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Non-equilibrium self-organization of motile bacteria

with fluctuating population and speed
Tobias Grafke, M. Cates, E. Vanden-Eijnden



Collective behavior of bacteria

Bacteria show complex collective behavior

® For example, bacteria such as E. Coli are
capable of active propulsion, i.e. have
a free-swimming (plankfonic) stage.

= They are capable of sensing their
environment through quorum sensing,
density-dependent gene regulation.

They stick to surface to form biofilms,
high density colonies.

= They exhibit cyclic/time-periodic
behavior: Biofilm formation, maturation,
dispersion, plankfonic stage.

All these are controlled by highly
complex bio-chemical processes.
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Collective behavior of bacteria
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Collective behavior of bacteria

Statistical mechanics of active matter

Stepping away from the biological complexity: Is it possible to
describe similarly complex life-cycles as emergent behavior of
a large number of simple individual agents subject to a small
number of collective rules?

Intrinsically out-of-equilibrium system: Statistical mechanics of active matter
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Continuum description of motile bacteria

= Self-propelled bacteria modeled as
active Brownian motion:

For position X € Q ¢ R4, direction
7 € S4~1, and location dependent
swim speed v(X) € R

X =v(X)n,
dh=7"2PodW, P=1d-nanT
Direction diffuses on S¢~! with fumbling active Brownian motion’

rate 71,

= |imit 7 — 0 yields Brownian motion

dX = \/2D(X)odW  with diffusivity — D(z) = 70%(z)

T M. Cates, J. Tailleur (2015)
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Continuum description of motile bacteria

Cates & Tailleur
Now consider N such particles with position X;,i € {1,...,N}.

To model quorum sensing, infroduce scale ¢ over which particles feel each other’s
influence,

dX; = 2D(pN)5(L,Xi)) o dW;
with
S 6 - X, ()

N <

pN,s(t,x) = /<Z>5(x —y)pn(t,v) dy, pN(t,x) =
Q J=1
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Continuum description of motile bacteria

Cates & Tailleur

Now consider N such particles with position X;,i € {1,...,N}.

To model quorum sensing, infroduce scale ¢ over which particles feel each other’s
influence,

dX; = 2D(pN)5(L, X;)) o dW;
with
LN
pN,s(tx) = /¢5($ —yenty)dy,  pn(tr) = o D 6@ — X;(1)
!

Jj=1

In the limit N — oo, yields closed integro-differential equation for pn — p,

dep =V - (D(ps)Vp+ 5D (ps)Vps),  pslt,x) = /¢>5(:L° —y)p(t,x) dy
in the sense that

Ve,T>0: llInOOP< sup ‘— Zf(X () /p(t,x)f(x)dm) >6) =0

Q
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Continuum description of motile bacteria

To make this closed in p(t, z), consider D(p) = Doe*, and expand in § < 1,
ps(x) = p(x) + 5603 p(x) .
Then we obtain an effective diffusion equation
dip =V - (De(p)Vp — 6°pD(p)VAp)

with diffusivity
De(p) = D(p)+ 5D’ (p)p -
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Continuum description of motile bacteria

To make this closed in p(t, z), consider D(p) = Doe*, and expand in § < 1,
ps(x) = p(x) + 5603 p(x) .
Then we obtain an effective diffusion equation
dip =V - (De(p)Vp — 6°pD(p)VAp)

with diffusivity
De(p) = D(p)+ 5D’ (p)p -

Despite non-equilibrium microscopic model, continuum model restores detailed balance
dip =V - (pD(p)V (6 E/5p))
with

Bp) = [(plogp—p+ (o) + 56%VplP)dz, 1'(p) = 1o Di(p) (Free energy)
Q

("Thermodynamic mapping” depends on regularization, not preserved by original Cates & Tailleur)
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Motility induced phase separation

dep =V - (De(p)Vp — 6pD(p)VAp),

De(p) = D(p) + 5D'(p)p

D(p) > 0 diffusivity, but D.(p) < 0 possible!
For D(p) = Dge™"
m effective diffusivity

