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Problems

Large deviation problem

P(An ∈ B) ≈ e−nI

Dual problem

E [ekAn ] ≈ enλ(k)

• Generating function

• Spectral problem (Kac)

Prediction problem

How is the fluctuation created?

• Reaction or optimal path

• Fluctuation process

• Conditioning
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Questions
• Equilibrium or

nonequilibrium
method?

• Equilibrium vs
nonequilibrium
fluctuations

• Nonequilibrium
more difficult?

Methods covered
• Spectral

• Optimization

• Importance sampling
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Low-noise large deviations

• Process:

dX ε
t = F (X ε

t )dt +
√
ε dWt , X0 ∈ O

• Transition rare event:

P(X ε
τ ∈ B|X0 ∈ O) ≈ e−V /ε, ε→ 0

D

∂D

t

Freidlin-Wentzell-Graham

V = inf
x∈B

V (x)︸ ︷︷ ︸
quasi-potential

= inf
x∈B

inf
x0∈O,xt=x

1

2

∫ t

0
(ẋs − F (xs))2ds︸ ︷︷ ︸

FW action, Lagrangian J[x]

• Deterministic control problem

• Optimal path {x∗t }
• V (x) solves Hamilton-Jacobi-Bellman equation (1st order)
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Low-noise large deviations (cont’d)

Fluctuation created by optimal path

Conditioning

• P[x ] ≈ e−J[x]/ε max

• P[x |escape event] concentrates
on optimal path

Equilibrium

• Optimal path = relaxation pathR

• V (x) = J[xRrelax]

Nonequilibrium

• Optimal path 6= relaxation pathR

• Current loops

• Transversal decomposition [Graham 80’s]

904 D G Luchinsky et al

3.2. Prehistory probability distribution

To investigate the dynamics of large fluctuations in the stationary regime, one may adopt
an approach (Dykman et al 1992c) in which one accumulates the information about all
arrivals of the system in the close vicinity of a chosen state xf . In the experiments the
state of the system is monitored continuously. Two such events, where the trajectory of a
one-variable system passed through xf , are shown in figure 4. The interesting region of the
path—the fluctuational part f coming to xf—is then stored. An ensemble-average of such
trajectories (see later), built up over a period of continuous monitoring (typically weeks),
creates the prehistory probability distribution ph(x, t; xf , tf ) (Dykman et al 1992c). If a
point xf lies far from the attractor, so that the stationary probability density ⇢(xf ) is small,
the time intervals between successive passages of xf will be large; they will considerably
exceed both the characteristic relaxation time of the system, ⌧r, and the noise correlation
time, ⌧c. The arrivals of the system at xf are, therefore, mutually uncorrelated. Since the
moment of observation tf is the only instant of time singled out under stationary conditions,
the prehistory probability distribution can be consistently defined as the probability density
ph(x, t; xf tf ) ⌘ ⇢(xi , ti; x, t; xf , tf ) of the system being at x at time t if it was at xf at
time tf (where tf > t), with ti ! �1, and xi close to the attractor xeq.

Figure 4. Fluctuational behaviour measured and calculated for a simple one-dimensional model
equilibrium system: the double-well Duffing oscillator with K(x) = x � x3, for D = 0.014 in
(21), (32). Two typical fluctuations (jagged lines) from the stable state at S = �1 to the remote
state xf = �0.1 and back again are compared with the calculated deterministic relaxational path
from xf to S (full, smooth, curve) and the calculated time-reversed relaxational path from S to
xf (dashed curve) (Luchinsky 1997).

We stress that ph(x, t; xf , tf ) is not a standard two-time transition probability: it is given
by a ratio of the transition probability ⇢(xf , tf ; x, t | xi , ti), (the conditional probability
density for a system placed initially at xi to pass through the states x and xf at the
instants t and tf , respectively), to the two-time transition probability ⇢(xf , tf | xi , ti), with
the limit being taken in which the initial instant ti goes to �1 (however, in the case of
fluctuations from a metastable state we assume that the time interval tf � ti is less than the
lifetime of the state). A similar ratio of transition probabilities was considered for Markov
processes by Schulman (1991) in order to clarify discussions about the relationship between
the thermodynamic and cosmological arrows of time.

