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Motivation: conformation dynamics of biomolecules

1.3us MD simulation of dodeca-alanin at T = 300K ‘ v»
(GROMOS96, visualization: Amira@ZIB)



Motivation: single molecule experiments

» Probing of equilibrium properties by
nonequilibrium experiments:

F=—logE[e "].

(includes rates, statistical weights, etc.)

» Perturbation drives the system out of
equilibrium with likelihood quotient

_ duo
dp

Foroe (ph)

» Experimental and numerical realization:
AFM, SMD, TMD, Metadynamics, ...

[Schlitter, J Mol Graph, 1994], [Schulten & Park, JCP, 2004], [H. et al, Proc Comput Sci, 2010]



Set-up: estimation problem

Given an “equilibrium” diffusion process X = (X:)t>0 on R”,
dXt = b(Xt)dt + O'(Xt)dBt s Xo =X,
we want to estimate path functionals of the form

h(x) = E[e”VX]

Example: mean passage time to a set C C R”

Let W = a7c. Then, for sufficiently small o > 0,

—a7 ! log ¢ = E[Tc] S (’)(a:)




Guiding example: bistable system

» Overdamped Langevin equation

dXy = —VV(X;)dt + V2edB; .

=SS VU TR N -

» Standard estimator of MGF ) = 1

N 1 A —art
1/}5 = N Z € .
i=1

» Small noise asymptotics (Kramers)
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[Freidlin & Wentzell, 1984], [Berglund, Markov Processes Relat Fields 2013]



Guiding example, cont'd

» Relative error of the MC estimator

\/ Varliy] .
" B[ !

» Varadhan's large deviations principle - S5 5 @5 o s 1 15
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» Unbounded relative error as ¢ — 0

time (ns)

[Asmussen et al, Encyclopedia of Operations Research and Management Sciences, 2012]
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Optimal controls from cross-entropy minimization

Numerical strategies for high-dimensional problems



Adaptive importance sampling of rare events



Guiding example, cont'd

> Mean first passage time for small €

E[rc] < exp(AV /e)

» Adaptive tilting of the potential

5 4 05 0 05 1 15
x

U(x, t) = V(x) — urx

decreases the energy barrier.

time (ns)

» Controlled Langevin equation

dX! = (uy — VV(XY)) dt + V/2edB; .




Estimation problem revisited

Given a “nonequilibrium” (tilted) diffusion process X“ = (X{)¢>o0,
dX{ = (b(X{) 4+ o(X)ue)dt + o(X{)dB:, X5 = x,
estimate a reweigthed version of :
E[e‘W(X)] — E“[e‘W(X")go(X”)]

with equilibrium /nonequilibrium likelihood ratio ¢ = ‘i!—‘l‘f_

Remark: We allow for W's of the general form

W(X) = /OT f(Xs,s)ds + g(X;),

for suitable functions f, g and an a.s. finite stopping time 7 < co.




Can we systematically speed up the sampling while controlling
the variance by tilting the energy landscape?



Variational characterization of free energies

Theorem (Donsker & Varadhan)

For any bounded and measurable function W it holds

—logE[e”"] = Jnf {EF[W] + KL(s, o)}

where KL(, o) > 0 is the KL divergence between p and po.

Sketch of proof: Let ¢ = C‘/j—’:f. Then

—Iog/e_Wduo = —Iog/e_W+'°g‘pdu
S/(W—low)du

with equality iff W — log ¢ is constant (u-a.s.).

[Boué & Dupuis, LCDS Report #95-7, 1995], [Dai Pra et al, Math Control Signals Systems, 1996]



Same same, but different. ..



Variational characterization of free energies, cont'd

Theorem

Technical details aside, let u* be a minimizer of the cost functional

u

E[W(X“) + % /OT |us|? ds]

under the controlled dynamics
dX¥ = (b(X¥) + o(X“)up)dt + (X )dBe, XY = x.
The minimizer is unique with J(u*) = — log¥(x). Moreover,

P(x) = e WEp(X) (as)).

