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MCMC algorithms

Target measure µ ∝ e−
1
ε
U(x)dx

Ergodic process (Xt)t>0, i.e.

1

t

∫ t

0
f (Xs) ds −→

t→∞

∫
fdµ

Many available possibilities :
I (reversible) overdamped Langevin diffusion:

dXt = −∇U(Xt)dt+
√
2εdBt,

I kinetic Langevin equation:

dXt = Ytdt

dYt = −∇U(Xt)dt− Ytdt+
√
2εdBt,

I Metropolis-Hastings algorithm (propose, accept/reject),
I Hamiltonian Monte-Carlo.

Efficiency criteria:
I asymptotic variance in a Central Limit Theorem.
I Relaxation speed toward equilibrium.
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Stochastic optimization: the simulated annealing algorithm

Problem : minimize a function

in large dimension (or large finite set),

with many local minima.

The gradient descent
dXt = −∇U(Xt)dt

ends up in a local minima.

L(Xt) −→
t→∞

e−
U(x)
ε dx

−→
ε→0

δargminU .

Metastability:
escape time from minima ' e

1
ε

∆U

relaxation rate to equilibrium ' e−
1
ε
E

condition on the cooling schedule εt & E
ln t .
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We should be less Markov

Ergodicity: the time spent between two saddle point crossing should
be equal to the ratio of the probabilities.

We are exploring space with an
amnesic explorer.

Ideas: add some global knowledge, some memory.

Problem: high-dimensional memory (or particles) is numerically
expensive/unmanageable (⇒ reaction coordinates).

Another possibility: only keep an instantaneous memory (= inertia).
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A second order Markov chain: the persistent walk

Diaconis et al. (2000, 2009): to sample the uniform law on {1, . . . , N},

P (Xn+1 −Xn = Xn −Xn−1) =
1 + α

2

P
(
Xn+1 −Xn = − (Xn −Xn−1)

)
=

1− α
2

.

Alone, (Xn)n≥0 is not Markov, but (Xn, Xn−1) is, or (Xn, Yn).

P (Yn+1 = Yn) =
1 + α

2

P (Yn+1 = −Yn) =
1− α
2

Xn+1 = Xn + Yn+1.

Reversible symmetric walk: α = 0. Optimal speed for α = αopt > 0.
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Spectral study

The transition matrix Q is no more symmetric; its spectrum may not be
real anymore, its eigenvectors are not orthogonal anymore. Nevertheless,
explicit computation:

‖et(Q−I) − µ‖L2 = Cα(t)e
−ραt.

For αopt =
1−sin( πN )
1+sin( πN )

,

ραopt = 1−√αopt '
π

2N
.

For the symmetric walk,

ρ0 = 1− cos
π

N
' π2

2N2
.

It took O(N2) steps to mix, and now only O(N) (Nota: the determinisitc
computation of an integral is done in exactly N steps).
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Scaling limit
Limit N →∞, with a rate of order N and 1−α

2 of order 1
N :

(X,Y ) Markov process, where X ∈ T and Y = ±1
dXt = Ytdt (kinetic process)

Y jumps to −Y at rate a > 0 (PDMP, piecewise deterministic
Markov process)

Uniform equilibrium µ, and generator

Lf(x, y) = y∂xf(x, y) + a (f(x,−y)− f(x, y)) .

Again a spectral study is possible; for instance, for aopt = 1,

‖etL − µ‖ = e−t
√√√√1 +

2√
1 + 1

t2
− 1

Remark: a = 0 ⇒ no cv, but

∣∣∣∣1t
∫ t

0
f(x+ s)ds−

∫
fdµ

∣∣∣∣ 6 c

t
.
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Pierre Monmarché (CERMICS) Piecewise deterministic sampling and annealing 27/04/2017 7 / 22



Scaling limit
Limit N →∞, with a rate of order N and 1−α

2 of order 1
N :

(X,Y ) Markov process, where X ∈ T and Y = ±1
dXt = Ytdt (kinetic process)

Y jumps to −Y at rate a > 0 (PDMP, piecewise deterministic
Markov process)

Uniform equilibrium µ, and generator

Lf(x, y) = y∂xf(x, y) + a (f(x,−y)− f(x, y)) .

