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Collective behavior of bacteria

Bacteria show complex collective behavior

For example, bacteria such as E. Coli are
capable of active propulsion, i.e. have
a free-swimming (planktonic) stage.

They are capable of sensing their
environment through quorum sensing,
density-dependent gene regulation.

They stick to surface to form biofilms,
high density colonies.

They exhibit cyclic/time-periodic
behavior: Biofilm formation, maturation,
dispersion, planktonic stage.

All these are controlled by highly
complex bio-chemical processes.
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Collective behavior of bacteria

Statistical mechanics of active matter
Stepping away from the biological complexity: Is it possible to
describe similarly complex life-cycles as emergent behavior of
a large number of simple individual agents subject to a small
number of collective rules?

Intrinsically out-of-equilibrium system: Statistical mechanics of active matter
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Continuum description of motile bacteria

Self-propelled bacteria modeled as
active Brownian motion:

For position X ∈ Ω ⊂ Rd, direction
n̂ ∈ Sd−1, and location dependent
swim speed v(X) ∈ R

Ẋ = v(X)n̂ ,

dn̂ = τ−1/2P ◦ dW , P = Id− n̂n̂T

Direction diffuses on Sd−1 with tumbling
rate τ−1.

v

active Brownian motion†

Limit τ → 0 yields Brownian motion

dX =
√

2D(X) ◦ dW with diffusivity D(x) = τv2(x)

† M. Cates, J. Tailleur (2015)
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Continuum description of motile bacteria
Cates & Tailleur

Now consider N such particles with position Xi, i ∈ {1, . . . , N}.

To model quorum sensing, introduce scale δ over which particles feel each other’s
influence,

dXi =
√

2D(ρN,δ(t,Xi)) ◦ dWi

with

ρN,δ(t, x) =

∫
Ω

φδ(x− y)ρN (t, y) dy, ρN (t, x) =
1

N

N∑
j=1

δ(x−Xj(t))

In the limit N →∞, yields closed integro-differential equation for ρN → ρ,

∂tρ = ∇ · (D(ρδ)∇ρ+ 1
2
D′(ρδ)∇ρδ), ρδ(t, x) =

∫
Ω

φδ(x− y)ρ(t, x) dy

in the sense that

∀ ε, T > 0 : lim
N→∞

P
(

sup
0≤t≤T

∣∣∣ 1

N

N∑
j=1

f(Xj(t))−
∫
Ω

ρ(t, x)f(x) dx
∣∣∣ > ε

)
= 0
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Continuum description of motile bacteria

To make this closed in ρ(t, x), consider D(ρ) = D0e−ρ, and expand in δ � 1,

ρδ(x) ≈ ρ(x) + 1
2
δ2∂2

xρ(x) .

Then we obtain an effective diffusion equation

∂tρ = ∇ · (De(ρ)∇ρ− δ2ρD(ρ)∇∆ρ)

with diffusivity
De(ρ) = D(ρ) + 1

2
D′(ρ)ρ .

Despite non-equilibrium microscopic model, continuum model restores detailed balance

∂tρ = ∇ · (ρD(ρ)∇(δE/δρ))

with

E(ρ) =

∫
Ω

(ρ log ρ− ρ+ f(ρ) + 1
2
δ2|∇ρ|2) dx , f ′(ρ) = 1

2
logD(ρ) (free energy)

(“Thermodynamic mapping” depends on regularization, not preserved by original Cates & Tailleur)
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Motility induced phase separation

∂tρ = ∇ · (De(ρ)∇ρ− δ2ρD(ρ)∇∆ρ) ,

De(ρ) = D(ρ) + 1
2
D′(ρ)ρ

D(ρ) > 0 diffusivity, but De(ρ) < 0 possible!

For D(ρ) = D0e−ρ

effective diffusivity

De(ρ) = D0(1− 1
2
ρ)e−ρ

Homogeneous configuration stable if

ρ̄ =
1

|Ω|

∫
Ω

ρ(x) dx < 2

If ρ̄ > 2, then phase separation occurs
Feedback loop: Accumulation induced
slowdown + slowdown induced
accumulation
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Motility induced phase separation
Up to now, single behavioral rule:
Active Brownian motion with density dependent diffusivity

Introduce second behavioral rule: Population dynamics

A
λr−→ A+A λr = α (reproduction)

A+A
λc−→ A λc = α/ρ0 (competition)

with carrying capacity ρ0 and timescale α, leads to logistic growth.
∂tρ = ∇ · (De(ρ)∇ρ− δ2ρD(ρ)∇∆ρ)+αρ(1− ρ/ρ0)

