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Motivation: conformation dynamics of biomolecules

1.3µs MD simulation of dodeca-alanin at T = 300K
(GROMOS96, visualization: Amira@ZIB)



Motivation: single molecule experiments

I Probing of equilibrium properties by
nonequilibrium experiments:

F = − logE
[
e−W

]
.

(includes rates, statistical weights, etc.)

I Perturbation drives the system out of
equilibrium with likelihood quotient

ϕ =
dµ0

dµ
.

I Experimental and numerical realization:
AFM, SMD, TMD, Metadynamics, . . .

[Schlitter, J Mol Graph, 1994], [Schulten & Park, JCP, 2004], [H. et al, Proc Comput Sci, 2010]



Set-up: estimation problem

Given an “equilibrium” diffusion process X = (Xt)t≥0 on Rn,

dXt = b(Xt)dt + σ(Xt)dBt , X0 = x ,

we want to estimate path functionals of the form

ψ(x) = E
[
e−W (X )

]

Example: mean passage time to a set C ⊂ Rn

Let W = ατC . Then, for sufficiently small α > 0,

−α−1 logψ = E[τC ] +O(α)



Guiding example: bistable system

I Overdamped Langevin equation

dXt = −∇V (Xt)dt +
√

2εdBt .

I Standard estimator of MGF ψ = ψε

ψ̂N
ε =

1

N

N∑

i=1

e−ατ
i
C .

I Small noise asymptotics (Kramers)

lim
ε→0

ε logE[τC ] = ∆V .
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[Freidlin & Wentzell, 1984], [Berglund, Markov Processes Relat Fields 2013]



Guiding example, cont’d

I Relative error of the MC estimator

δε =

√
Var[ψ̂εN ]

E
[
ψ̂εN
]

I Varadhan’s large deviations principle

E
[
(ψ̂N

ε )2
]
� (E

[
ψ̂N
ε

]
)2 , ε small.

I Unbounded relative error as ε→ 0

lim sup
ε→0

δε =∞
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[Asmussen et al, Encyclopedia of Operations Research and Management Sciences, 2012]
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Guiding example, cont’d

I Mean first passage time for small ε

E[τC ] � exp(∆V /ε)

I Adaptive tilting of the potential

U(x , t) = V (x)− utx

decreases the energy barrier.

I Controlled Langevin equation

dX u
t = (ut −∇V (X u

t )) dt +
√

2εdBt .
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Estimation problem revisited

Given a “nonequilibrium” (tilted) diffusion process X u = (X u
t )t≥0,

dX u
t = (b(X u

t ) + σ(X u
t )ut)dt + σ(X u

t )dBt , X u
0 = x ,

estimate a reweigthed version of ψ:

E
[
e−W (X )

]
= Eµ

[
e−W (X u)ϕ(X u)

]

with equilibrium/nonequilibrium likelihood ratio ϕ = dµ0
dµ .

Remark: We allow for W ’s of the general form

W (X ) =

∫ τ

0
f (Xs , s) ds + g(Xτ ) ,

for suitable functions f , g and an a.s. finite stopping time τ <∞.



Can we systematically speed up the sampling while controlling
the variance by tilting the energy landscape?



Variational characterization of free energies

Theorem (Donsker & Varadhan)

For any bounded and measurable function W it holds

− logE
[
e−W

]
= inf

µ�µ0

{Eµ[W ] + KL(µ, µ0)}

where KL(µ, µ0) ≥ 0 is the KL divergence between µ and µ0.

Sketch of proof: Let ϕ = dµ0
dµ . Then

− log

∫
e−W dµ0 = − log

∫
e−W+logϕdµ

≤
∫

(W − logϕ) dµ

with equality iff W − logϕ is constant (µ-a.s.).

[Boué & Dupuis, LCDS Report #95-7, 1995], [Dai Pra et al, Math Control Signals Systems, 1996]



Same same, but different. . .



Variational characterization of free energies, cont’d

Theorem

Technical details aside, let u∗ be a minimizer of the cost functional

J(u) = E
[
W (X u) +

1

4

∫ τu

0
|us |2 ds

]

under the controlled dynamics

dX u
t = (b(X u

t ) + σ(X u
t )ut)dt + σ(X u

t )dBt , X u
0 = x .

The minimizer is unique with J(u∗) = − logψ(x). Moreover,

ψ(x) = e−W (X u∗ )ϕ(X u∗) (a.s.) .

