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Introduction

In the field of molecular dynamics, on is interested in simulating
over very long times stochastic differential equations in high
dimension:

• Langevin dynamics:

{

dX t = M−1
Pt dt

dPt = −∇V (X t) dt − γM−1
Pt dt +

√

2γβ−1dW t

where γ > 0 and β = (kBT )−1.

• overdamped Langevin (or gradient) dynamics:

dX t = −∇V (X t) dt +
√

2β−1dW t .
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Introduction

These dynamics are used to compute macroscopic quantities:

(i) Thermodynamic quantities (averages wrt µ of some
observables): stress, heat capacity, free energy,...

Eµ(ϕ(X )) =

∫

Rd

ϕ(x)µ(dx) ≃ 1

T

∫ T

0

ϕ(X t) dt.

(ii) Dynamical quantities (averages over trajectories): diffusion
coefficients, viscosity, transition rates,...

E(F((X t)t≥0)) ≃
1

M

M
∑

m=1

F((Xm
t )t≥0).

Difficulties: (i) high-dimensional problem (N ≫ 1); (ii) X t is a
metastable process and µ is a multimodal measure.



Introduction Adaptive Multilevel Splitting Accelerated dynamics

Metastability: energetic and entropic barriers
A two-dimensional schematic picture
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−→ • Slow convergence of trajectorial averages
• Transitions between metastable states are rare events
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A toy example in material sciences
The 7 atoms Lennard Jones cluster in 2D.

(a) C0, V = −12.53 (b) C1, V = −11.50 (c) C2, V = −11.48

(d) C3, V = −11.40

Figure: Low energy conformations of the Lennard-Jones cluster.

−→ simulation
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Introduction

For computing thermodynamics quantities, there is a clear
classification of available methods, and the difficulties are now well
understood (in particular for free energy computations, see for
example [TL, Rousset, Stoltz, 2010]). On the opposite, computing efficiently
dynamical quantities remains a challenge.

Outline of the talk:

1. Adaptive Multilevel Splitting methods: Towards efficient
sampling of reactive paths. Rare event simulation.

2. Accelerated dynamics: These methods have been proposed by
A.F. Voter to generate efficiently metastable dynamics.
Mathematical tool: Quasi Stationary Distributions.



Introduction Adaptive Multilevel Splitting Accelerated dynamics

Splitting strategies

A B
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Multilevel splitting

General setting: Let (Yt)t≥0 be a Markovian dynamics, τB and τA
be two associated stopping times.
Objective: efficiently compute quantities of the form
E(F ((Yt)0≤t≤τA∧τB )1τB<τA) in the rare event setting:

P(τB < τA) ≪ 1.

Two examples:

• Reactive trajectories: A and B are two metastable states, τA
and τB are the first hitting time of A and B .

• Killed process: τA is a killing time, τB is the first hitting time
of a domain B .
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Motivation 1: Simulations of biological systems
Unbinding of a ligand from a protein

Elementary time-step for the molecular dynamics = 10−15
s

Dissociation time ≃ 0.02 s

Challenge: bridge the gap between timescales
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Motivation 2: Radiation protection
Monte Carlo particle transport

Concrete tunnel with a neutron source

How to compute the neutron flux at the detector ?

Challenge: the flux is very small
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Multilevel splitting: the reactive trajectory setting
We would like to sample trajectories between two given metastable
states A and B . The main assumption in this section is that we are
given a smooth one dimensional function ξ : Rd → R (s.t.
|∇ξ| 6= 0) which "indexes" the transition from A to B in the
following sense:

A ⊂ {x ∈ R
d , ξ(x) < zmin} and B ⊂ {x ∈ R

d , ξ(x) > zmax},

where zmin < zmax, and Σzmin
(resp. Σzmax

) is “close” to ∂A (resp.
∂B).

Example: ξ(x) = ‖x − xA‖ where xA ∈ A is a reference configuration in A.

We are interesting in the event {τA < τB}, starting from an initial
condition on Σzmin

, where

τA = inf{t > 0, X t ∈ A}, τB = inf{t > 0, X t ∈ B}

and
τz = inf{t > 0, ξ(X t) > z}.
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Multilevel splitting

Objective: Simulate efficiently trajectories which reach B before A

and estimate P(τB < τA). This then gives dynamical information:
reactive trajectories from A to B , transition times from A to B , ...

