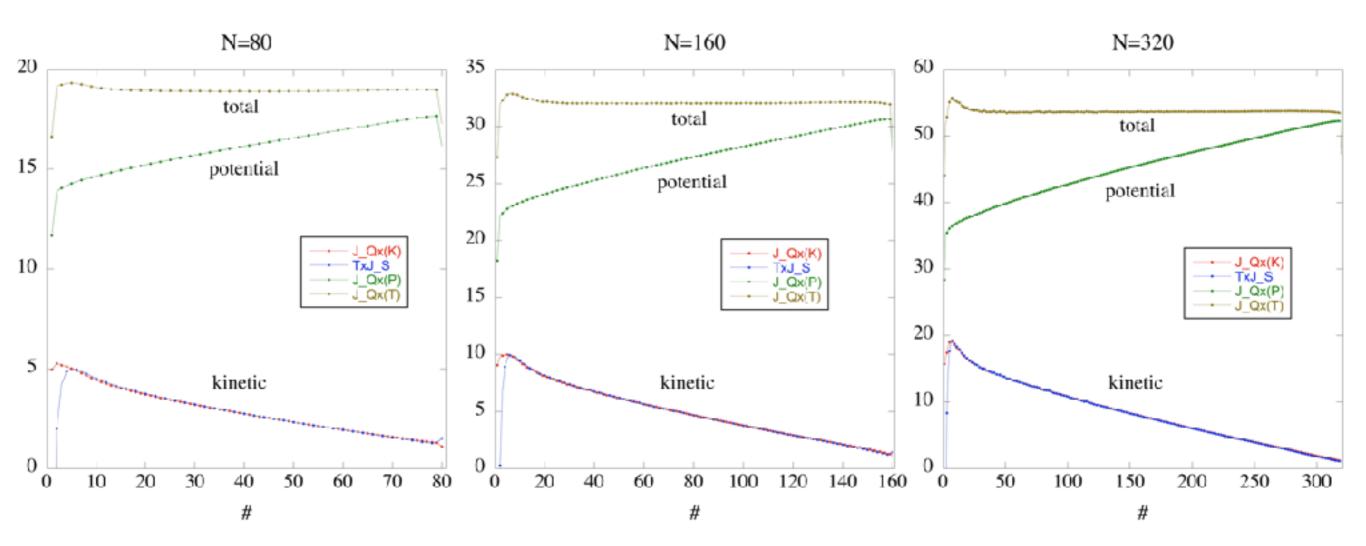
$$\nabla T = \frac{T_R - T_L}{L_x} = \frac{2 - 3}{86.95652} = -0.01150$$

B blocks of 10⁹ collisions

Heat Flux vector

Anomalous thermal conductivity

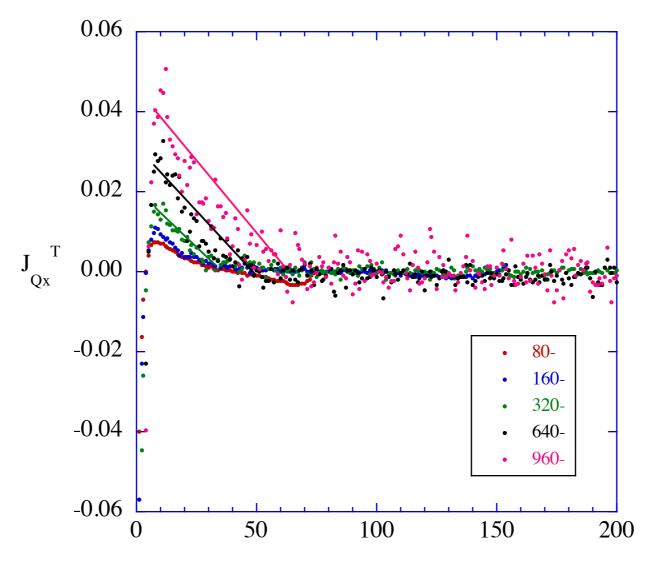
Local Heat Flux same ∇T



Kinetic heat flux vector = T x kinetic Entropy flux $J_Q^K = Tj_s$ $\rho = 0.8$ Total heat flux vector = kinetic + potential $J_Q = J_Q^K + J_Q^P$