[H & Schütte, JSTAT, 2012], [H et al, Entropy, 2014]



Guiding example, cont’d

I Exit problem: f = α, g = 0, τ = τC :

J(u∗) = min
u

E
[
ατuC +

1

4

∫ τuC

0
|us |2 ds

]

I Recovering equilibrium statistics by

E[τC ] =
d

dα

∣∣∣∣
α=0

J(u∗)

I Optimally tilted potential

U∗(x , t) = V (x)− u∗t x

with stationary feedback u∗t = c(X u∗
t ).
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Some remarks . . .



Duality between estimation and control

The optimal control is a feedback control in gradient form ,

u∗t = −2σ(X u∗
t )T∇F (X u∗

t , t) ,

with the bias potential being the value function

F (x , t) = min{J(u) : X u
t = x} .

(In many interesting cases, F = F (x) will be stationary.)

No-free-lunch theorem: The bias potential is given by

F = − logψ,

i.e., u∗ depends on the quantity we want to estimate.

[H & Schütte, JSTAT, 2012], [H et al, Entropy, 2014]; cf. [Fleming, SIAM J Control, 1978]



More on the duality between estimation and control

The Legendre-type variational principle for the free energy furnishes
an equivalence between the dynamic programming equation

−∂F
∂t

+ min
c∈Rk

{
LF + (σc) · ∇F +

1

2
|c |2 + f

}
= 0 + b.c.

for F and the Feynman-Kac formula for e−F = E[e−W ]:

(
∂

∂t
− L

)
e−F = 0 ,

with L being the infinitesimal generator of X u=0
t .



Related work on asymptotics (non-exhaustive)

I Exponential change of measure and large deviations statistics:
[Siegmund, Ann. Stat., 1976], [Heidelberger, ACM
Trans. Modeling Comp. Simulation, 1995], . . .
(cf. also [Glasserman & Kou, Ann. Appl. Prob., 1997],
[Glasserman & Wang, Ann. Appl. Prob., 1997])

I Adaptive IS based on HJB and Isaac equations: [Dupuis &
Wang, Stochastics, 2004], [Dupuis & Wang, Math Oper Res,
2007], [Vanden-Eijnden & Weare, CPAM, 2012], . . .

I Extensions to multiscale systems: [Spiliopoulos et al, Winter
Simulation Conference, 2013], Spiliopoulos et al., SIAM
MMS, 2012], [Zhang et al, Prob. Theor. Rel. F. 2017] . . .

I For an overview see: [Asmussen & Glynn, Springer, 2007],
[Rubinstein & Kroese, Wiley, 2007]
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Two key facts about our control problem



Fact #1

If σσT has a uniformly bounded inverse, then the optimal control
can be represented as a feedback law of the form

u∗t = σ(X u
t )
∞∑

i=1

ci∇φi (X u
t , t) ,

with coefficients ci ∈ R and basis functions φi ∈ C 1,0(Rn, [0,∞)).



Fact #2

Letting µ denote the probability (path) measure on C ([0,∞))
associated with the tilted dynamics X u, it holds that

J(u)− J(u∗) = KL(µ, µ∗)

with µ∗ = µ(u∗) and

KL(µ, µ∗) =





∫
log

(
dµ

dµ∗

)
dµ if µ� µ∗

∞ otherwise

the Kullback-Leibler divergence between µ and µ∗.



Cross-entropy method for diffusions

Idea: seek a minimizer of J among all controls of the form

ût = σ(X u
i )

M∑

i=1

ci∇φi (X u
t , t) , φi ∈ C 1,0(Rn, [0,∞)) .

and minimize the Kullback-Leibler divergence

S(µ) = KL(µ, µ∗)

over all candidate probability measures of the form µ = µ(û).

Remark: unique minimizer is given by dµ∗ = ψ−1e−W dµ0.



Unfortunately, . . .



Cross-entropy method for diffusions, cont’d

. . . that doesn’t work without knowing the normalization factor ψ.

Feasible cross-entropy minimization

Minimization of the auxiliary functional KL(µ∗, ·) is equivalent to
cross-entropy minimization: minimize

CE (µ) = −
∫

logµ dµ∗

over all admissible µ = µ(û), with dµ∗ ∝ e−W dµ0.

Note: KL(µ, µ∗)=0 iff KL(µ∗, µ) = 0, which holds iff µ = µ∗.