Analogue studies of nonlinear systems 923

(a)

(b)

Figure 14. Fluctuational behaviour measured and calculated for the Maier and Stein non-
equilibrium system (46), which has a stationary non-gradient field, with a = 10, D = 0.014.
(a) The pf (x, y) distribution created by ensemble-averaging fluctuational paths leading from
S = (1, 0) to remote points at xf = (0.44 ± 0.35). (b) Paths traced out by the ridges of the
distribution in (a) for fluctuational motion (red circles), and by those of the corresponding
distribution for relaxational motion (blue asterisks), compared with fluctuational (red) and
relaxational (blue) optimal paths calculated from (26). (c) As in (b), but for the single remote
state xf = (0.32, 0) on the switching line (Luchinsky and McClintock 1997).

paths become strikingly apparent. Figure 14(a) shows the measured probability distribution
Pf (x, y) for fluctuations to the two different remote states (xf , yf ) placed symmetrically on
either side of the y-axis; here, Pf (x, y) is the integral over the time t of the probability
distribution pf (x, y, t; xf , yf , tf ), i.e. the projection of the distribution pf onto the x–y
plane with tf = 0 as before. When the paths traced out by the ridges are plotted
(figure 14(b)), it can be seen: (i) that the fluctuational trajectories are completely different

[Luchinsky et al 1997]
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Applications

SDEs

dXt = F (Xt)dt +
√
ε noise

• Escape, transition paths, escape time
[Onsager-Machlup 1953] [Freidlin-Wentzell 70s] [Graham 80-90s] ...

• Experiments [Luchinsky and McClintock 90s]

• Metastability [Olivieri-Vares 2005]

SPDEs

dρ(x , t) = F [ρ]dt +
√
ε noise

• Heat equation [Faris, Jona-Lasinio 1982]

• Ginzburg equation [Graham 1990s]

• Reaction-diffusion [Vanden-Eijnden 2000s]

• 2D fluid equations [Laurie-Bouchet 2014]

• MFT/HFT [Bertini et al 2000s]
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Long-time large deviations

• Process:

dXt = F (Xt)dt + σdWt

• Observable:

AT =
1

T

∫ T

0
f (Xt) dt +

1

T

∫ T

0
g(Xt) ◦ dXt

• Large deviation principle (LDP):

P(AT = a) ≈ e−TI (a), T →∞

t

xHtL

s

P(AT = a)

µ

T = 10

T = 50

T = 100

I (a)

Examples

• Occupation time, empirical density

• Current, mean speed, activity

• Work, heat, entropy production (stochastic thermo)
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Dual problem

Scaled cumulant function

λ(k) = lim
T→∞

1

T
lnE [eTkAT ]

Gärtner-Ellis Theorem

λ(k) differentiable, then

1 LDP for AT

2 I (a) = sup
k
{ka− λ(k)}

Feynman-Kac-Perron-Frobenius

Lk rk = λ(k)rk

• Tilted (twisted) operator: Lk
• Dominant eigenvalue: λ(k)
• Dominant eigenfunction: rk

Jump processes

Lk = Wekg − λ+ kf

Diffusions

Lk = F · (∇+ kg) +
D

2
(∇+ kg)2 + kf
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Spectral problem

Equilibrium

• Xt reversible, g gradient, f arbitrary

• Lk non-Hermitian but conjugated to Hermitian:

Hk = ρ1/2Lkρ−1/2, ψ2
k = rk lk

• Real spectrum (quantum problem)

Nonequilibrium

• Xt nonreversible OR g non-gradient, f arbitrary

• Lk non-Hermitian, not conjugated to Hermitian

• Complex spectrum

• Full spectral problem:

Lk rk = λ(k)rk

L†k lk = λ(k)lk

rk(x)lk(x)
|x |→∞−→ 0
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Algorithms

Markov chains
• Non-symmetric positive matrices

• Direct diagonalization

• Power method

• DMRG [Gorissen-Vanderzande 2011]

