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MCMC algorithms

@ Target measure i1 x e —: U@ gy
e Ergodic process (X¢)i>o, i-e.

/f ds [ e
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MCMC algorithms

o Target measure 1 < e =V @dg
e Ergodic process (X¢)¢>o, i-e.

/f ds [ e

@ Many available possibilities :
» (reversible) overdamped Langevin diffusion:

dX, = —VU(X,)dt + v2¢dB,,
» kinetic Langevin equation:
dX;, = Ydt
dY; = —VU(X;)dt - Y;dt + v2edB,

» Metropolis-Hastings algorithm (propose, accept/reject),
» Hamiltonian Monte-Carlo.
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MCMC algorithms

o Target measure 1 e~ U@dg
e Ergodic process (X¢)¢>o, i-e.

/f ds [ e

@ Many available possibilities :
> (reversible) overdamped Langevin diffusion:

dX, = —VU(X,)dt + V2edB;,
» kinetic Langevin equation:
dX;, = Ydt
dY; = —VU(X;)dt — Yidt + v2edB,,

» Metropolis-Hastings algorithm (propose, accept/reject),
» Hamiltonian Monte-Carlo.
o Efficiency criteria:
» asymptotic variance in a Central Limit Theorem.
» Relaxation speed toward equilibrium.
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Stochastic optimization: the simulated annealing algorithm

Problem : minimize a function
@ in large dimension (or large finite set),

@ with many local minima.

Native Structure

The gradient descent
dX; = —VU(X,;)dt

ends up in a local minima.
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Stochastic optimization: the simulated annealing algorithm

Problem : minimize a function
@ in large dimension (or large finite set),

@ with many local minima.

Native Structure

The overdamped Langevin diffusion
dX, = —VU(X,)dt + V2:dB,

will eventually escape from any local minima.

_U@)
LX) — e = dr

t—o00
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Stochastic optimization: the simulated annealing algorithm

Problem : minimize a function
@ in large dimension (or large finite set),

@ with many local minima.

Native Structure

The overdamped Langevin diffusion
dX, = —VU(X,)dt + V2edB,

will eventually escape from any local minima.

_ U@
E(Xt) 7 e = dzx ? 6a'rgminU-
t—o00 e—0
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Stochastic optimization: the simulated annealing algorithm

Problem : minimize a function
@ in large dimension (or large finite set),

@ with many local minima.

Native Structure

The overdamped Langevin diffusion
dX, = —~VU(X,)dt + V2edB,

will eventually escape from any local minima.

_U(=)
E(Xt) — e = dzx — 6argminU-
t—00 e—0
. . 1
escape time from minima ~ AU
. . G . _1
Metastability: relaxation rate to equilibrium e b

condition on the cooling schedule ¢y 2 %
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We should be less Markov

o Ergodicity: the time spent between two saddle point crossing should
be equal to the ratio of the probabilities.
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We should be less Markov

o Ergodicity: the time spent between two saddle point crossing should
be equal to the ratio of the probabilities.

g

o We are exploring space with an ’@
amnesic explorer.
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We should be less Markov

o Ergodicity: the time spent between two saddle point crossing should
be equal to the ratio of the probabilities.

&

We are exploring space with an «;@
amnesic explorer.

o ldeas: add some global knowledge, some memory.
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We should be less Markov

o Ergodicity: the time spent between two saddle point crossing should
be equal to the ratio of the probabilities.

We are exploring space with an
amnesic explorer.

o ldeas: add some global knowledge, some memory.

@ Problem: high-dimensional memory (or particles) is numerically
expensive/unmanageable (= reaction coordinates).
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We should be less Markov

o Ergodicity: the time spent between two saddle point crossing should
be equal to the ratio of the probabilities.

We are exploring space with an
amnesic explorer.

o ldeas: add some global knowledge, some memory.

@ Problem: high-dimensional memory (or particles) is numerically
expensive/unmanageable (= reaction coordinates).