Phase separation eventually if

De(ρ0) < 0

System will drive itself into instability

Coarsening stopped by growth,
arrested phase separation†
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† Cates, M. E. and Marenduzzo, D. and Pagonabarraga, I. and Tailleur, J. (2010)

Tobias Grafke Non-equilibrium self-organization of motile bacteria



Motility induced phase separation
Up to now, single behavioral rule:
Active Brownian motion with density dependent diffusivity

Introduce second behavioral rule: Population dynamics

A
λr−→ A+A λr = α (reproduction)

A+A
λc−→ A λc = α/ρ0 (competition)

with carrying capacity ρ0 and timescale α, leads to logistic growth.
∂tρ = ∇ · (De(ρ)∇ρ− δ2ρD(ρ)∇∆ρ)+αρ(1− ρ/ρ0)

Phase separation eventually if

De(ρ0) < 0

System will drive itself into instability

Coarsening stopped by growth,
arrested phase separation†

0.0 0.2 0.4 0.6 0.8 1.0

x

0

5

10

15

20

ρ
(x

)

ρ(x)

† Cates, M. E. and Marenduzzo, D. and Pagonabarraga, I. and Tailleur, J. (2010)
Tobias Grafke Non-equilibrium self-organization of motile bacteria



Timescale separation
Consider large timescale separation, α� 1, i.e. fast propulsion, slow reproduction

∂tρ = ∇ · (De(ρ)∇ρ− δ2ρD(ρ)∇∆ρ) + αρ(1− ρ/ρ0)

Asymptotic analysis:
Propulsion is conservative,
ρ̄ is invariant under fast dynamics
Emergence of slow manifoldM,

0 = ∇ · (De(ρ)∇ρ− δ2ρD(ρ)∇∆ρ)

foliated by ρ̄.
Obtain reduced dynamics

˙̄ρ = α(ρ̄− ρ2/ρ0), ρ = ρM(x, ρ̄(t))

3 regimes

ρ0 < ρS homogeneous solution
ρS < ρ0 < ρc limit cycles
ρc < ρ0 two stable fixed points
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1∫
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ρ(x) dx
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Timescale separation
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∂xρ(0) = ∂xρ(1) = 0
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Timescale separation
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The effect of fluctuations

∂tρ = ∇ · (De(ρ)∇ρ− δ2ρD(ρ)∇∆ρ) + αρ(1− ρ/ρ0)

Is a law of large numbers (LLN) for N →∞
(where N typical number of particles)

Gaussian fluctuations around these dynamics captured by
central limit theorem (CLT)

We are interested in long time behavior: Large deviation
theory (LDT)

Both propulsion and reproduction are subject to fluctuations
for finite N .

Tobias Grafke Non-equilibrium self-organization of motile bacteria



The effect of fluctuations: Large deviation theory

Key object: Rate function

ST (φ) = 1
2

T∫
0

∣∣∣σ(φ)−1
(
φ̇− b(φ)

)∣∣∣2 dt = 1
2

T∫
0

L(φ, φ̇) dt

associated with the S(P)DE

dXε(t) = b(Xε(t)) dt+
√
εσ(Xε(t)) dW (t)

Then, the probability that {Xε(t)}t∈[0,T ] is close to a path {φ(t)}t∈[0,T ] is

P
{

sup
0≤t≤T

|Xε(t)− φ(t)| < δ

}
� exp

(
−ε−1ST (φ)

)
for ε→ 0. The problem is reduced to a minimization problem

P {Xε(T ) ∈ A|Xε(0) = x} � exp

(
−ε−1 inf

φ:φ(0)=x,φ(T )∈A
ST (φ)

)
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The effect of fluctuations: Large deviation theory
Propulsion

Gradient system

∂tρ = −MδE/δρ+
√

2
N
M1/2η(x, t)

for

E(ρ) =

∫
Ω

(ρ log ρ− ρ+ f(ρ) + 1
2
δ2|∇ρ|2) dx

M(ρ)ξ = ∇ · (ρD(ρ)∇ξ)

Reproduction

Poisson processes at each location
for the reactions

A
λr−→ A+A , λr = α (reproduction)

A+A
λc−→ A , λc = α/ρ0 (competition)

then LLN is

∂tρ = αρ(1− ρ/ρ0)

with Poisson noise.