We propose a multilevel splitting approach [Kahn, Harris, 1951] [Rosenbluth,

1955] to discard failed trajectories and branch trajectories
approaching the rare set. We focus on an adaptive variant [Cérou,

Guyader, 2007] [Cérou, Guyader, TL, Pommier, 2010]: the Adaptive Multilevel
Splitting (AMS) algorithm.

Remark: The algorithm can be seen as a kind of adaptive Forward Flux

Sampling [Allen, Valeriani, Ten Wolde, 2009]. It is also related to the Interface

Sampling Method [Bolhuis, van Erp, Moroni 2003] and the Milestoning method

[Elber, Faradjian 2004]. See the review paper [Bolhuis, Dellago, 2009]
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Reactive trajectory

A reactive trajectory between two metastable sets A and B is a
piece of equilibrium trajectory that leaves A and goes to B without
going back to A in the meantime [Hummer,2004] [Metzner, Schütte, Vanden-Eijnden,

2006].

A B

Difficulty: A trajectory leaving A is more likely to go back to A

than to reach B .
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Splitting algorithm: basic idea

The idea of splitting algorithms (FFS, TIS, RESTART, ...) is to write
the rare event

{τB < τA}
as a sequence of nested events: for zmin < z1 < . . . < zmax,

{τz1 < τA} ⊃ {τz2 < τA} ⊃ . . . ⊃ {τzmax
< τA} ⊃ {τB < τA}

and to simulate the successive conditional events: for q = 1, 2, . . .,

{τzq+1 < τA} knowing that {τzq < τA}.

It is then easy to build an unbiased estimator of

P(τB < τA) = P(τz1 < τA)P(τz2 < τA|τz1 < τA) . . . P(τB < τA|τzmax
< τA)
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Splitting algorithm: adaptive level computation
Problem: How to choose the intermediate levels (zq)q≥1 ?

It is easy to check, for a given number of intermediate levels, the
optimum in terms of variance is attained if

∀q ≥ 1, P(τzq < τA|τzq−1 < τA) = P(τz2 < τA|τz1 < τA).

This naturally leads to adaptive versions (AMS, nested sampling)

where the levels are determined by using empirical quantiles: Fix
k < n; at iteration q ≥ 1, given n trajectories (X ℓ

t∧τA)t>0,ℓ=1,...,n in
the event {τzq−1 < τA}, choose zq so that

P(τzq < τA|τzq−1 < τA) ≃
(

1 − k

n

)

.

The level zq is the k-th order statistics of supt≥0 ξ(X
ℓ
t∧τA):

sup
t≥0

ξ(X
(1)
t∧τA) < . . . < sup

t≥0

ξ(X
(k)
t∧τA) =: zq < . . . < sup

t≥0

ξ(X
(n)
t∧τA).
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AMS: estimator of the rare event probability (1/2)

Let Qiter be the number of iterations to reach the level zmax:

Qiter = min{q ≥ 0, zq > zmax}

(where z0 is the k-th order statistics of the n initial trajectories). Then,
one obtains the estimator:

(

1 − k

n

)Qiter

≃ P(τzmax
< τA).
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AMS: estimator of the rare event probability (2/2)

At iteration Qiter, one has an ensemble of n trajectories starting
from Σzmin

and such that τzmax
< τA. Thus

p̂corr :=
1

n

n
∑

ℓ=1

1{TB (X
ℓ,Qiter)<TA(X

ℓ,Qiter)} ≃ P(τB < τA|τzmax
< τA).

p̂corr is the number of trajectories reaching B before A at the last
iteration Qiter.

Therefore, an estimator of P(τB < τA) is

(

1 − k

n

)Qiter

p̂corr.
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AMS Algorithm

A B
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AMS Algorithm: the case of Markov chains

In practice, the dynamics are discrete in time and thus, it may
happen that more than k trajectories are such that

sup
t≥0

ξ(X ℓ
t∧τA) ≤ sup

t≥0

ξ(X
(k)
t∧τA) =: zq

In this case, all the trajectories with maximum level smaller or equal
than zq should be discarded.

The actual estimator of P(τB < τA) thus reads:

p̂ =

(

1 − K1

n

)

. . .

(

1 − KQiter

n

)

p̂corr

instead of
(

1 − k
n

)Qiter

p̂corr, where Kq ≥ k is the effective number
of discarded trajectories at iteration q.
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AMS Algorithm: unbiasedness

Theorem [C.-E. Bréhier, M. Gazeau, L. Goudenège, TL, M. Rousset, 2016]: For any
choice of ξ, n and k ,

E(p̂) = P(τB < τA).

