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Quasi-One-Dimensional Hard Disks



Quasi-One-Dimensional system

Left and Right reservoirs at temperatures TL and TR

Reservoir momenta directed outwards  -  

Collisions with the reservoir boundary changed to

1 2 NTL TR

Attach two reservoirs

hard wall

• Typical states: low density 0.03 and high density 0.8

HOT COLD

Ly<2

Ly =1.15



Scaling

Separate bulk effects from boundary effects

Equal Temperature Reservoirs



Equilibrium Temperature Profiles
Tx and Ty as a function of ln(#) for different system sizes


# - particle number

LHS  T gradients indep of N,  T centre decreases with ln(N)
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Temperature

• Centre T decreases with ln(N), characteristic shape.


• Energy input is through x-direction but equilibration with Ty


• Tx-Ty is independent of N and density near reservoirs. Boundary 
effect involving the first 6 to 8 particles.


• Separate boundary effects from bulk effects.


• Understand scaling with system size.

“Equilibrium” QOD Systems



Micro to Macro

Hydrodynamics - fluid element



∂ρ(r, t)
∂t

= −∇⋅ ρ(r, t)u(r, t)[ ]

∂ ρ(r, t)u(r, t)[ ]
∂t

= −∇⋅ ρ(r, t)u(r, t)u(r, t)+P(r, t)[ ]

∂ ρ(r, t)e(r, t)[ ]
∂t

= −∇⋅ ρ(r, t)e(r, t)u(r, t)+ JQ (r, t)+P(r, t) ⋅u(r, t)⎡⎣ ⎤⎦

Mass

Momentum

Energy

Conservation Laws of Hydrodynamics

Momentum density

Energy density

Mass density

Pressure

Heat flux vector

Momentum density



Fluid Element

Vi = LyLi ρi =1 LyLi

At the ends xN+1 = Lxx0 = 0

i i+1i-1

xi−1 xi xi+1

xi+1 + xi
2

xi + xi−1
2

Li =
xi+1 − xi−1

2

Local properties determined by the particle.

Local density



Instantaneous microscopic representation

 of local Fluxes

ρ(r, t) = miδ(r− ri (t))
i
∑

!ri = vi +u(ri, t)

P(r, t) = miviviδ(r− ri )
i
∑ − 1

2 rijFij dλδ(r− ri −λrij )0

1
∫

i, j
∑

JQ (r, t) = Uiviδ(r− ri )
i
∑ − 1

2 rijFij ⋅ (vi +u(ri )−u(r)) dλδ(r− ri −λrij )0

1
∫

i, j
∑

mass density

Pressure tensor

Heat flux vector

Lab velocity = thermal + streaming

Ui = 1
2mvi

2 + 1
2 φijj∑



Energy Flows

kinetic potential

Local heat flux vector

Approximate integral

Heat flux per unit volume



Fixed Temperature Gradient

TR=2

TL = TR −
∇T
ρLy

N

TL changes with N
constant



Temperature Profiles at fixed external gradient

TR=2



Instantaneous microscopic representation

 of total Fluxes

Integrate over volume JQV = Uivi
i
∑ − 1

2 rijFij ⋅vi
i, j
∑

Average heat flux/volume Energy balance

Energy balance Energy entering from reservoir I=L,R

Energy entering from the left is equal and opposite to energy entering from 
the right



N JQx(K) JQx(P) JQx

80 0.037981 0.208039 0.24602 0.24888 0.24888

160 0.053149 0.289119 0.34227 0.34425 0.34424

320 0.075735 0.407122 0.48286 0.48426 0.48425

640 0.11193 0.59120 0.70313 0.70413 0.70413

1280 0.17402 0.89712 1.07114 1.07174 1.07217

2560 0.27940 1.40366 1.68306 1.68335 1.68349

Both kinetic and potential contributions are significant

Energy Balance Results - constant gradient

Kinetic Potential Total Left Right

ΔeR Ly



Density profiles
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Temperature Difference Profiles

Scales with particle number - independent of density

Same as equal reservoir scaling!



Velocity probability density divided by local equilibrium density

for particle 1, N/2 and N in a QOD system of N disks 


connected to two reservoirs with different temperatures

N/21 N

N=80  TL=34  TR=2  rho=0.8

Halo region is where statistics are poor and probabilities vary wildly from point-to-point,

Orange is less than one half. White is off scale, greater than 5.
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Kinetic Entropy



Entropy Changes

Change in Entropy density 

Use Boltzmann 
equation 

Collision 
operator 

s(r, t) = −k dv∫ f ln f



Entropy Changes

Local fluid velocity Entropy flux 



BGK Approximation
Collision operator 

floc has the same 
moments as f 

relaxation 

time



LHS conservation equation

Steady state

Changes in Entropy

RHS source terms

QOD system



Entropy Production and Entropy Flux

Independent of system size - depends on particle #



Constant external gradient

N TL TR Lx B

80 3 2 86.95652 8

160 4 2 173.91304 8

320 6 2 347.82609 8

640 10 2 695.65218 18

960 14 2 1043.47827 20

1280 18 2 1391.30436 16

1920 26 2 2086.95654 16

2560 34 2 2782.60871 18

3840 50 2 4173.91308 16

5120 66 2 5565.21742 24

10240 130 2 11130.43484 24

blocks of 10^9 collisions

Simulations

B



Heat Flux vector

• Continuity


• Anomalous thermal conductivity



Local Heat Flux

Kinetic heat flux vector = T x kinetic Entropy flux

Total heat flux vector is constant across the system

Total heat flux vector = kinetic + potential

same
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N dependence of Heat Flux

∇T = TR −TL
Lx

= −0.01150Fixed external gradient
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QOD Summary

• Local heat flux vector


• Mechanical energy transfer from a reservoir


• Separation of boundary and bulk effects


• Some nice scaling relations


• No potential contributions to local flux or production entropy …..



Soft Discs Thermal Conductivity

Constant Heat Flux
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Ωi = eiI− 1
2 Fijrijj∑

Ω =
1
N

Ωi
i
∑ =

1
N

eiI− 1
2 Fijrijj∑( )

i
∑ = eI− 1

2 Fq

Thermal Conductivity

ΩiDefine 2nd rank quantity

Heat flux vector is

Isokinetic equations of motion

JQ (t)V = eivi
i
∑ − 1

2 vi ⋅Fijrij
i, j
∑ = vi ⋅Ωi

i
∑

!ri = vi
m!vi = Fi + Ωi −Ω( ) ⋅λ(t)−αmvi



Kinetic Heat Flux Vector

2D LJ

T=1

ρ = 0.4

rcut = 3.5
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