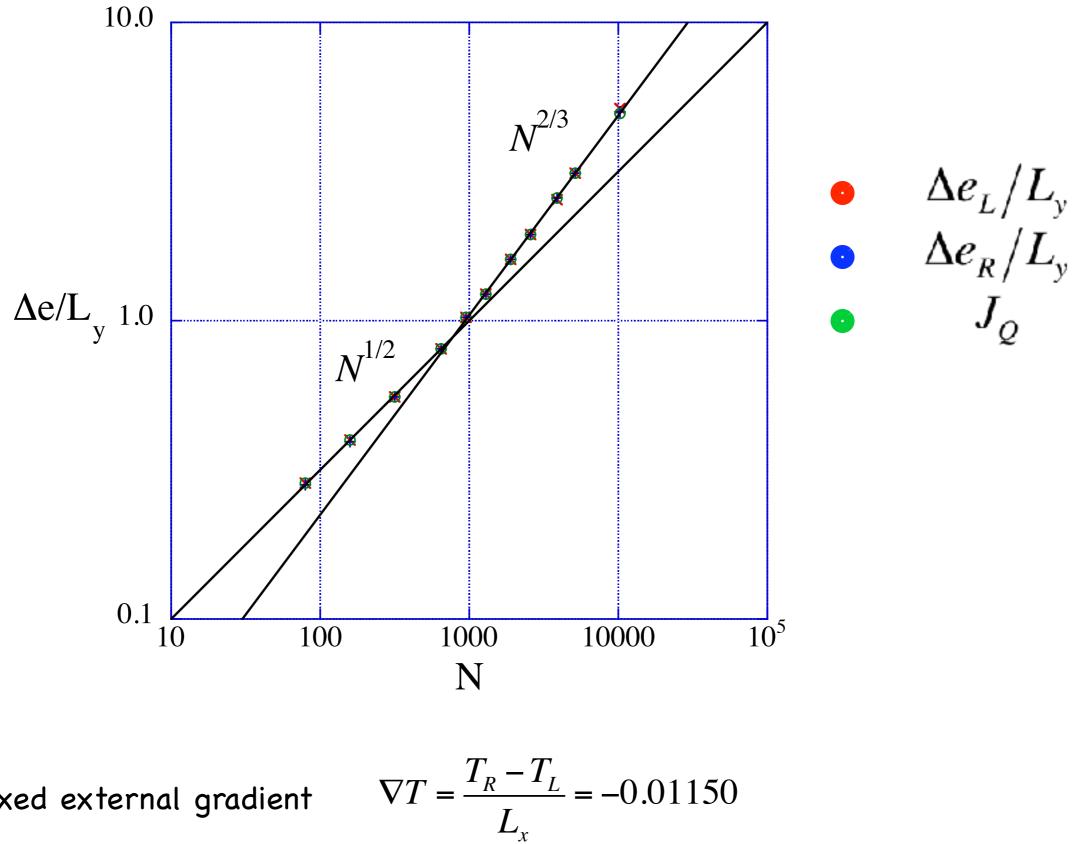
Total heat flux vector is constant across the system $J_Q = \text{constant}$