@ Another possibility: only keep an instantaneous memory (= inertia).
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A second order Markov chain: the persistent walk

Diaconis et al. (2000, 2009): to sample the uniform law on {1,..., N},

1+«

]P)(Xn—l—l_Xn:Xn_Xn—l) - 9
11—«
P(Xpt1— Xp=—(Xpn— Xp1)) = R
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A second order Markov chain: the persistent walk

Diaconis et al. (2000, 2009): to sample the uniform law on {1,..., N},

1+a
P (Xn+1 - Xn = Xn - Xn—l) = 2
l1-a
P(Xog1 = Xn = ~(Xn = Xn1)) = —5—
—_——

Yo

Alone, (X,,)n>0 is not Markov, but (X, X;,—1) is, or (Xy,Yy,).

1+«
P(Yp1 =Y, = >
-«
P (Yn-‘rl = _Yn) = 9
Xn+1 = Xp+ Yn+1-
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A second order Markov chain: the persistent walk

Diaconis et al. (2000, 2009): to sample the uniform law on {1,..., N},

1+a
P(Xn—i-l - Xn = Xn - Xn—l) = 2
l1-a
P(Xog1 = Xn = ~(Xn = Xn1)) = —5—
—_——

Yo

Alone, (X,,)n>0 is not Markov, but (X, X;,—1) is, or (Xy,Yy,).

1+«
P(Yp1 =Y, = >
-«
P (Yn-‘rl = _Yn) = 9
Xn+1 = Xp+ Yn+1-

Reversible symmetric walk: o = 0. Optimal speed for o = appr > 0.
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Spectral study

The transition matrix (Q is no more symmetric; its spectrum may not be

real anymore, its eigenvectors are not orthogonal anymore. Nevertheless,
explicit computation:

”et(Q—I) _

— il g2

Ca(t)e Pt

™
Paoy. = 1= /Qopt = 5.
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Spectral study

The transition matrix () is no more symmetric; its spectrum may not be

real anymore, its eigenvectors are not orthogonal anymore. Nevertheless,
explicit computation:

197D —pll 2 = Calt)e =",

™

Poopt = 1= /aopt =~ IN

For the symmetric walk,

) v w2
—CoS — ~ ——.
N 2N?2

Po

It took O(N?) steps to mix, and now only O(N) (Nota: the determinisitc
computation of an integral is done in exactly N steps).
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Scaling limit

Limit N — oo, with a rate of order N and 12
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Scaling limit
Limit N — oo, with a rate of order N and 15 of order - e
e (X,Y) Markov process, where X € T and Y =+1
e dX; = Ydt (kinetic process)
@ Y jumps to —Y at rate a > 0 (PDMP, piecewise deterministic
Markov process)
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Scaling limit
Limit N — oo, with a rate of order N and 15 of order - e
e (X,Y) Markov process, where X € T and Y =+1
e dX; = Ydt (kinetic process)
@ Y jumps to —Y at rate a > 0 (PDMP, piecewise deterministic
Markov process)

Uniform equilibrium g, and generator

Lf(l‘vy) = y@xf(:v,y)+a(f(x,—y)—f(:l:,y))

Again a spectral study is possible; for instance, for a,,; = 1,

_ 2 t3

Jet =l = et |14 ———— = 1-=
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Scaling limit
Limit N — oo, with a rate of order N and 15 of order - e
e (X,Y) Markov process, where X € T and Y =+1
e dX; = Ydt (kinetic process)
@ Y jumps to —Y at rate a > 0 (PDMP, piecewise deterministic
Markov process)

Uniform equilibrium g, and generator

Lf(l‘vy) = y@xf(:v,y)+a(f(x,—y)—f(:l:,y))