[Rubinstein & Kroese, Springer, 2004], [Zhang et al, SISC, 2014]



Some remarks

I The cross-entropy functional can be recast as

CE (µ) = −
∫

(logµ(û))e−W (X û)ϕ(û) dµ(û)

where both ϕ and µ (more precisely: its Wiener measure
density) can be computed from Girsanov’s Theorem.

I The necessary optimality conditions are of the form

Ac = ζ

with unknowns c = (c1, . . . , cM) and coefficients A = (Aij),
ζ = (ζ1, . . . , ζM) that are computable by Monte Carlo.

I In practice, annealing and clever choice of basis functions φi
(e.g. global or local) greatly enhances convergence.

[H et al, Nonlinearity, 2016], [Badowski, PhD thesis, 2016], [Kappen et al, J Stat Phys, 2017]



Example I (guiding example)



Computing the mean first passage time (n = 1)

Minimize

J(u;α) = E
[
ατ +

1

4

∫ τ

0
|ut |2 dt

]

with τ = inf{t > 0: Xt ∈ [−1.1,−1]} and the dynamics

dX u
t = (ut −∇V (X u

t )) dt + 2−1/2 dBt

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

x

V
(x

)

−2 −1 0 1 2
0

20

40

60

80

100

120

140

160

x

E
x
(τ

)

Skew double-well potential V and MFPT of the set S = [−1.1,−1] (FEM reference solution).

[H & Schütte, JSTAT, 2012]



Computing the mean first passage time, cont’d

Cross-entropy minimization using a parametric ansatz

c(x) =
10∑

i=1

αi∇φi (x) , φi : equispaced Gaussians
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Biasing potential V + 2F and unbiased estimate of the limiting MFPT.

cf. [Lorenz Richter, MSc thesis, 2016], [Arampatatzis et al, JCP, 2016]
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The bad news



The good news: suboptimal controls from averaging

Averaged control problem: minimize

I (v) = E
[
W̄ (ξv ) +

1

4

∫ τ v

0
|vs |2 ds

]

subject to the averaged dynamics

dξut = (Σ(ξvt )vt−B(ξvt ))dt+Σ(ξvt )dWt

Control approximation strategy

u∗t ≈ c(ξ(X u∗
t ), t) = ∇ξ(X u∗

t )v∗t .
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Theo. Value Fun.: ε =  0.3

Opt. Value Func.: Homogenized
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Opt. Control: ε =  0.3

Opt. Control: Homogenized

Opt. Control Correction: ε =  0.3

[H et al, Nonlinearity, 2016]; cf. [Legoll & Lelièvre, Nonlinearity, 2010]



The good news, cont’d

Uniform bound of the relative error
using “averaged” optimal controls

δrel ≤ CN−1/2 η1/8 , η =
τfast

τslow

Issues for highly oscillatory controls:

(a) Weak convergence of controls

uη ⇀ u 6⇒ J(uη)→ J(u)

(b) Log efficient estimators based on
HJB subsolutions due to Dupuis,
Spiliopoulos and Wang
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Opt. Control: Homogenized

Opt. Control Correction: ε =  0.3

[H et al, J Comp Dyn, 2014], [Zhang et al, PTRF, 2017], cf. [Spiliopoulos et al, MMS, 2012]



Remark: homogenization of forward-backward SDE

I FBSDE representation for a finite stopping time τ = T :

dX η
s = bη(X η

s )ds + ση(X η
s )dWs , X

η
t = x

dY η
s = hη(X η

s ,Y
η
s ,Z

η
s )ds + Z ηs · dWs , Y

η
T = g(X η

T ) ,

where t ≤ s ≤ T and

F η(x , t) = Y η
t (as a function of the initial value x)

I Homogenization result: strong convergence of control value
(so far in the Gaussian case only)

sup{|Y η
t − Yt | : 0 ≤ t ≤ T} ≤ Cη1/4

I Semi-explicit discretization of BSDE by least-squares MC.