[H & Schiitte, JSTAT, 2012], [H et al, Entropy, 2014]




Guiding example, cont'd

» Exit problem: f =a, g =0, 7 =71¢:

* . u 1 Tg 2
J(u*) =minE om'c—i—z |us|* ds
u 0

» Recovering equilibrium statistics by

s 1 05

Elre] = 2| J(w)

a=0

» Optimally tilted potential

time (ns)

U*(x,t) = V(x) — u; x

with stationary feedback u} = c(X").



Some remarks . ..



Duality between estimation and control

The optimal control is a feedback control in gradient form ,
i = ~20(X¢)TVF(XE 1),
with the bias potential being the value function

F(x,t) = min{J(u): X = x}.
(In many interesting cases, F = F(x) will be stationary.)

No-free-lunch theorem: The bias potential is given by

F=—log,
i.e., u* depends on the quantity we want to estimate.

[H & Schiitte, JSTAT, 2012], [H et al, Entropy, 2014]; cf. [Fleming, SIAM J Control, 1978]



More on the duality between estimation and control

The Legendre-type variational principle for the free energy furnishes
an equivalence between the dynamic programming equation

OF 1
——— 4+ min{LF +(o¢)-VF+ ~|c|>+f; =0 + b.c.
ot ceRk 2

for F and the Feynman-Kac formula for e=F = E[e™"]:

9 o
(at_l_>e —O,

with L being the infinitesimal generator of X/=°.



Related work on asymptotics (non-exhaustive)

» Exponential change of measure and large deviations statistics:
[Siegmund, Ann. Stat., 1976], [Heidelberger, ACM
Trans. Modeling Comp. Simulation, 1995], ...
(cf. also [Glasserman & Kou, Ann. Appl. Prob., 1997],
[Glasserman & Wang, Ann. Appl. Prob., 1997])

» Adaptive IS based on HJB and Isaac equations: [Dupuis &
Wang, Stochastics, 2004], [Dupuis & Wang, Math Oper Res,
2007], [Vanden-Eijnden & Weare, CPAM, 2012], ...

» Extensions to multiscale systems: [Spiliopoulos et al, Winter

Simulation Conference, 2013], Spiliopoulos et al., SIAM
MMS, 2012], [Zhang et al, Prob. Theor. Rel. F. 2017] ...

» For an overview see: [Asmussen & Glynn, Springer, 2007],
[Rubinstein & Kroese, Wiley, 2007]



Optimal controls from cross-entropy minimization



Two key facts about our control problem



If oo™ has a uniformly bounded inverse, then the optimal control
can be represented as a feedback law of the form

uf = o(X¢)) V(X t),
i=1

with coefficients ¢; € R and basis functions ¢; € C10(R", [0, 00)).



Letting p denote the probability (path) measure on C([0, o))
associated with the tilted dynamics X", it holds that

J(u) = J(u*) = KL(p, p17)
with p* = p(u*) and
du .
. log <> dp if p < p®
o0 otherwise

the Kullback-Leibler divergence between 1 and p*.



Cross-entropy method for diffusions

Idea: seek a minimizer of J among all controls of the form

M
fe = o(X)> aVei(X{ 1), ¢i€ COR,[0,0)).
i=1
and minimize the Kullback-Leibler divergence

5(n) = KL(p, 1*)

over all candidate probability measures of the form p = p(d).

Remark: unique minimizer is given by du* = ¢ ~te Wdypy.



Unfortunately, ...



Cross-entropy method for diffusions, cont'd

...that doesn’t work without knowing the normalization factor 1.

Feasible cross-entropy minimization

Minimization of the auxiliary functional KL(x*,-) is equivalent to
cross-entropy minimization: minimize

CE(n) = —/logu du”

over all admissible y = (&), with dp* oc e™Wdpg.

Note: KL(u,p*)=0 iff KL(u*, 1) = 0, which holds iff = u*.

[Rubinstein & Kroese, Springer, 2004], [Zhang et al, SISC, 2014]



Some remarks

» The cross-entropy functional can be recast as

CE() = — / (log u(8)) e~ WX p(2) dp(3)

where both ¢ and p (more precisely: its Wiener measure
density) can be computed from Girsanov’s Theorem.

» The necessary optimality conditions are of the form
Ac=¢(

with unknowns ¢ = (ci, ..., cp) and coefficients A = (Aj),
¢=1((,-..,Cm) that are computable by Monte Carlo.