Again a spectral study is possible; for instance, for a,,; = 1,

2
Tl —— ~ 2te”!

t—o00
—1

L
le — ull =
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Scaling limit
Limit N — oo, with a rate of order N and 15 of order - e
e (X,Y) Markov process, where X € T and Y =+1
e dX; = Ydt (kinetic process)
@ Y jumps to —Y at rate a > 0 (PDMP, piecewise deterministic
Markov process)

Uniform equilibrium g, and generator

Lf(l‘vy) = y@xf(:v,y)+a(f(x,—y)—f(:l:,y))

Again a spectral study is possible; for instance, for a,,; = 1,

2
et —pl| = et |14+ ——-— ~ 2e!
1+tl2 1 t—o0
1 [t c
Remark: a =0 = no cv, but n fle+s)ds— [ fdu| < e
0
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With a potential

Specifications:

e (X,Y) Markov on R x {£1}
o dX =Ydt
o equilibrium g = e V@ dzdy
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With a potential

Specifications:

e (X,Y) Markov on R x {£1}
e dX =Ydt
o equilibrium g = e V@ dzdy

Only choice: the jump rate. Solution: = — a(z) > 0 arbitrary,

Mz,y) = (yU'(ac))Jr + a(x).

In other words, if ' is a standard exponential r.v., next jump at

t
T = inf{t>0, E>/ A(Xs,Ys)ds}.
0
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The minimal jump rate

If a =0, Az,y) = (yU/(m))+; since y = 7/,

¢
/ AMXs,Ys)ds = U(Xy) —U(Xp)  as long as we climp up
0

=0 as long as we fall down.
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The minimal jump rate

If a =0, ANz,y) = (yU'(x))4+; since y = 2,

¢
/ AMXs,Ys)ds = U(Xy) —U(Xp)  as long as we climp up
0

=0 as long as we fall down.

e6

e5 e4 €3

Pierre Monmarché (CERMICS) Piecewise deterministic sampling and anneali 27/04/2017 9 /22



The minimal jump rate

If a =0, ANz,y) = (yU'(x))4+; since y = 2,

¢
/ AMXs,Ys)ds = U(Xy) —U(Xp)  as long as we climp up
0

=0 as long as we fall down.
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With a supplementary rate

For a # 0, it's the same, except that random jumps are added which do
not depend on the velocity.

Pierre Monmarché (CERMICS)

Piecewise deterministic sampling and anneali

27/04/2017

10 / 22



In higher dimension

We want to keep the same rate:

Az,y) = (y-VU(2))+-
To target 1, a necessary and sufficient condition is that, at a jump,

Y -VU(X) « -Y-VU(X).
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In higher dimension

We want to keep the same rate:
Mz,y) = (y-VU(2))+.
To target 1, a necessary and sufficient condition is that, at a jump,
Y -VU(X) «+ Y -VUX).

For instance:

@ Q(l‘a Y, ) = 5—3/
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In higher dimension

We want to keep the same rate:
Mz,y) = (y-VU(2))+.
To target 1, a necessary and sufficient condition is that, at a jump,
Y -VU(X) «+ Y -VUX).

For instance:

° Q(l‘ayv ) = 5—3/ Dz
° Q(z,y,-) = 0y, with
_ Ly VU()
Y = Y 2—|VU(:U)|2 VU (z).
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In higher dimension

We want to keep the same rate:
Mz,y) = (y-VU(2))+.
To target 1, a necessary and sufficient condition is that, at a jump,
Y -VU(X) «+ Y -VUX).