Again a spectral study is possible; for instance, for aopt = 1,

‖etL − µ‖ = e−t
√√√√1 +

2√
1 + 1

t2
− 1

'
t→∞

2te−t

Remark: a = 0 ⇒ no cv, but

∣∣∣∣1t
∫ t

0
f(x+ s)ds−

∫
fdµ

∣∣∣∣ 6 c

t
.
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With a potential

Specifications:

(X,Y ) Markov on R× {±1}
dX = Y dt

equilibrium µ = e−U(x)dxdy

Only choice: the jump rate. Solution: x 7→ a(x) > 0 arbitrary,

λ(x, y) =
(
yU ′(x)

)
+
+ a(x).

In other words, if E is a standard exponential r.v., next jump at

T = inf

{
t > 0, E >

∫ t

0
λ(Xs, Ys)ds

}
.
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The minimal jump rate

If a = 0, λ(x, y) = (yU ′(x))+; since y = x′,∫ t

0
λ(Xs, Ys)ds = U(Xt)− U(X0) as long as we climp up

= 0 as long as we fall down.
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With a supplementary rate

For a 6= 0, it’s the same, except that random jumps are added which do
not depend on the velocity.
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In higher dimension

We want to keep the same rate:

λ(x, y) = (y · ∇U(x))+.

To target µ, a necessary and sufficient condition is that, at a jump,

Y · ∇U(X) ← −Y · ∇U(X).

For instance:

Q(x, y, ·) = δ−y

Q(x, y, ·) = δy∗ with

y∗ = y − 2
y · ∇U(x)

|∇U(x)|2
∇U(x).

Not ergodic in general!
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In higher dimension

At constant rate, the velocity can be (uniformly) refreshed. Ultimately,

Lf(x, y) = y∇xf(x, y) + (y · ∇U(x))+ (f(x, y∗)− f(x, y))

+r

(∫
Sd−1

f(x, z)dz − f(x, y)
)
.

ergodic with equilibrium µ = e−Udxdz.

kinetic, non-reversible

PDMP

, no discretization needed thanks to a thining method:

(y · ∇U(x))+ (f(x, y∗)− f(x, y))
= ‖∇U‖∞ (pf(x, y∗) + (1− p) f(x, y)− f(x, y)) .

with p = (y · ∇U(x))+ /|∇U‖∞.
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Pierre Monmarché (CERMICS) Piecewise deterministic sampling and annealing 27/04/2017 12 / 22



In higher dimension

At constant rate, the velocity can be (uniformly) refreshed. Ultimately,

Lf(x, y) = y∇xf(x, y) + (y · ∇U(x))+ (f(x, y∗)− f(x, y))

+r

(∫
Sd−1

f(x, z)dz − f(x, y)
)
.

ergodic with equilibrium µ = e−Udxdz.

kinetic, non-reversible

PDMP, no discretization needed thanks to a thining method:

(y · ∇U(x))+ (f(x, y∗)− f(x, y))
= ‖∇U‖∞ (pf(x, y∗) + (1− p) f(x, y)− f(x, y)) .

with p = (y · ∇U(x))+ /|∇U‖∞.
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Velocity jump processes

Miclo, M. (2012, Volte-Face, 2013, 2016)

Peters, de With (2012, Rejection-free Metropolis Hastings, y ∈ Rd
with Gaussian refreshments; event-driven MC in physics litterature,
Michel, Kapfer, Krauth 2013 by ex.), Bouchard-Côté, Vollmer,
Doucet (2016, 2017, bouncy particle sampler)

Fontbona, Guérin, Malrieu (2012, 2016, integrated telegraph process)

Calvez, Raoul, Schmeiser (2016, run-and-tumble process, bacterial
chemotaxis, non-explicit equilibrium, y ∈ [−1, 1]).

Bierkens, Fearnhead, Roberts (2016, Zig-zag process, y ∈ {−1,+1}d)
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Doucet (2016, 2017, bouncy particle sampler)
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What kind of results do we have ?

To compare different dynamics (overdamped or kinetic Langevin, PDMP
sampler), we have:

empirical results (molecular dynamics; Bayesian statistics)

precise theoretical results for toy models (dimension 1, uniform or
gaussian measure;Hwang, Hwang-Ma, Sheu 2005, Lelièvre, Nier,
Pavliotis, 2013, Guillin, M. 2016, Ottobre, Pillai, Spiliopoulos 2017)

asymptotics theoretical results (small temperature in metastable
settings)
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Metastability

Replace U by 1
εU , with minimal rate λ(x, y) = 1

ε (y∇U(x))+.

Theorem (Eyring-Kramers formula)

In dimension 1, let τ = inf{s > 0, Xs = x1 | X0 = x0}. Then

E [τ ] '
ε→0

√
8πε

U ′′(x0)
e
U(x1)−U(x0)

ε

P (τ ≥ tE [τ ]) −→
ε→0

e−t.

