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Introduction

@ Dynamical correlations and transport in low-dimensional d < 2 may
be anomalous: spatial constraints alter transport properties

@ Universality and dynamical scaling:

» Connection with Lévy processes
» Connection with the Kardar-Parisi-Zhang problem

@ Simulation of simple models: deterministic and stochastic

Stefano Lepri (ISC-CNR) 2 /30



Multi-Particle Collision (MPC)

Malevanets and Kapral (1999) mesoscopic dynamics: stochastic and local
protocol that redistributes particle velocities, while preserving the global
conserved quantities

Three steps:

© N nparticles is partitioned in N, cells.

@ In each simulation cell: the particle velocities are rotated around a
random axis passing through the center of mass; the rotation angles
are assigned in a way that the invariant quantities are locally
preserved.

© All particles are propagated freely, or under the effect of an external
force if present.

Stefano Lepri (ISC-CNR) 3 /30



Multi-Particle Collision (MPC)
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Widely used alternative to MD to simulate complex fluids (e.g. polymers
in solution, colloids), flow simulations etc.
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MPC for a 1D fluid

© In each cell i: N; particles with momentum P; and kinetic energy Kj;

@ Collision rule: with a given rate 7;, draw a random w; for each
particle from a Maxwellian distribution at the cell temperature 2K,

© Let vjo1q — Vjnew = a;w; + b; where a; and b; are determined
imposing the conservation laws

P; ijvj old = ijv],new = Zm] a;w; + b; )

Jj=1 Jj=1
N; N; 2 N; 2
2 : j Old - vj,new . ((lle + bz)
Ki E mji = E mji
, 2 ; 2
=1 7=1 Jj=1

@ Propagate ballistically for a given step At
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MPC for a 1D fluid

@ For a closed system: density, energy and momentum are conserved

@ The cell size sets the interaction range

@ The collision rates r; sets the interaction time scale and can be
chosen to mimic the for example, a Coulomb-like scattering as

1
I (K /&) @)

r; =

where &yt is a typical interaction energy

@ Initial conditions: initial velocities extracted from a Maxwellian
distribution with kinetic energy per unit mass &.

e Collisionality parameter: n = &y/Ent (large 1, almost free particles).

o Easily extended to nonequilibrium
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Classical nonlinear oscillators on a lattice

Chain of N coupled oscillators with n.n. coupling: (p; = myi;)
N p2
— l _
H = ZZ; |:2TTL[ + V(ﬂ?l+1 $l)
Equations of motion :
MpZy = —Fp + Fpq 5 F, = _V/(xn-l—l —J,‘n),
Boundary conditions e.g. periodic 11 = zg + L.
Displacement from eq. position z,, = na + u,, L = Na chain length

Symmetry u,, — u, + ¢st: momentum conservation, Zl Py const.
" Acoustic dispersion” in the harmonic limit
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Conservation laws

N N
L= Z(:Un+1 — ) = Zrn
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n
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—

@ Microcanonical equilibrium: (L, P, E) (usually P = 0)
@ Local conservaton laws of densities (7, pp, €n)

@ Local currents
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Example: the Fermi-Pasta-Ulam (FPU) model

Historically known as "FPU-a + 3 model”
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Dynamical correlation functions: structure factors

@ For FPU: Fourier transform of displacements

u(q,t) = %Zul exp(—iql). (2)
=1

@ For MPC: Fourier transform of the particle density
1% = exX 1qxr
q) p q n 9

Dynamical structure factor

S(q.w) = (|p(g.w)]*)

Information about “collective modes”.
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Dynamical correlation functions: Green-Kubo integrands

Total energy current J =" j,, Kubo integrand
T
(J(B)T(0)) = lim ~ / T I + )t
0

@ Response to a weak perturbation

@ Onsagers regression hypothesis: spontaneous fluctuations in
equilibrium regress back to equilibrium according to the same
relaxation equation that describes the macroscopic relaxation (due to
external perturbation) -