For instance:

@ Q(l‘ayv ) = 5—3/ s
° Q(xay7) = ‘Sy* with
Ly VU()
b=y = 2igpp VU@

Not ergodic in general!
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In higher dimension

At constant rate, the velocity can be (uniformly) refreshed. Ultimately,

Lf(z,y) = yVof(z,y)+(y-VU(2)) (f(z,y:) — fz,9))
+7r (/Sd_l fz,2z)dz — f(x,y)) :
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In higher dimension

At constant rate, the velocity can be (uniformly) refreshed. Ultimately,

Lf(z,y) = yVaof(z,y)+ @y -VU()); (f(@ ) = f(z,9))
+7r </Sd—1 fz,2z)dz — f(at,y)) :

e ergodic with equilibrium 1 = e~Ydzdz.
@ kinetic, non-reversible
o PDMP
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In higher dimension

At constant rate, the velocity can be (uniformly) refreshed. Ultimately,
Lf(z,y) = yVof(z,y)+(y- VU (@), (f(2,9:) — f(2,y))
+r < fz,2z)dz — f(:v,y)) .
Sd-1
e ergodic with equilibrium 1 = e~Ydzdz.

@ kinetic, non-reversible

@ PDMP, no discretization needed thanks to a thining method:
= VUl (pf (2, 94) + (L = p) fz,9) = f(,9)).
with p = (y - VU(2)), /|VU] .
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In higher dimension

At constant rate, the velocity can be (uniformly) refreshed. Ultimately,
Lf(z,y) = yVof(z,y)+(y- VU (@), (f(2,9:) — f(2,y))
wr( [ f@on@) - ).
e ergodic with equilibrium p = e=Ydzy(dy).

@ kinetic, non-reversible

@ PDMP, no discretization needed thanks to a thining method:
= VUl (pf (2, 94) + (L = p) fz,9) = f(,9)).
with p = (y - VU(2)), /|VU] .
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Velocity jump processes

e Miclo, M. (2012, Volte-Face, 2013, 2016)
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Velocity jump processes

e Miclo, M. (2012, Volte-Face, 2013, 2016)

o Peters, de With (2012, Rejection-free Metropolis Hastings, y € R?
with Gaussian refreshments; event-driven MC in physics litterature,
Michel, Kapfer, Krauth 2013 by ex.), Bouchard-Cété, Vollmer,
Doucet (2016, 2017, bouncy particle sampler)
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Velocity jump processes

e Miclo, M. (2012, Volte-Face, 2013, 2016)

o Peters, de With (2012, Rejection-free Metropolis Hastings, y € R?
with Gaussian refreshments; event-driven MC in physics litterature,
Michel, Kapfer, Krauth 2013 by ex.), Bouchard-Cété, Vollmer,
Doucet (2016, 2017, bouncy particle sampler)

e Fontbona, Guérin, Malrieu (2012, 2016, integrated telegraph process)

e Calvez, Raoul, Schmeiser (2016, run-and-tumble process, bacterial
chemotaxis, non-explicit equilibrium, y € [—1,1]).
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Velocity jump processes

e Miclo, M. (2012, Volte-Face, 2013, 2016)

o Peters, de With (2012, Rejection-free Metropolis Hastings, y € R?
with Gaussian refreshments; event-driven MC in physics litterature,
Michel, Kapfer, Krauth 2013 by ex.), Bouchard-Cété, Vollmer,
Doucet (2016, 2017, bouncy particle sampler)

e Fontbona, Guérin, Malrieu (2012, 2016, integrated telegraph process)

e Calvez, Raoul, Schmeiser (2016, run-and-tumble process, bacterial
chemotaxis, non-explicit equilibrium, y € [—1,1]).

o Bierkens, Fearnhead, Roberts (2016, Zig-zag process, y € {—1,+1}%)
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What kind of results do we have 7

To compare different dynamics (overdamped or kinetic Langevin, PDMP
sampler), we have:

e empirical results (molecular dynamics; Bayesian statistics)
@ precise theoretical results for toy models (dimension 1, uniform or
gaussian measure;Hwang, Hwang-Ma, Sheu 2005, Lelievre, Nier,

Pavliotis, 2013, Guillin, M. 2016, Ottobre, Pillai, Spiliopoulos 2017)

@ asymptotics theoretical results (small temperature in metastable
settings)
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Metastability
Replace U by 1U, with minimal rate A(z,y) = 1 (yVU(2)).,.