The proof is based on Doob’s stopping theorem on a martingale
built using filtrations indexed by the level sets of ξ. Actually, this
result is proved for general path observables and in a much more
general setting.

Practical counterparts:

• The algorithm is easy to parallelize.

• One can compare the results obtained with different reaction
coordinates ξ to gain confidence in the results.
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Numerical results: a 2D example
Time-discretization of the overdamped Langevin dynamics:

dX t = −∇V (X t) dt +
√

2β−1dW t

with a deterministic initial condition X 0 = x0 and the 2D potential
[Park, Sener, Lu, Schulten, 2003] [Metzner, Schütte and Vanden-Eijnden, 2006]
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A 2D example
The interest of this “bi-channel” potential is that, depending on the
temperature, one or the other channel is prefered to go from A

(around H− = (−1, 0)) to B (around H+ = (1, 0)).

Three reaction coordinates: ξ1(x , y) = ‖(x , y) − H−‖,
ξ2(x , y) = C − ‖(x , y) − H+‖ or ξ3(x , y) = x .

We plot as a function of the number N of independent realizations
of AMS, the empirical average

pN =
1

N

N
∑

m=1

p̂m

together with the associated empirical confidence interval:
[pN − δN/2, pN + δN/2] where

δN = 2
1.96√
N

√

√

√

√

1

N

N
∑

m=1

(p̂m)2 − (pN)
2
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A 2D example: flux of reactive trajectories
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A 2D example: k = 1, n = 100, β = 8.67
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A 2D example: k = 1, n = 100, β = 9.33
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A 2D example: k = 1, n = 100, β = 10
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A 2D example

Observations:

• When N is sufficiently large, confidence intervals overlap.

• For too small values of N, “apparent bias” is observed [Glasserman,

Heidelberger, Shahabuddin, Zajic, 1998].

• Fluctuations depend a lot on ξ.

−→ To gain confidence in the results, check that the estimated
quantity is approximately the same for different ξ’s.
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“Apparent bias” phenomenon

The apparent bias is due to the fact that [Glasserman, Heidelberger,

Shahabuddin, Zajic, 1998]:

• Multiple pathways exist to go from A to B .

• Conditionally to reach Σz before A, the relative likelihood of
each of these pathways depends a lot on z .

On our example, for small n, we indeed observe that (for ξ3):

• Most of the time, all replicas at the end go through only one
of the two channels (two possible scenarios).

• One of this scenario is rare.

• The values of p̂ associated to each of these two scenarios are
very different.

This explains the large fluctuations.
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“Apparent bias” phenomenon

Another 2D test case:
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“Apparent bias” phenomenon
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Numerical results

Example 1: In collaboration with the group of K. Schulten
(C. Mayne and I. Teo), AMS is currently implemented in the
NAMD code. We have studied the unbinding event of benzamidine
from trypsin.

Estimated dissociation rate: koff = (260 ± 240)s−1 which is in the
same order of magnitude as the experimental rate (600 ± 300)s−1.

Overall simulation time: 2.3µs which is 4 orders of magnitude
shorter than than the estimated dissociation time.

MD setup: about 70 000 atoms, CHARMM36 force field, NPT
conditions (298 K).
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Numerical results
Example 2: In collaboration with CEA (Eric Dumonteil, Cheikh
Diop and Henri Louvin), AMS is currently implemented in the
Tripoli code. (Concrete tunnel problem: probability to reach the detector ≃ 10−17.)
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Current developments

The AMS algorithm can be used to study reactive trajectories and
estimate transition times. The algorithm is non-intrusive and very
versatile.

Works in progress:

• Implementation in the NAMD software (collaboration with SANOFI, C.

Mayne and I. Teo), and in TRIPOLI (collaboration with CEA)

• Adaptive computation of better and better ξ.

• Analysis of the efficiency as a function of ξ. For optimal choice
of ξ, the cost of AMS is (for n large)

(

(log p)2 − log p
)

much better than the cost of naive Monte Carlo: 1−p
p

. How does this degrade
when ξ departs from the optimal case ?
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Accelerated dynamics
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Accelerated dynamics

The bottom line of the accelerated dynamics proposed by A. Voter
in the late 90’s is to get efficiently the state-to-state dynamics.
Three algorithms: Parallel replica, Hyperdynamics, Temperature
Accelerated Dynamics.