De(p) = Do(1 — §p)e”

® Homogeneous configuration stable if

7/
p=— | p(z)dx <2
oy
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Motility induced phase separation

dtp =V - (De(p)Vp—8°pD(p)VAp),

De(p) = D(p) + 5D'(p)p

D(p) > 0 diffusivity, but D.(p) < 0 possible!
For D(p) = Dge™"
m effective diffusivity

De(p) = Do(1 — §p)e”

® Homogeneous configuration stable if

7/
p=— | p(z)dx <2
oy

= |f 5 > 2, then phase separation occurs
Feedback loop: Accumulation induced
slowdown + slowdown induced
accumulation
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Motility induced phase separation
Up to now, single behavioral rule:
Active Brownian motion with density dependent diffusivity

Infroduce second behavioral rule: Population dynamics
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Motility induced phase separation

Up to now, single behavioral rule:
Active Brownian motion with density dependent diffusivity

Infroduce second behavioral rule: Population dynamics

A2 At A A=« (reproduction)
A+ A2 A Ae = a/po (competition)

with carrying capacity po and timescale «, leads fo logistic growth.
dtp =V - (De(p)Vp — 62pD(p)VAp)+ap(l — p/po)

= Phase separation eventually if 20
De(po) <0 15

B
= 10

= System will drive itself into instability

5

= Coarsening stopped by growth,

arrested phase separation’ 0
0.0 0.2 0.4 0.6
T

T Cates, M. E. and Marenduzzo, D. and Pagonabarraga, I. and Tailleur, J. (2010)
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Timescale separation

Consider large timescale separation, « < 1, i.e. fast propulsion, slow reproduction
dtp =V - (Delp)Vp — 62pD(p)VAp) + ap(l — p/po)

Asymptotic analysis:

= Propulsion is conservative,
p is invariant under fast dynamics

= Emergence of slow manifold M,
0=V -(De(p)Vp — 8°pD(p)VAp)
foliated by p.
= Obtain reduced dynamics

p=a(p—p2/po), p=prm(z,p(t)

= 3 regimes
po < ps homogeneous solution
ps < po < pe limit cycles
pe < po two stable fixed points
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Timescale separation

35
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541
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Homogeneous regime:

Po < Pc
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T

Q=10,1]
Neumann boundary conditions,

9:p(0) = 9up(1) =0
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Timescale separation
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Timescale separation

35
- pPA = PB
30 20
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15
20
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15 < 10
10
5
5
0 0
0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0
Po T
Stable regime: Q2 =1[0,1]

Neumann boundary conditions,
92p(0) = 9zp(1) =0

Pe < Po
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The effect of fluctuations

dip =V - (De(p)Vp — 6°pD(p)VAp) + ap(1 — p/po)

= |s a law of large numbers (LLN) for N — oo
(where N typical number of particles)

®m Gaussian fluctuations around these dynamics captured by
central limit theorem (CLT)

= We are inferested in long time behavior: Large deviation
theory (LDT)

® Both propulsion and reproduction are subject to fluctuations
for finite V.
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The effect of fluctuations: Large deviation theory

Key object: Rate function

T

T
5r(6) =4 [[|ote) " (- b@))| dt =1 [ £(6.6)

0

associated with the S(P)DE
dX(t) =b(X(t)) dt + Vea (X (t)) dW (1)
Then, the probability that {X<(t)}.cjo,7) Is Close to a path {¢(t) }iepo,77 is

P{ sup_[X<(t) — 6(1)] < 6} < exp (—157(6))

0<t<T

for e — 0. The problem is reduced to a minimization problem

P{X(T) € AIX(0) =a} <exp(—¢! inf 8 >
{X(T) € A|X(0) = z} eXp< € b0 (T)eA 7(9)
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The effect of fluctuations: Large deviation theory

Propulsion

Gradient system
Bip = —MSE/5p + \/%Ml”n(ri)
for

B() = [(plogp— p+ f(p) + 18|76 do
Q
M(p)§ =V - (pD(p)VE)