Theorem (Eyring-Kramers formula)

In dimension 1, let T = inf{s > 0, X, =21 | Xo = xo}. Then

8me  U(z)-U(zg)
]E[T] =0 U”(.”Eo)e :
P (7 > tE[r]) = et
E—r
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Metastability
Replace U by 1U, with minimal rate A(z,y) = 1 (yVU(2)).,.

Theorem (Eyring-Kramers formula)

In dimension 1, let T = inf{s > 0, X, =21 | Xo = xo}. Then

8me U(zy)—=U(zq)
]E[T] =0 U”(on)e -
P (7 > tE[r]) = et
e—

Theorem (annealing)

With a cooling schedule (¢¢)¢>0, NSC for the annealing:

Vo >0 lim P <U(Xt) < minU + 5) =1 < / (55)_% e % ds = oo.
t—o0 R 0
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Sketch of the proof for the EK formula

E[r] = E[duration of a failed attempt to escape]

x [ [number of failure] x (1 + o (1)) .
e—0
As far as the second term is concerned,
_U(z1)-U(zq)

PP (escape in one shot) = Pg(y) (eE > U(x1) — U(zo)) =€ :

For the first one, if § > 0 is small enough,

0
t , _U(zg=t)=U(zg) B TE
/0 B (=U'(zg—1))e E dt = 07 () (1 + 530(1)) .
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Sketch of the proof for the EK formula

E[r] = E[duration of a failed attempt to escape]
x E [number of failure] x (1 + o (1)) .
e—0

As far as the second term is concerned,

_ _ UG-G
PP (escape in one shot) = Pg(yy (€E > U(x1) — U(xo)) = € -

€

For the first one, if § > 0 is small enough,

5
t , _ Ulzg=t)=U(zp) B TTE
/0 B (=U'(zg—1))e E dt = 207 (o) (1 + 630(1)) .

Remark: with a supplementary rate a # 0, one gets

_U(=1)-U(zq)
&

IP (escape in one shot) =

_U1)-U(2)

1+ [ a(2)e = dz
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Sketch of the proof for the EK formula

E[r] = E[duration of a failed attempt to escape]
x E [number of failure] x (1 + o (1)) .
e—0

As far as the second term is concerned,

_ _ UG-G
PP (escape in one shot) = Pg(yy (€E > U(x1) — U(xo)) = € -

€

For the first one, if § > 0 is small enough,

5
t , _ Ulzg=t)=U(zp) B TTE
/0 B (=U'(zg—1))e E dt = 207 (o) (1 + 630(1)) .

Remark: with a supplementary rate a # 0, one gets
_U(=1)-U(zq) Ve (an)
. (& € _U(zy)=Ulzg
IP (escape in one shot) = < .

“U@)-UGR) ~ € :

1+ [ a(2)e = dz >0
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Sketch of the proof for the annealing algorithm

Regardless of X et tg, there is a positive probability that the process
reaches x( after the time ¢3. The question is: does it succeed in escaping ?

Suppose the temperature is kept constant during one attempt,

_E
P(success of the k' attempt) = e .

The result is then mainly the consequence of the Eyring-Kramers and of
the Borel-Cantelli Theorem.
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Metastability in higher dimension

The study is restricted to the compact (periodic) case. Denote
Z =(X,Y) and

1 = el = inf P(Z1 # Z2).