Let us consider the overdamped Langevin dyanmics:

dX t = −∇V (X t) dt +
√

2β−1dW t

and let assume that we are given a mapping

S : Rd → N

which to a configuration in R
d associates a state number. Think of

a numbering of the wells of the potential V .

Objective: generate very efficiently a trajectory (St)t≥0 which has
(almost) the same law as (S(X t))t≥0.
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The Quasi-Stationary Distribution

How to take advantage of metastability to build efficient sampling
techniques ?

Let us consider a metastable state W , and

TW = inf{t ≥ 0,X t 6∈ W }.

Lemma: Let X t start in the well W . Then there exists a probability
distribution ν with support W such that

lim
t→∞

L(X t |TW > t) = ν.

Remark: Rigorous definition of a metastable state:
exit time ≫ local equilibration time
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The Quasi-Stationary Distribution

Property 1: ∀t > 0, ∀A ⊂ W ,

ν(A) =

∫

W

P(X x

t ∈ A, t < T x

W ) ν(dx)
∫

W

P(t < T x

W ) ν(dx)
.

If X 0 ∼ ν and if (X s)0≤s≤t has not left the well, then X t ∼ ν.

Property 2: Let L = −∇V · ∇+ β−1∆ be the infinitesimal
generator of (X t). Then the density u1 of ν (dν = u1(x)dx) is the
first eigenfunction of L∗ = div (∇V + β−1∇) with absorbing
boundary conditions:

{

L∗u1 = −λ1u1 on W ,

u1 = 0 on ∂W .
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The Quasi-Stationary Distribution

Property 3: If X 0 ∼ ν then,

• the first exit time TW from W is exponentially distributed
with parameter λ1 ;

• TW is independent of the first hitting point XTW
on ∂W ;

• the exit point distribution is proportional to −∂nu1: for all
smooth test functions ϕ : ∂W → R,

E
ν(ϕ(XTW

)) = −

∫

∂W

ϕ∂nu1 dσ

βλ

∫

W

u1(x) dx
.

Remark: This is reminiscent of what is assumed in Transition State
Theory (first order kinetics).

back to Hyper
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Link with kinetic Monte Carlo models (1/2)
Starting from the QSD in W , the exit event from W is Markovian:
it can be rewritten as one step of a Markov jump process (kinetic
Monte Carlo or Markov state model):

∂W1

∂W2

∂W3

∂W4
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Link with kinetic Monte Carlo models (2/2)

Let us introduce λ1 = 1/E(TW ) and

p(i) = P(XTW
∈ ∂Wi ) = −

∫

∂Wi

∂nu1 dσ

βλ1

∫

W

u1(x) dx

.

To each possible exit region ∂Wi is associated a rate k(i) = λ1p(i).
If τi ∼ E(k(i)) are independent, then

• The exit time is min(τ1, . . . , τI );

• The exit region is arg min(τ1, . . . , τI ).
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Escaping from a metastable state

How to use these properties to build efficient algorithms ?

Assume that the stochastic process remained trapped for a very
long time in a metastable state W . How to accelerate the escape
event from W , in a statistically consistent way ?

Remark: In practice, one needs to:

• Choose the partition of the domain into (metastable) states;

• Associate to each state an equilibration time (a.k.a.
decorrelation time).

These are not easy tasks... we will come back to that.

Remark: All the algorithms below equally apply to the Langevin
dynamics but the extensions of the mathematical results to the
Langevin dynamics are not straightforward...
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The Parallel Replica Algorithm
Idea: perform many independent exit events in parallel.

Two steps:
• Distribute N independent initial conditions in W according to

the QSD ν ;
• Consider the first exit event, and multiply it by the number of

replicas.
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The Parallel Replica Algorithm
Why is it consistent ?

• Exit time is independent of exit point so that

X
I0

T
I0
W

L
= X

1
T 1
W
,

where I0 = arg mini (T
i
W );

• Exit times are i.i.d. exponentially distributed so that, for all N,

N min(T 1
W , . . . ,TN

W )
L
= T 1

W .

Remark: In practice, discrete time processes are used. Exponential
laws become geometric, and one can adapt the algorithm by using
the identity [Aristoff, TL, Simpson, 2014]: if τi i.i.d. with geometric law,

N [min(τ1, . . . , τN)− 1] + min[i ∈ {1, . . . ,N}, τi = min(τ1, . . . , τN)]
L
= τ1.
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The Parallel Replica Algorithm

The full algorithm is in three steps:

• Decorrelation step

• Dephasing step

• Parallel step
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The Parallel Replica Algorithm

Decorrelation step: run the dynamics on a reference walker...
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The Parallel Replica Algorithm

Decorrelation step: ... until it remains trapped for a time τcorr .