Tobias Grafke
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The effect of fluctuations: Large deviation theory

Propulsion

Gradient system

Oip=—MSE/Sp+ /2 M"/*n(x,t)
for

B() = [(plogp— p+ f(p) + 18|76 do
Q

M(p)§ =V - (pD(p)VE)

Large deviation Hamiltonian
Hyp(p, 0) :/9v (D.Vp — 62pDVV?p)

Q
+ 1pD|VO|? da

Tobias Grafke
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The effect of fluctuations: Large deviation theory

Propulsion Reproduction

Gradient system Poisson processes at each location
for the reactions

Oip=—MSE/Sp+ /2 M"/*n(x,t)

A2y A +A, A=« (reproduction)
for A+ A e, A, Ae = a/po  (competition)

B(p) = /(plogp — p+ F(p) + 36%IVpI%) de then LN is
Q

M(p)¢ =V - (pD(p)VE) ip = ap(1—=p/po)
with Poisson noise.

Large deviation Hamiltonian
Hyp(p, 0) :/9v (DoVp — 62pDVV?p)

Q
+ 1pD|VO|? da
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The effect of fluctuations: Large deviation theory

Propulsion Reproduction

Gradient system Poisson processes at each location
for the reactions

Oip=—MSE/Sp+ /2 M"/*n(x,t)

A2y A +A, A=« (reproduction)
for A+ A e, A, Ae = a/po  (competition)

B(p) = /(plogp — p+ F(p) + 36%IVpI%) de then LN is
Q

M(p)¢ =V - (pD(p)VE) ip = ap(1—=p/po)
with Poisson noise.

Large deviation Hamiltonian

Hyp(p,0) :/OV (DoVp — 62pDVV?p) Hr(p,0) = (y/(;)(ee — 1)+ p%/pole™? — 1)) dx
Q Q
+ 1pD|VO|? da

(corresponding SPDE is ill-posed)
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The effect of fluctuations: Quasi time periodic regime

- @ stable slow manifold
5 A4 unstable slow manifold
limit cycle
10 +
54
= ‘
=
0 —fo ‘\:,................................
R
-5
-10
T T I T
1.5 2.0 2.5 3.0 3.5

Consider ps < po < pe
= Tiny fluctuations alter the structure
of the limit cycle
= These are not rare events:

Zero action for transition when
a—0

T. Grafke, M. Cates, E. Vanden-Eijnden (2017) arXiv:1703.06923
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The effect of fluctuations: Quasi time periodic regime

- @ stable slow manifold 1.6
5 A4 unstable slow manifold

limit cycle

—— transition

t/a

Consider ps < po < pe
= Tiny fluctuations alter the structure
of the limit cycle
= These are not rare events:

Zero action for transition when 0.0 02 04 06 08 1.0
a—0 T

T. Grafke, M. Cates, E. Vanden-Eijnden (2017) arXiv:1703.06923
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The effect of fluctuations: Quasi time periodic regime

19.2

16.8

14.4

12.0

9.6

7.2

4.0
stable slow manifold
unstable slow manifold
limit cycle 3.5
transition
2.5
15
P
Consider pg < po < pe
= Tiny fluctuations alter the structure 05 mlor
of the limit cycle
= These are not rare events: 0.0 —
Zero action for transition when 0.0 02 04 06 08 1.0
a—0 T

T. Grafke, M. Cates, E. Vanden-Eijnden (2017) arXiv:1703.06923
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The effect of fluctuations: Metastable regime

e stable slow manifold
20 - '''*' unstable slow manifold
10 H
A
= /
B
,10 —
-20 T T T T T T T 1

15 20 25 30 35 40 45 50 55
7

Consider p. < po

= Fixed points become metastable
= Transitions between them:

Finite action, exponentially small
probability, LDT regime

T. Grafke, E. Vanden-Eijnden (2017) arXiv:1704.06723
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The effect of fluctuations: Metastable regime
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Consider p. < po

= Fixed points become metastable
= Transitions between them:

Finite action, exponentially small
probability, LDT regime

T. Grafke, E. Vanden-Eijnden (2017) arXiv:1704.06723
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The effect of fluctuations: Metastable regime

20
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=
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I

Consider p. < po

= Fixed points become metastable
= Transitions between them:

Finite action, exponentially small
probability, LDT regime

T. Grafke, E. Vanden-Eijnden (2017) arXiv:1704.06723
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The effect of fluctuations: Metastable regime

e stable slow manifold
20 - '''*' unstable slow manifold
sample

10 H
=
=0

~10 -

-20 T T T T T T T 1

1.5 2.0 25 3.0 35 40 45 50 55
P

At finite N, accounting for entropy, only
part of the transition with non-zero
action is robust (and matters).

T. Grafke, E. Vanden-Eijnden (2017) arXiv:1704.06723
Tobias Grafke
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Non-equilibrium self-organization

Complex collective behavior for simple
active agents:

Propulsion and Reproduction

= When py < pg. planktonic phase is

robust.
= When ps < po < pe, particles oscillate 35 I o
between biofilm and planktonic phase 30 I sk I
235 4 & | periodic '
B When pg < pe, biofilms are metastable. 20 g ‘|
They rarely disperse and reform by 5 5 £ ! :
dieing out ; § \ metastable
104 = -
= Full phase diagram depends on carrying 54 00000 TT == ——— -
capacity pg and domain size 61, 0 . . . . .
0 2 4 6 8 10

T. Grafke, M. Cates, E. Vanden-Eijnden (2017) arXiv:1703.06923
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Numerical Computation of Large Deviation Minimizers

Main problem

For our system and observable, find the minimizer ¢* such
that
St(¢") = inf Sr(9),

where the minimization is over all tfrajectories fulfilling the
boundary conditions.

The knowledge of this minimizer (MLP) yields

= Most probalble evolution in time from initial state into this final
configuration

® Corresponding optimal force, computable from auxiliary field 0

= Tail scaling behavior of the PDF of our observable, roughly through
P{z(T)} ~ exp(—¢ infy Sr(¢))
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Numerical Computation of Large Deviation Minimizers

Main problem

For our system and observable, find the minimizer ¢* such
that
St(¢") = inf Sr(9),

where the minimization is over all tfrajectories fulfilling the
boundary conditions.

Its computation is challenging:

® This is an infinite-dimensional PDE constraint optimization. The search
space is large (space-time).
Each iteration we have to solve a system of coupled PDEs.

® |f we are computing transition probabilities, we are interested in the
Quasipotential,
V(.Tl, l‘g) = %I;f;) H;f ST(QZ))

This infimum is not attained in general, T' — oc.
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Challenges: Infinite transition time and geometric rate function

Quasipotential

V(xy,x9) = }I;% ir(;f St(o)

This infimum is not attained in general, T — .

In the case T' — oo, realize, that H(x,0) = 0, so that

/,C(J:,j:)dt:/31;p((.7’:,9>77-l(.77,9)) dt = sup)o/(j:,@) dt

0:H(x,0

Effectively:

Reduce minimization over all paths to finding geodesic of the
associated (Finsler) metric.
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Reduce minimization over all paths to finding geodesic of the
associated (Finsler) metric.

Heymann, Vanden-Eijnden (2008), Grafke, Schafer, Vanden-Eijnden (2017)
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Summary
= Non-equilibrium statistical mechanics theory of active matter is still in
its infancy

= One example is Motility induced phase separation — direct
consequence of motile agents with density dependent drift velocity

= Adding population dynamics is enough to yield complex emergent
behavior reminiscent of biofilm-planktonic lifecycle

® Fluctuations in MIPS + Reproduction can be analyzed by LDT
= Noise-driven spatio-temporal self-organization

® Limit cycles are temporally but not spatially robust against
fluctuations

® Transitions between metastable colonies are out-of-equilibrium
and occurs different to detailed-balance intuition

= Computation via geometric minimization of LDT rate function
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