[Bender & Steiner, in: Numer Meth Finance, 2012], [Kebiri et al, Preprint, 2017]



Example II (suboptimal control)



Conformational transition of butane in water (n = 16224)

Probability of making a gauche-trans transition before time T :

− logP(τC ≤ T ) = min
u

E
[

1

4

∫ τ

0
|ut |2 dt − log 1∂C (Xτ )

]
,

with τ = min{τC ,T} and τC denoting the first exit time from the
gauche conformation “C” with smooth boundary ∂C

3
2

1

4

4’

gauche

trans

Table 4.5: Results for butane dissolved in water: The probability P(⌧  T ) is calculated by the

important sampling procedure with control acting on the dihedral angle only; see the text for

more details. The column “Error” denotes the statistical uncertainty of estimating the probablity

P(⌧  T ). If the trajectories are statistically independent, the expected error is
p

Var/MIS ,

where MIS is the number of trajectories used. If the trajectories are not independent, the error

can be estimated by the block average method [9]. The meaning of the other columns are the same

as Tab. 4.2; here, the accelaration index has to be computed as I = VarMCMMC/(VarISMIS)

since the numbers of trajectories used in the IS and MC procedures are di↵erent.

T [ps] P(⌧  T ) Error Var Accel. I Traj. Usage

0.1 4.30 ⇥ 10�5 0.77 ⇥ 10�5 3.53 ⇥ 10�6 42.5 0.4%

0.2 1.21 ⇥ 10�3 0.11 ⇥ 10�3 2.50 ⇥ 10�4 26.0 5.4%

0.5 6.85 ⇥ 10�3 0.38 ⇥ 10�3 2.88 ⇥ 10�3 13.0 8.3%

1.0 1.74 ⇥ 10�2 0.08 ⇥ 10�2 1.21 ⇥ 10�2 7.0 12.3%

Table 4.6: Results for butane dissolved in water: Brute force / standard Monte Carlo computa-

tions of P(⌧  T ) without any important sampling.

T [ps] P(⌧  T ) Error Var Accel. Traj. Usage

0.1 9.00 ⇥ 10�5 3.00 ⇥ 10�5 9.00 ⇥ 10�5 1.0 0.009%

0.2 1.29 ⇥ 10�3 0.11 ⇥ 10�3 1.29 ⇥ 10�3 1.0 0.1%

0.5 7.41 ⇥ 10�3 0.27 ⇥ 10�3 7.36 ⇥ 10�3 1.0 0.7%

1.0 1.78 ⇥ 10�2 0.04 ⇥ 10�2 1.75 ⇥ 10�2 1.0 1.8%

molecules are removed. This is done because the vacuum simulation is much cheaper than the

in-water simulation, and practically, the control calculated in the corresponding vacuum systems

perform well enough in the in-water system, because we find, when tested, no further iteration is

needed to refine the control. In the vacuum system, we find probabilities P(⌧  T ) = 2.16⇥10�2,

8.66 ⇥ 10�3, 1.48 ⇥ 10�3 and 6.13 ⇥ 10�5 for T = 1.0, 0.5, 0.2 and 0.1 ps, respectively. These

values do not significantly di↵er from those of the dissolved system (see the second column of

Tab. 4.5). Noticing that butane is invariant with respect to transitional and rotational movement,

the above observations indicate that the transitional, rotational DOFs and the water structure

do not play a dominant role in the conformational change of butane, and the definition of control

only as a function as the dihedral angle, and the computation of control in the vacuum system

are reasonable choices.

The Fig. 4.5 the e↵ective dihedral angle energy is plotted being defined as the original

dihedral energy V�(�) plus the control Vctrl(�). We only show the e↵ective energy in the range

[40�, 150�], because the initial states of the trajectories are located in the range [40�, 80�], and the

trajectories are stopped when they reach � = 150�. For an easy comparison, all e↵ective energies

are shifted by a constant, so that they are of value zero at � = 150�. It clear that for smaller T

values, the control applied is stronger. The resulting probabilities P(⌧  T ) calculated by the

important sampling procedure are summarized in Tab. 4.5, which is consistent with Tab. 4.6 that

presents the brute force results (calculated from MMC = 100, 000 trajectoies). The consistency

16

IS of butane in a box of 900 water molecules (SPC/E, GROMOS force field) using cross-entropy minimization

[Zhang et al, SISC, 2014]



Take-home message

I Nonasymptotic adaptive importance sampling scheme based
on equivalent (dual) optimal control problem.

I Variational problem: find the optimal perturbation by
cross-entropy minimization.

I Method features short trajectories with minimum variance
estimators of the rare event statistics.

I Next steps: adaptivity, non-parametric framework, . . .



Thank you for your attention!
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