Introduction Adaptive Multilevel Splitting Accelerated dynamics

The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.

rm
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Parallel step: run independent trajectories in parallel...
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The Parallel Replica Algorithm

Parallel step: ... and detect the first transition event.
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The Parallel Replica Algorithm

Parallel step: update the time clock: Tsimu = Tsimu + NT .
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The Parallel Replica Algorithm

A new decorrelation step starts...
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The Parallel Replica Algorithm

New decorrelation step
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The Parallel Replica Algorithm

The three steps of ParRep:

• Decorrelation step: does the reference walker remain trapped
in a set ?

• Dephasing step: prepare many initial conditions in this
trapping set.

• Parallel step: detect the first escaping event.
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The decorrelation step

How to quantify the error introduced by the dephasing and parallel
steps, when the decorrelation step is successful ?

When the decorrelation step is successful, it is assumed that the
reference walker is distributed according to the QSD : if it was
indeed the case, the algorithm would be exact. The decorrelation
step can be seen as a way to probe this assumption. What is the
error introduced there ?
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The decorrelation step
We have the following error estimate in total variation norm: for
t ≥ C

λ2−λ1
,

sup
f ,‖f ‖L∞≤1

∣

∣

∣
E(f (TW−t,XTW

)|TW ≥ t)−E
ν(f (TW ,XTW

))
∣

∣

∣
≤ C exp(−(λ2−λ1)t),

where −λ2 < −λ1 < 0 are the two first eigenvalues of L∗ with
absorbing boundary conditions on ∂W .

This shows that τcorr should be chosen such that:

τcorr ≥
C

λ2 − λ1

.

On the other hand, it should be smaller than the typical time to
leave the well, E(TW ). Since E

ν(TW ) = 1/λ1, this typically
implies the spectral gap requirement,

C

λ2 − λ1

≤ 1

λ1

.
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The Parallel Replica Algorithm

This algorithm is very versatile: it works for entropic barriers, and
for any partition of the state space into states. But it requires some
a priori knowledge on the system: the equilibration time τcorr
attached to each state S .

Two questions: How to choose τcorr ? How to sample the QSD ?

We propose a generalized Parallel Replica algorithm [Binder, TL, Simpson,

2014] to solve these issues. It is based on two ingredients:

• the Fleming-Viot particle process

• the Gelman-Rubin statistical test
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The Fleming-Viot particle process
Start N processes i.i.d. from µ0, and iterate the following steps:

1. Integrate (in parallel) N realizations (k = 1, . . . ,N)

dX
k
t = −∇V (X k

t ) dt +
√

2β−1dW
k
t

until one of them, say X
1
t , exits;

2. Kill the process that exits;

3. With uniform probability 1/(N − 1), randomly choose one of
the survivors, X

2
t , . . . ,X

N
t , say X

2
t ;

4. Branch X
2
t , with one copy persisting as X

2
t , and the other

becoming the new X
1
t .

It is known that the empirical distribution

µt,N ≡ 1

N

N
∑

k=1

δ
X

k
t

satisfies:
lim

N→∞
µt,N = L(X t |t < TW ).
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The generalized Parallel Replica algorithm

The generalized Parallel Replica algorithm consists in using a
Fleming-Viot particle process for the dephasing step and running in
parallel the decorrelation and the dephasing steps.

If the Fleming Viot particle process reaches stationarity before the
reference walker, go to the parallel step. Otherwise, restart a new
decorrelation / dephasing step.

The time at which the Fleming-Viot particle process becomes
stationary is determined using the Gelman-Rubin statistical test.
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Numerical test case: the 7 atoms LJ cluster

(a) C0, V = −12.53 (b) C1, V = −11.50 (c) C2, V = −11.48

(d) C3, V = −11.40

We study the escape from the configuration C0 using overdamped
Langevin dynamics with β = 6. The next visited states are C1

or C2.
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Numerical test case: the 7 atoms LJ cluster

Method TOL 〈T 〉 P[C1] P[C2]

Serial – 17.0 (0.502, 0.508) (0.491, 0.498)
ParRep 0.2 19.1 (0.508, 0.514) (0.485, 0.492)
ParRep 0.1 18.0 (0.506, 0.512) (0.488, 0.494)
ParRep 0.05 17.6 (0.505, 0.512) (0.488, 0.495)
ParRep 0 .01 17.0 (0.504, 0.510) (0.490, 0.496)