Theorem (annealing)

With a cooling schedule (εt)t>0, NSC for the annealing:

∀δ > 0 lim
t→∞

P
(
U(Xt) < min

R
U + δ

)
= 1 ⇔

∫ ∞
0

(εs)
− 1

2 e−
E∗
εs ds =∞.
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Sketch of the proof for the EK formula

E [τ ] = E [duration of a failed attempt to escape]

× E [number of failure] ×
(
1 + o

ε→0
(1)
)
.

As far as the second term is concerned,

P (escape in one shot) = PE(1) (εE ≥ U(x1)− U(x0)) = e−
U(x1)−U(x0)

ε .

For the first one, if δ > 0 is small enough,∫ δ

0

t

ε

(
−U ′(x0 − t)

)
e−

U(x0−t)−U(x0)
ε dt =

√
πε

2U ′′(x0)

(
1 + o

ε→0
(1)
)
.

Remark: with a supplementary rate a 6= 0, one gets

P (escape in one shot) =
e−

U(x1)−U(x0)
ε

1 +
∫ x1
x0
a(z)e−

U(x1)−U(z)
ε dz

.
ε→0

e−
U(x1)−U(x0)

ε .
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Sketch of the proof for the annealing algorithm

Regardless of X0 et t0, there is a positive probability that the process
reaches x0 after the time t0. The question is: does it succeed in escaping ?

Suppose the temperature is kept constant during one attempt,

P(success of the kth attempt) = e
− E
εk .

The result is then mainly the consequence of the Eyring-Kramers and of
the Borel-Cantelli Theorem.
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Metastability in higher dimension
The study is restricted to the compact (periodic) case. Denote
Z = (X,Y ) and

‖ν1 − ν2‖1 = inf
Zi∼νi

P (Z1 6= Z2) .

Theorem
1 There exist θ, c, t0 > 0 which depend only on the potential U , the

rate r and the dimension d such that

‖L (Zt)− L (Z∞)‖1 ≤ e
−ce

−θ
ε (t−t0) ‖L (Z0)− L (Z∞)‖1 .

2 For the annealing, if d
dt

(
1
εt

)
≤ 1

(θ+η)t with η > 0 then ∀δ > 0

P (U(Xt) > minU + δ) −→
t→∞

0.

Proof: couplings.
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Some remarks

The NSC in dimension 1 implies
I if εt ≥ c

ln(1+t) with c > E∗, the algorithm converges,
I if εt ≤ c

ln(1+t) with c < E∗, it may fail.

The SC in higher dimension implies
I if εt ≥ c

ln(1+t) with c > θ, the algorithm converges.

Bad news: not faster than the overdamped Langevin diffusion, same
metastability (short memory).

Good news: as fast as the overdamped Langevin diffusion, and
simpler to compute (”exact” computation, no MH-step needed).

Anyway, at this scale (never reached in practice), all local Markov
dynamics perform the same.

Another question: how do you chose the radius of the ball (i.e. the scalar
velocity of the process) ? Or, in the Gaussian case, the variance at
equilibrium of the velocity ?
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Some remarks

Same question for the kinetic Langevin equation:

dXt = Ytdt

dYt = −ν∇U (Xt) dt− 1

ν
Ytdt+

√
2dBt,

with equilibrium e−U(x)− |y|
2

2ν dxdy. Calibrate ν ?

When U(x) = 1
2λ|x|

2, νopt = (4λ)−
1
3 with convergence rate

(
1
2λ
) 1

3 .
By comparison, the rate of convergence of

dXt = −λXtdt+
√
2dBt

is λ, which is better than (λ/2)
1
3 if and only if λ > 1√

2
.
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Some remarks

Too much inertia kills inertia (example of the kinetic diffusion; or
Gadat-Panloup 2012 on long-term memory gradient).

However, the escape time from local traps may be as small as we
want.

Problem: entropic barrier.

Short-term memory (and more generally non-reversible sampling) can
be used together with global and long-memory methods
(Wang-Landau, ABF, metadynamics, etc.)
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Pierre Monmarché (CERMICS) Piecewise deterministic sampling and annealing 27/04/2017 21 / 22



Some references
V. Calvez, G. Raoul, and C. Schmeiser.
Confinement by biased velocity jumps: aggregation of escherichia coli.
Kinet. Relat. Models, 8(4):651–666, 2015.
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