@ By observing equilibrium fluctuations, one can learn about dynamical
properties.
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Dynamical correlation functions: Green-Kubo integrands

In practice (...) is an ensemble average over many MD trajectories

Choice of ensemble: microcanonical with zero momentum

Current power spectrum

2

Clw) = ‘ / J(t)e=iet

@ Wiener-Khintchine theorem

Clw) = / (0 T(0))e= ™ di

Equivalent but more efficient: for n data points nlnn instead of n
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Microscopic expression for currents

To compute correlations of energy, momentum and density current Cg,
Cp and C, an expression in terms of microscopic variables is needed:
e For FPU:
1 N
Je(t) = 5 ;(W + ;) Fj. (3)
1=
@ For MPC: define J¢, associated to each conserved quantity &, at cell

level as
Nc

Te(t) = &) — &1t — At)]. (4)

i=1
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Nonlinear fluctuating hydrodynamics

[Spohn,2014]

o Effective dynamics of the 3 conserved quantities
T'n = Up+1 — Un; Un; €n
@ Fluctuations around the equilibrium values
rp =04 Up; Uy = Us; en=¢e+ Us

o Write hydrodynamic equations up to second order for
U = (U1,U2,Us)

U= —09,[AU +UGU + 8,CU + B¢]

Coupled, noisy Burgers equation (or Kardar-Parisi-Zhang equations)
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Nonlinear fluctuating hydrodynamics:predictions

@ Linear limit: two propagating sound modes and one diffusive heat
mode

@ To leading order, the oppositely moving sound modes are decoupled
from the heat mode and satisfy noisy Burgers equations. For the heat
mode, the leading nonlinear correction is from the sound modes.

@ Universal dynamical exponents (again!)

@ Predictions for the scaling functions too e.g. compute the function A

such that
S(Qa w) ~ fKPZ((w - Wmax)/qg/Q)
@ Correlation of the heat mode is Lévy-stable distribution function

@ Confirmation of two universality classes
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Modes correlations

sound mode
heat mode

3/2
5/
~ q ~ q

-cq +cq

Correlations of observables should be a combination of these.
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Numerical check: interface roughening

nt) = () — un(0); w0 = (3" (o — (o))

n

Stroboscopic observation: ¢, = nN/v

FPU of interface hn(t)=qn(t)—qn(0)
€=0.5 sampling time N/v q,(0) thermal
Ran L e Ty
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Numerics: structure factors, FPU
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FPU Sound peaks: KPZ scaling
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FPU Heat peaks: Lévy scaling

e=0.1 a=0.1 e=0.5 0=0.1
T T T T T 1 T T T T T T —

$(9.0) /S (q.0)
i S
) <\W«»‘~@&‘§ oo
L
S (q.0) /S (q.0)

Lévy peak: Lorenzian with width ¢%/3
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FPU currents
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FPU energy flux correlator, log derivatives
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Why this difference despite the convincing KPZ scaling in the other
observables? Yet an open issue ....
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Numerics: structure factors, MPC
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MPC Sound peaks: KPZ scaling
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Currents correlator, MPC

Cp(w)
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Two-dimensional systems

Less developed theory! one may expect
e Long tail in energy current correlators t~* (with log corrections?)
o Kk~ loglL

Remark: 2D MPC conserves also angular momentum
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2D MPC: energy current
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Solid: f(w) = a — Blog(w)

Remark: Results insensitive to angular momentum conservation
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2D — 1D dimensional cross-over

Different aspect ratios L, /Ly: w3 — —log(w) in energy current
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Outlook

MPC dynamics

Comparison between oscillators chain and 1D-MPC

Dynamical scaling:
@ good agreement with KPZ for the structure factors
© exponential decay of energy flux correlation instead of power: closeness
to some integrable limit?

Extension to 2D - MPC

@ dimensional crossover
© marginal role of angular momentum conservation
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