Method TOL 〈tcorr〉 〈Speedup〉 % Dephased

Serial – – – –
ParRep 0.2 0.41 29.3 98.5%
ParRep 0.1 .98 14.9 95.3%
ParRep 0.05 2.1 7.83 90.0%
ParRep 0 .01 11 1.82 52.1%
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Numerical test case: the 7 atoms LJ cluster

Figure: LJ
2D

7
: Cumulative distribution function of the escape time

from C0.
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The Hyperdynamics
Idea: raise the potential in W to reduce the exit time.

Two steps:
• Equilibrate on the biased potential V + δV ;
• Wait for an exit and multiply the exit time T δV

W by the boost

factor B = 1

T δV
W

∫ T δV
W

0 exp(β δV (X t)) dt.
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The Hyperdynamics

Why is it consistent ?

Recall property 3 go to Prop3 . The underlying mathematical
question is: how λ1 and ∂nu1 are modified when V is changed to
V + δV ?

Recall that
{

div (∇V u1 + β−1∇u1) = −λ1u1 on W ,

u1 = 0 on ∂W .

Strategy: change u1 to u1 exp(V /2) and use results from
semi-classical analysis for boundary Witten Laplacians in order to
characterize (λ1, ∂nu1) in terms of V .
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The Hyperdynamics: mathematical analysis
Assumptions on V . We assume there exists W− ⊂⊂ W such that:

• Regularity: V and V |∂W are Morse functions ;

• Localization of the small eigenvectors in W−:
(i) |∇V | 6= 0 in W \W− ,
(ii) ∂nV > 0 on ∂W− ,
(iii) min∂W V ≥ min∂W− V ,
(iv) min∂W− V − cvmax > cvmax − minW− V where

cvmax = max{V (x), x s.t. |∇V (x)| = 0} ;

• Non degeneracy of exponentially small eigenvalues: The
critical values of V in W− are all distinct and the differences
V (y)− V (x), where x ∈ U (0) ranges over the local minima of
V |W− and y ∈ U (1) ranges over the critical points of V |W−

with index 1, are all distinct.

Assumptions on δV .

• V + δV satisfies the same assumptions as V ;

• δV = 0 on W \W− .
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The Hyperdynamics: mathematical analysis
Result [TL, Nier, 2013]: Under the above assumptions on the potentials
V and (V + δV ), there exists c > 0 such that, in the limit β → ∞,

λ1(V + δV )

λ1(V )
=

∫

W
e−βV

∫

W
e−β(V+δV )

(1 +O(e−βc )) ,

∂n [u1(V + δV )]
∣

∣

∂W

‖∂n [u1(V + δV )]‖L1(∂W )

=
∂n [u1(V )]

∣

∣

∂W

‖∂n [u1(V )] ‖L1(∂W )
+O(e−βc ) in L1(∂W ) .

Remark: We indeed have

B =
1

T δV
W

∫ T δV
W

0

exp(β δV (X t)) dt.

≃
∫

W
exp(βδV ) exp(−β(V + δV ))
∫

W
exp(−β(V + δV ))

=

∫

W
exp(−βV )

∫

W
exp(−β(V + δV ))

.
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The Hyperdynamics: idea of the proof

Use semi-classical analysis for boundary Witten laplacians (f = V ,
h = 2/β).

• Build quasimodes for ∆
D,(p)
f ,h (W ) (p = 0, 1) using eigenvectors

of ∆
N,(p)
f ,h (W−) (p = 0, 1) and of ∆

D,(1)
f ,h (W \W−).

• Analyze the asymptotics of the singular values of the restricted
differential (ν(h) ≤ h and limh→0 h log(ν(h)) = 0)

df ,h : F (0) → F (1) where F (p) = Ran

(

1[0,ν(h)]

(

∆
D,(p)
f ,h (W )

))

.

This is a finite dimensional linear operator.

• Show that, up to exponentially small terms,
λ1(V ) = A∫

W
exp(−βV )

(1 +O(e−
c
h )) and ∂nu1

‖∂nu1‖ = B +O(e−
c
h )

where A and B only depends on the eigenvectors of

∆
D,(1)
f ,h (W \W−), and are thus not modified when changing V

to V + δV .
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The Temperature Accelerated Dynamics
Idea: increase the temperature to reduce the exit time.