» In practice, annealing and clever choice of basis functions ¢;
(e.g. global or local) greatly enhances convergence.

[H et al, Nonlinearity, 2016], [Badowski, PhD thesis, 2016], [Kappen et al, J Stat Phys, 2017]



Example | (guiding example)



Computing the mean first passage time (n = 1)

Minimize

J(u;a):E[aT—f—l/ |ut|2dt}
4 Jo

with 7 = inf{t > 0: X; € [-1.1, —1]} and the dynamics

dX! = (u — VV(XY)) dt + 2712 dB,

0

5. 80

-15 -1 -05

Skew double-well potential V and MFPT of the set S = [—1.1, —1] (FEM reference solution).

[H & Schiitte, JSTAT, 2012]
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Computing the mean first passage time, cont'd

Cross-entropy minimization using a parametric ansatz

10
c(x) = Zaiv¢i(x), ¢; - equispaced Gaussians
i=1
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Biasing potential V + 2F and unbiased estimate of the limiting MFPT.

cf. [Lorenz Richter, MSc thesis, 2016], [Arampatatzis et al, JCP, 2016]



Numerical strategies for high-dimensional problems



The bad news




The good news: suboptimal controls from averaging

Averaged control problem: minimize

v

I(v) —E[V‘V(gV) - 1/07 ]vs\zds]

subject to the averaged dynamics

d&i = (X(&)ve—B(&7))dt+ (& )dWs

Control approximation strategy

uf ~ c(E(X) t) = VEXT)vi

[H et al, Nonlinearity, 2016]; cf. [Legoll & Leliévre, Nonlinearity, 2010]



The good news, cont'd

Uniform bound of the relative error
using “averaged” optimal controls

Orel < CN_1/2 771/8 y N = Thast

Tslow

Issues for highly oscillatory controls:

(a) Weak convergence of controls

u'—u A JW") — J(u)

(b) Log efficient estimators based on
HJB subsolutions due to Dupuis,
Spiliopoulos and Wang

[H et al, J Comp Dyn, 2014], [Zhang et al, PTRF, 2017], cf. [Spiliopoulos et al, MMS, 2012]



Remark: homogenization of forward-backward SDE

» FBSDE representation for a finite stopping time 7 = T:

dX? = b"(XD)ds + o"(XD)dWe , X} = x
dY) = hU(XJ, Y2, Z0)ds + Z0 - dWs, YT = g(X}),

where t < s < T and
F'(x,t) = Y{ (as a function of the initial value x)

» Homogenization result: strong convergence of control value
(so far in the Gaussian case only)

sup{| Y/ — Yi|: 0<t < T} < Cp/?
» Semi-explicit discretization of BSDE by least-squares MC.

[Bender & Steiner, in: Numer Meth Finance, 2012], [Kebiri et al, Preprint, 2017]



Example Il (suboptimal control)



Conformational transition of butane in water (n =

Probability of making a gauche-trans transition before time T:
. L [7
—logP(r7¢ < T)=minE 2 |ug|* dt —log 1pc(X:) |,
v 0

with 7 = min{7¢, T} and 7¢ denoting the first exit time from the
gauche conformation “C" with smooth boundary 0C

gauche
4 K T [ps| P(r<T) Error Var Accel. T
( /&y 0.1 430x 1075 0.77x107°  3.53 x 1075 425
b\u 1 0.2 1211078 011 x 107 250 x 1074 26.0
4 3 2 0.5 6.85 x 1073 0.38x 1073  2.88x 1073 13.0
ins 1.0 1.74x1072  0.08x 1072  1.21x 1072 7.0

IS of butane in a box of 900 water molecules (SPC/E, GROMOS force field) using cross-entropy minimization

[Zhang et al, SISC, 2014]



Take-home message

» Nonasymptotic adaptive importance sampling scheme based
on equivalent (dual) optimal control problem.

» Variational problem: find the optimal perturbation by
cross-entropy minimization.

» Method features short trajectories with minimum variance
estimators of the rare event statistics.

» Next steps: adaptivity, non-parametric framework, ...



Thank you for your attention!
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