Large deviation Hamiltonian

Hp(ρ, θ) =

∫
Ω

θ∇ · (De∇ρ− δ2
ρD∇∇2

ρ)

+ 1
2ρD|∇θ|

2
dx

Hr(ρ, θ) = α

∫
Ω

(
ρ(e

θ − 1) + ρ
2
/ρ0(e

−θ − 1)
)
dx

(corresponding SPDE is ill-posed)
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ρD∇∇2

ρ)

+ 1
2ρD|∇θ|

2
dx

Hr(ρ, θ) = α

∫
Ω

(
ρ(e

θ − 1) + ρ
2
/ρ0(e

−θ − 1)
)
dx

(corresponding SPDE is ill-posed)
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The effect of fluctuations: Large deviation theory
Propulsion

Gradient system

∂tρ = −MδE/δρ+
√

2
N
M1/2η(x, t)

for

E(ρ) =

∫
Ω

(ρ log ρ− ρ+ f(ρ) + 1
2
δ2|∇ρ|2) dx

M(ρ)ξ = ∇ · (ρD(ρ)∇ξ)

Reproduction

Poisson processes at each location
for the reactions

A
λr−→ A+A , λr = α (reproduction)

A+A
λc−→ A , λc = α/ρ0 (competition)

then LLN is

∂tρ = αρ(1− ρ/ρ0)

with Poisson noise.

Large deviation Hamiltonian

Hp(ρ, θ) =

∫
Ω

θ∇ · (De∇ρ− δ2
ρD∇∇2

ρ)

+ 1
2ρD|∇θ|

2
dx

Hr(ρ, θ) = α

∫
Ω

(
ρ(e

θ − 1) + ρ
2
/ρ0(e

−θ − 1)
)
dx

(corresponding SPDE is ill-posed)
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The effect of fluctuations: Quasi time periodic regime
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These are not rare events:
Zero action for transition when
α→ 0
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The effect of fluctuations: Quasi time periodic regime
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The effect of fluctuations: Quasi time periodic regime
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The effect of fluctuations: Metastable regime
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The effect of fluctuations: Metastable regime
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The effect of fluctuations: Metastable regime
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The effect of fluctuations: Metastable regime
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At finite N , accounting for entropy, only
part of the transition with non-zero
action is robust (and matters).
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Non-equilibrium self-organization

Complex collective behavior for simple
active agents:

Propulsion and Reproduction

When ρ0 < ρS , planktonic phase is
robust.

When ρS < ρ0 < ρc, particles oscillate
between biofilm and planktonic phase

When ρ0 < ρc, biofilms are metastable.
They rarely disperse and reform by
dieing out

Full phase diagram depends on carrying
capacity ρ0 and domain size δ−1.
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Numerical Computation of Large Deviation Minimizers

Main problem
For our system and observable, find the minimizer φ? such
that

ST (φ?) = inf
φ
ST (φ) ,

where the minimization is over all trajectories fulfilling the
boundary conditions.

The knowledge of this minimizer (MLP) yields

Most probable evolution in time from initial state into this final
configuration

Corresponding optimal force, computable from auxiliary field θ

Tail scaling behavior of the PDF of our observable, roughly through
P{xε(T )} ∼ exp(− 1

ε infφ ST (φ))
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Numerical Computation of Large Deviation Minimizers

Main problem
For our system and observable, find the minimizer φ? such
that

ST (φ?) = inf
φ
ST (φ) ,

where the minimization is over all trajectories fulfilling the
boundary conditions.

Its computation is challenging:

This is an infinite-dimensional PDE constraint optimization. The search
space is large (space-time).
Each iteration we have to solve a system of coupled PDEs.
If we are computing transition probabilities, we are interested in the
Quasipotential,

V (x1, x2) = inf
T>0

inf
φ
ST (φ)

This infimum is not attained in general, T →∞.
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Challenges: Infinite transition time and geometric rate function

Quasipotential
V (x1, x2) = inf

T>0
inf
φ
ST (φ)

This infimum is not attained in general, T →∞.

In the case T →∞, realize, that H(x, θ) = 0, so that∫
L(x, ẋ) dt =

∫
sup
θ

(〈ẋ, θ〉 − H(x, θ)) dt = sup
θ:H(x,θ)=0

∫
〈ẋ, θ〉 dt

Effectively:
Reduce minimization over all paths to finding geodesic of the
associated (Finsler) metric.

Heymann, Vanden-Eijnden (2008), Grafke, Schäfer, Vanden-Eijnden (2017)
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Summary

Non-equilibrium statistical mechanics theory of active matter is still in
its infancy

One example is Motility induced phase separation — direct
consequence of motile agents with density dependent drift velocity

Adding population dynamics is enough to yield complex emergent
behavior reminiscent of biofilm-planktonic lifecycle

Fluctuations in MIPS + Reproduction can be analyzed by LDT

Noise-driven spatio-temporal self-organization

Limit cycles are temporally but not spatially robust against
fluctuations
Transitions between metastable colonies are out-of-equilibrium
and occurs different to detailed-balance intuition

Computation via geometric minimization of LDT rate function
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