Algorithm:
• Observe the exit events from W at high temperature ;
• Extrapolate the high temperature exit events to low

temperature exit events.

x0

x1

x2

x3

x4

∂W1

∂W2

∂W3∂W4
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Extrapolation procedure (1/2)

Rewriting the exit event using a kinetic Monte Carlo model:

Let us introduce λ1 = 1/E(TW ) and

p(i) = P(XTW
∈ ∂Wi) = −

∫

∂Wi

∂nu1 dσ

βλ

∫

W

u1(x) dx

.

To each possible exit saddle point i is associated a rate
k(i) = λ1p(i). If τi ∼ E(ki ) are independent, then

• The exit time is min(τ1, . . . , τI );

• The exit saddle point is arg min(τ1, . . . , τI ).
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Extrapolation procedure (2/2)

Extrapolating from high temperature to low temperature:

The extrapolation procedure is based on the empirical
Arrhenius law: for large β,

k(i) = λ1p(i) ≃ ηi exp(−β(V (xi)− V (x0)))

where ηi is independent of β, which yields

k lo(i)

khi (i)
=

λlo
1 p

lo(i)

λhi
1 phi(i)

≃ exp(−(βlo − βhi )(V (xi )− V (x0))).

Algorithm: observe exit events at high temperature, extrapolate the
rates to low temperature, stop when the extrapolated event will not
modify anymore the low temperature exit event.

Remark: TAD can be seen as a smart saddle point search method.
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Arrhenius law

If the Arrhenius law is exactly satisfied, one can show that the
temperature accelerated dynamics method is exact.

Mathematical question: Under which assumptions is the Arrhenius
law satisfied ? This is again a semi-classical analysis problem...

In 1D, this can be done. In the
limit βhi , βlo → ∞, βlo/βhi =
r , under appropriate assump-
tions, one has [Aristoff, TL, 2014]:

b10

λhiphii
λloploi

= e−(βhi−βlo)(V (xi )−V (x0))

(

1 + O

(

1

βhi
− 1

βlo

))
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The Eyring Kramers law and HTST
In practice, kMC models are parameterized using HTST.

x1

z1

z2

z3

z4

∂W1

∂W2

∂W3∂W4

We assume in the following V (z1) < V (z2) < . . . < V (zI ).

Eyring Kramers law (HTST): k(i) = Ai exp (−β(V (zi)− V (x1)))
where Ai is a prefactor depending on V at zi and x1.
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kMC and HTST

Thus, one obtains the following law for the exit event:

• exit time and exit region are independent r.v.

• exit time is E(k(1) + . . .+ k(I )) and, when β is large

k(1) + . . . + k(I ) ≃ k(1) = A1 exp (−β(V (z1)− V (x1)))

• exit region is i with probability k(i)
k(1)+...+k(I ) and, when β is

large,

k(i)

k(1) + . . .+ k(I )
≃ k(i)

k(1)
=

Ai

A1

exp (−β(V (zi)− V (z1)))

Our aim: justify and analyze this method.
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Back to overdamped Langevin and the QSD
Starting from the QSD dν = u1(x)dx , we already know that

• the exit time TW and the exit point XTW
are independent r.v.

• the exit time is exponentially distributed with parameter λ1

• the exit region is ∂Wi with probability

p(i) = P(XTW
∈ ∂Wi) = −

∫

∂Wi

∂nu1 dσ

βλ

∫

W

u1(x) dx

.

We thus need to prove that

λ1 ≃ A1 exp (−β(V (z1)− V (x1)))

and

−

∫

∂Wi

∂nu1 dσ

βλ1

∫

W

u1(x) dx

≃ Ai

A1

exp (−β(V (zi)− V (z1))).
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Small temperature regime
The question is thus: consider (λ1, u1) such that (first eigenvalue

eigenfunction pair)

{

div (∇Vu1 + β−1∇u1) = −λ1u1 on W ,

u1 = 0 on ∂W .

We assume wlg u1 > 0 and
∫

u2

1
eβV = 1.

In the small temperature regime (β → ∞), prove that

λ1 ≃ A1 exp (−β(V (z1)− V (x1)))

and

−

∫

∂Wi

∂nu1 dσ

βλ1

∫

W

u1(x) dx

≃ Ai

A1

exp (−β(V (zi)− V (z1))).
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Assumptions
• W is an open bounded smooth domain in R

d .
• V : W → R is a Morse function with a single critical point x1.