Diffusions

• Equilibrium: (Quantum) spectral methods

• Nonequilibrium: Fourier decomposition, basis functions

Cloning/splitting

• Particle/trajectory simulation

• Yields SCGF

• No eigenvector
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Other approach: Optimization and control

AT = Ã(ρT , JT ) =

∫
f (x) ρT (x)︸ ︷︷ ︸

dist.

dx +

∫
g(x) JT (x)︸ ︷︷ ︸

current

dx

Drift optimization

I (a) = inf
u:Eu [AT ]=a

1

2σ2

∫
(u(x)− F (x))2ρuinv(x) dx

• Requires stationary distribution ρuinv

Stochastic optimal control

I (a) = lim
T→∞

inf
u:Au

T→a

1

2σ2T

∫ T

0
(u(X u

t )− F (X u
t ))2dt

• Controlled process: X u
t

• Constrained control (dual for SCGF is unconstrained)

• Solves Hamilton-Jacobi-Bellman equation (2nd order)
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Fluctuation process

Optimal control process

dX̂t = Fk(X̂t)dt + σdWt

• Optimal drift:

Fk(x) = F (x)+D(kg+∇ ln rk), I ′(a) = k

Conditioning

Xt |AT = a︸ ︷︷ ︸
conditioned

microcanonical

T→∞∼= X̂t︸︷︷︸
driven

canonical

t

xHtL

a

PHA T=
aL

• Effective process creating the fluctuation

• Process generalization of optimal path

[Chetrite HT, PRL 2013, AHP 2015, JSTAT 2015]

Hugo Touchette (NITheP) IHP, Paris April 2017 12 / 18



Equilibrium vs nonequilibrium

AT = Ã(ρT , JT ) =

∫
f (x) ρT (x)︸ ︷︷ ︸

dist.

dx +

∫
g(x) JT (x)︸ ︷︷ ︸

current

dx

Xt g X̂t

Reversible 0 Reversible
Same spectrum
Rayleigh-Ritz variational principle

Gradient Reversible
Rayleigh-Ritz variational principle

Non-gradient Non-reversible

Non-reversible 0 Non-reversible
Donsker-Varadhan principle

Other Non-reversible

• Process closest to Xt that creates fluctuation

• Distance: ‖u − F‖ρuinv or 1
T S(PX̂ ||PX )
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Simulations: Importance sampling

• P(AT = a) ≈ e−TI (a)

• Direct sampling:

sample size = L ∼ eT

a

PHA T=
aL

Importance sampling

• Change process: Xt → X̂t

• Make AT = a typical

• Change of measure:

P(AT = a) = EX [11a(AT )] = EX̂

[
dPX

dPX̂

11a(AT )

]
• Estimator:

P̂L(a) =
1

L

L∑
j=1

11a(A
(j)
T )R
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Efficiency

Zero-variance process

• Conditioned process: Xt |AT = a

• Estimator variance:

varX̂ (P̂L) =
EX̂ [R211a(AT )]− p2

L
= 0

Effective process

• Not zero variance

• Asymptotic optimality:

lim
T→∞

− 1

T
lnEX̂ [R211a(AT )] = 2I (a)

• Variance goes to 0 with largest rate

• Exponential tilting:

Pdriven[x ] ≈ Pk [x ] =
eTkAT [x]P[x ]

E [eTkAT ]
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Connections

σ > 0

• Stochastic optimal control

• Quadratic cost function (log RND)

• Nonlinear HJB equation (2nd order)

• Similar to cross-entropy minimization
t

x
(t
)

σ → 0

• Deterministic optimal control

• Quadratic cost function (log RND)

• Nonlinear HJB (1st order, viscosity)
t

x
(t
)

Optimal controller
Dyn programming

X̂t

←→
Value function
HJB equations

LD functions

←→ Exponential tilting
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Conclusions

LD ≡ control/optimization ≡ spectral
Type of fluctuations determines class of control designs

Equilibrium fluctuations

Reversible control
Hermitian spectral problem

Nonequilibrium fluctuations

Non-reversible control
Non-hermitian spectral problem

Future work
• Adapt methods from quantum mechanics

• Methods for non-hermitian operators

• HJB-based methods

• Adaptive control methods

• Error bars

• Benchmarking
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