Energy continuity anomaly



#

N dependence of Heat Flux



Fixed external gradient

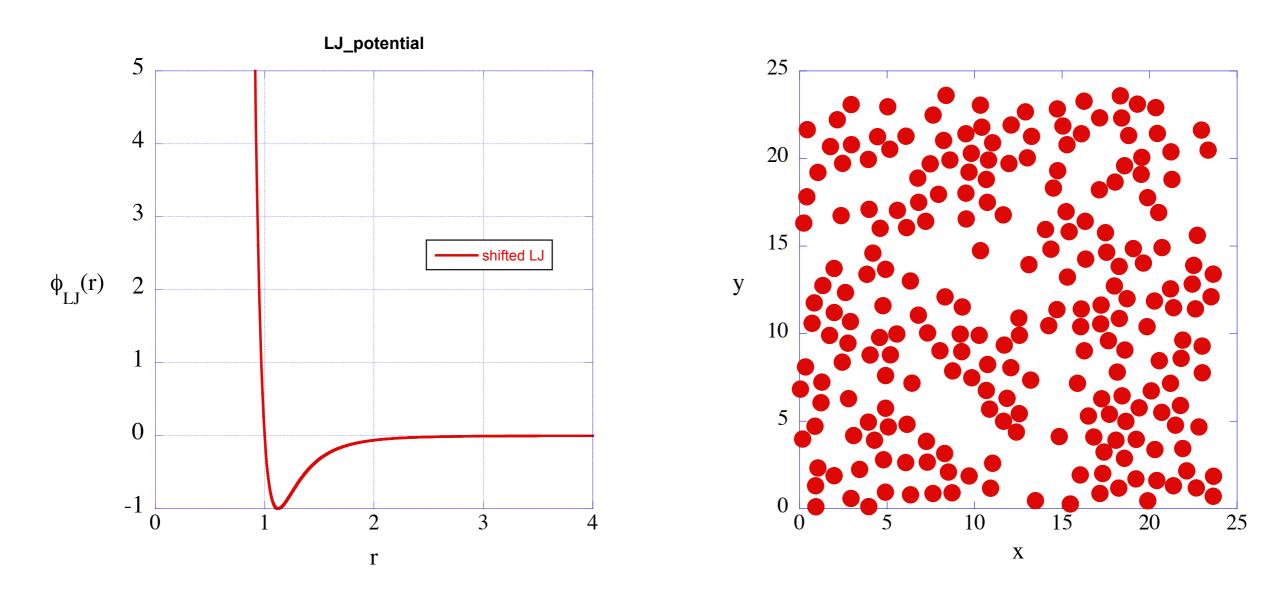
QOD Summary

• Local heat flux vector

- Mechanical energy transfer from a reservoir
- Separation of boundary and bulk effects
- Some nice scaling relations
- No potential contributions to local flux or production entropy

Soft Discs Thermal Conductivity

Constant Heat Flux



Thermal Conductivity

Define 2nd rank quantity $\boldsymbol{\Omega}_{\boldsymbol{i}}$

$$\boldsymbol{\Omega}_i = \boldsymbol{e}_i \mathbf{I} - \frac{1}{2} \sum_j \mathbf{F}_{ij} \mathbf{r}_{ij}$$

$$\overline{\Omega} = \frac{1}{N} \sum_{i} \Omega_{i} = \frac{1}{N} \sum_{i} \left(e_{i} \mathbf{I} - \frac{1}{2} \sum_{j} \mathbf{F}_{ij} \mathbf{r}_{ij} \right) = \overline{e} \mathbf{I} - \frac{1}{2} \overline{\mathbf{Fq}}$$

Heat flux vector is

$$\mathbf{J}_{Q}(t)V = \sum_{i} e_{i}\mathbf{v}_{i} - \frac{1}{2}\sum_{i,j}\mathbf{v}_{i} \cdot \mathbf{F}_{ij}\mathbf{r}_{ij} = \sum_{i} \mathbf{v}_{i} \cdot \boldsymbol{\Omega}_{i}$$

Isokinetic equations of motion

$$\dot{\mathbf{r}}_{i} = \mathbf{v}_{i}$$
$$m\dot{\mathbf{v}}_{i} = \mathbf{F}_{i} + \left(\Omega_{i} - \overline{\Omega}\right) \cdot \lambda(t) - \alpha m \mathbf{v}_{i}$$