Moreover, x1 ∈ W and V (x1) = minW V .
• ∂nV > 0 on ∂W and V |∂W is a Morse function with local

minima reached at z1, . . . , zI with V (z1) < . . . < V (zI ).
• V (z1)− V (x1) > V (zI )− V (z1)
• ∀i ∈ {1, . . . I}, consider Bzi the basin of attraction for the

dynamics ẋ = −∇TV (x) and assume that

inf
z∈Bc

zi

da(z , zi ) > V (zI )− V (z1)

x1

z1

z2

z3

z4
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Agmon distance

Here, da is the Agmon distance:

da(x , y) = inf
γ

∫ 1

0

g(γ(t))|γ′(t)| dt

where g =

{

|∇V | in W

|∇TV | in ∂W
, and the infimum is over all Lipschitz

paths γ : [0, 1] → W such that γ(0) = x and γ(1) = y . A few

properties:

• One has ∀x , y ∈ W , |V (x)− V (y)| ≤ da(x , y) ≤ C |x − y |
• On a neighborhood V of a local minima zi , the function
x 7→ da(x , zi ) satisfies the eikonal equation: |∇Φ|2 = |∇V |2
on V with boundary conditions Φ = V on V ∩ ∂W , and
Φ ≥ V (zi).
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Results
[In preparation with G. Di Gesu, D. Le Peutrec and B. Nectoux] In the limit β → ∞, the
exit rate is

λ1 =

√

β

2π
∂nV (z1)

√

det(HessV )(x1)
√

det(HessV|∂W )(z1)
e
−β(V (z1)−V (x1))(1 + O(β−1)).

Moreover, for all open set Σi containing zi such that Σi ⊂ Bzi ,

∫

Σi
∂nu1 dσ
∫

W
u1

= −Ci(β)e
−β(V (zi )−V (x1))(1 + O(β−1)),

where Ci (β) =
β3/2
√

2π
∂nV (zi)

√

det(HessV )(x1)
√

det(HessV |∂W )(zi )
. Therefore,

P
ν(XTW

∈ Σi ) =
∂nV (zi )

√

det Hess(V |∂W )(z1)

∂nV (z1)
√

det Hess(V |∂W )(zi )
e−β(V (zi )−V (z1))(1 + O(β−1)).
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Some tools used in the proof

We analyze the eigenvalue problem in the small temperature regime
−→ transform the Fokker Planck operator to a Schrödinger
operator, and use tools from semi-classical analysis ([Helffer, Le Peutrec,

Nier, Sjöstrand]):

• build good estimates for u1 and ∇u1: quasi-modes for Witten
Laplacians, Agmon estimates ;

• compute WKB approximations of these quasi-modes to get
precise asymptotic results.
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Concluding remarks on accelerated dynamics

• From ParRep to Hyper to TAD, the underlying assumptions
for the algorithms to be correct are more and more stringent.
In particular, Hyper and TAD require energetic barriers and
small temperature.

• The QSD is a good intermediate between continuous state
dynamics and kMC-like approximations (Markov state models).
Transition rates could be defined starting from the QSD.

• It can be used to analyze the validity of the transition state
theory and kMC models, in the small temperature regime.
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Simulating dynamics: conclusions (1/2)

There are other mathematical settings to characterize / quantify
metastability:

• Large deviation techniques [Freidlin, Wentzell, Vanden Eijnden, Weare,

Touchette,...] and Onsager-Machlup functionals [Stuart, Pinsky, Theil]

• Potential theoretic approaches [Bovier, Schuette, Hartmann,...]

• Spectral analysis of the Fokker Planck operator on the whole
space and semi-classical analysis [Schuette, Helffer, Nier, Pavliotis]
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Simulating dynamics: conclusions (2/2)

There are many other numerical techniques:

• Going from state A to state B:
• Local search: the string method [E, Ren, Vanden-Eijnden], max flux

[Skeel], transition path sampling methods [Chandler, Bolhuis, Dellago],
• Global search, ensemble of trajectories: AMS, transition

interface sampling [Bolhuis, van Erp], forward flux sampling [Allen,

Valeriani, ten Wolde], milestoning techniques [Elber, Schuette,

Vanden-Eijnden]

• Importance sampling approaches on paths, reweighting [Dupuis,

Vanden-Einjden, Weare, Schuette, Hartmann]

• Saddle point search techniques [Mousseau, Henkelman] and graph
exploration

• Starting from a long trajectory, extract states: clustering,
Hidden Markov chain [Schuette]
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