Theorem

@ There exist 0, c,tg > 0 which depend only on the potential U, the
rate r and the dimension d such that

;9
1£(Ze) = £ (Zso)lly < €7 = 0 |IL(Zo) — L (Zoo)y -
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Metastability in higher dimension

The study is restricted to the compact (periodic) case. Denote
Z=(X,Y) and

”V1 — l/g”l = inf P(Zl 7é ZQ) .
Zi~ov;
Theorem

@ There exist 0, c,tg > 0 which depend only on the potential U, the
rate r and the dimension d such that

;9
1£(Ze) = £ (Zso)lly < €7 = 0 |IL(Zo) — L (Zoo)y -

@ For the annealing, if% (%) < m with n > 0 then Y6 > 0

P(U(Xt) > minU + 0) b 0.
(e}

Pierre Monmarché (CERMICS) Piecewise deterministic sampling and anneali

27/04/2017 18 / 22



Metastability in higher dimension

The study is restricted to the compact (periodic) case. Denote
Z=(X,Y) and

”V1 — l/g”l = inf P(Zl 7é ZQ) .
Zi~ov;
Theorem

@ There exist 0, c,tg > 0 which depend only on the potential U, the
rate r and the dimension d such that

;9
1£(Ze) = £ (Zso)lly < e = L (Zo) — L (Zeo))y -

@ For the annealing, if% (%) < m with n > 0 then Y6 > 0

P(U(Xt) > minU + 0) b 0.
(e}

Proof: couplings.
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Some remarks

@ The NSC in dimension 1 implies
with ¢ > E*, the algorithm converges,

> if € > m
with ¢ < E*, it may fail.

> ife < gy
The SC in higher dimension implies

> if gy > m with ¢ > 6, the algorithm converges.
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Some remarks

@ The NSC in dimension 1 implies
> if gy > m with ¢ > E*, the algorithm converges,
> ife < m with ¢ < E*, it may fail.
The SC in higher dimension implies
> if gy > m with ¢ > 6, the algorithm converges.
@ Bad news: not faster than the overdamped Langevin diffusion, same
metastability (short memory).
@ Good news: as fast as the overdamped Langevin diffusion, and
simpler to compute ("exact” computation, no MH-step needed).
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Some remarks

@ The NSC in dimension 1 implies
> ifgp > m with ¢ > E*, the algorithm converges,
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Some remarks

@ The NSC in dimension 1 implies
> ifgp > m with ¢ > E*, the algorithm converges,
> ife < m with ¢ < E*, it may fail.
The SC in higher dimension implies
> if gy > m with ¢ > 6, the algorithm converges.
@ Bad news: not faster than the overdamped Langevin diffusion, same
metastability (short memory).
@ Good news: as fast as the overdamped Langevin diffusion, and
simpler to compute ("exact” computation, no MH-step needed).
@ Anyway, at this scale (never reached in practice), all local Markov
dynamics perform the same.

Another question: how do you chose the radius of the ball (i.e. the scalar
velocity of the process) ? Or, in the Gaussian case, the variance at
equilibrium of the velocity 7
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Some remarks

Same question for the kinetic Langevin equation:

dX;, = Ydt
1
dY; = —vVU (X;)dt — =Y;dt + V2dB;,
14
|y

with equilibrium e_U(””)_%da:dy. Calibrate v 7
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Some remarks

Same question for the kinetic Langevin equation:

dX; = Yidt
1
dY; = —vVU (X;)dt — =Y;dt + V2dB;,
v
2
with equilibrium e_U(”)_lgL dxzdy. Calibrate v ?

W=

When U(z) = $A|z[%, vop = (4)\)_% with convergence rate (1))
By comparison, the rate of convergence of

dX; = —\X,dt+V2dB,

is A, which is better than ()\/2)% if and only if A > \/LE
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Some remarks

@ Too much inertia kills inertia (example of the kinetic diffusion; or
Gadat-Panloup 2012 on long-term memory gradient).

@ However, the escape time from local traps may be as small as we
want.
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Some remarks

@ Too much inertia kills inertia (example of the kinetic diffusion; or
Gadat-Panloup 2012 on long-term memory gradient).

@ However, the escape time from local traps may be as small as we
want.

@ Problem: entropic barrier.

@ Short-term memory (and more generally non-reversible sampling) can
be used together with global and long-memory methods
(Wang-Landau, ABF, metadynamics, etc.)
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