Large deviation simulations: Equilibrium vs nonequilibrium systems

Hugo Touchette

National Institute for Theoretical Physics (NITheP) Stellenbosch, South Africa

Numerical Aspects of Nonequilibrium Dynamics Institut Henri Poincaré, Paris 25 April 2017

Low-noise large deviations

• Process:

$$dX_t^{\varepsilon} = F(X_t^{\varepsilon})dt + \sqrt{\varepsilon} \, dW_t, \qquad X_0 \in O$$

• Transition rare event:

$$P(X_{\tau}^{\varepsilon} \in B | X_0 \in O) \approx e^{-V/\varepsilon}, \qquad \varepsilon \to 0$$

$$V = \inf_{x \in B} \underbrace{V(x)}_{\text{quasi-potential}} = \inf_{x \in B} \inf_{x_0 \in O, x_t = x} \underbrace{\frac{1}{2} \int_0^t (\dot{x}_s - F(x_s))^2 ds}_{\text{FW action, Lagrangian } J[x]}$$

- Deterministic control problem
- Optimal path $\{x_t^*\}$
- V(x) solves Hamilton-Jacobi-Bellman equation (1st order)

Low-noise large deviations (cont'd)

Fluctuation created by optimal path

Conditioning

- $P[x] \approx e^{-J[x]/\varepsilon}$ max
- *P*[*x*|escape event] concentrates on optimal path

Equilibrium

- Optimal path = relaxation path^R
- $V(x) = J[x_{\text{relax}}^R]$

Nonequilibrium

- Optimal path \neq relaxation path^R
- Current loops
- Transversal decomposition [Graham 80's]

0.2 0.4 0.6 0.8 1.0 x [Luchinsky et al 1997]

April 2017

5 / 18

-0.4

Hugo Touchette (NITheP)

Applications

SDEs

$$dX_t = F(X_t)dt + \sqrt{arepsilon}$$
 noise

IHP, Paris

- Escape, transition paths, escape time [Onsager-Machlup 1953] [Freidlin-Wentzell 70s] [Graham 80-90s] ...
- Experiments [Luchinsky and McClintock 90s]
- Metastability [Olivieri-Vares 2005]

SPDEs

$$d\rho(x,t) = F[\rho]dt + \sqrt{\varepsilon}$$
 noise

- Heat equation [Faris, Jona-Lasinio 1982]
- Ginzburg equation [Graham 1990s]
- Reaction-diffusion [Vanden-Eijnden 2000s]
- 2D fluid equations [Laurie-Bouchet 2014]
- MFT/HFT [Bertini et al 2000s]

April 2017 6 / 18

Long-time large deviations

• Process:

$$dX_t = F(X_t)dt + \sigma dW_t$$

• Observable:

$$A_T = \frac{1}{T} \int_0^T f(X_t) dt + \frac{1}{T} \int_0^T g(X_t) \circ dX_t$$

• Large deviation principle (LDP):

$$P(A_T = a) \approx e^{-TI(a)}, \quad T \to \infty$$

T = 10

Examples

- Occupation time, empirical density
- Current, mean speed, activity
- Work, heat, entropy production (stochastic thermo)

		,	
Hugo Touchette (NITheP)	IHP, Paris	April 203	17 7 / 18

Dual problem

Scaled cumulant function

$$\lambda(k) = \lim_{T o \infty} rac{1}{T} \ln E[e^{TkA_T}]$$

Gärtner-Ellis Theorem $\lambda(k)$ differentiable, then

1 LDP for
$$A_T$$

2
$$I(a) = \sup_{k} \{ka - \lambda(k)\}$$

 $\mathcal{L}_k = F \cdot (\nabla + kg) + \frac{D}{2} (\nabla + kg)^2 + kf$

Feynman-Kac-Perron-Frobenius

$$\mathcal{L}_k r_k = \lambda(k) r_k$$

- Tilted (twisted) operator: \mathcal{L}_k
- Dominant eigenvalue: $\lambda(k)$
- Dominant eigenfunction: r_k

Jump processes

Hugo Touchette (NITheP)

Diffusions

$$\mathcal{L}_k = W e^{kg} - \lambda + kf$$

IHP, Paris

April 2017 8 / 18

Spectral problem

Equilibrium

- X_t reversible, g gradient, f arbitrary
- \mathcal{L}_k non-Hermitian but conjugated to Hermitian:

$$\mathcal{H}_k = \rho^{1/2} \mathcal{L}_k \rho^{-1/2}, \qquad \psi_k^2 = r_k I_k$$

IHP, Paris

• Real spectrum (quantum problem)

Nonequilibrium

- X_t nonreversible OR g non-gradient, f arbitrary
- \mathcal{L}_k non-Hermitian, not conjugated to Hermitian
- Complex spectrum
- Full spectral problem:

$$\mathcal{L}_k r_k = \lambda(k) r_k$$

 $\mathcal{L}_k^{\dagger} l_k = \lambda(k) l_k$

```
r_k(x)l_k(x) \stackrel{|x| 	o \infty}{\longrightarrow} 0
```

Hugo Touchette (NITheP)

Algorithms

Markov chains

- Non-symmetric positive matrices
- Direct diagonalization
- Power method
- DMRG [Gorissen-Vanderzande 2011]

Diffusions

- Equilibrium: (Quantum) spectral methods
- Nonequilibrium: Fourier decomposition, basis functions

Cloning/splitting

- Particle/trajectory simulation
- Yields SCGF
- No eigenvector

April 2017 10 / 18

April 2017

9 / 18

Other approach: Optimization and control

$$A_{T} = \tilde{A}(\rho_{T}, J_{T}) = \int f(x) \underbrace{\rho_{T}(x)}_{\text{dist.}} dx + \int g(x) \underbrace{J_{T}(x)}_{\text{current}} dx$$

Drift optimization

$$I(a) = \inf_{u:E_u[A_T]=a} \quad \frac{1}{2\sigma^2} \int (u(x) - F(x))^2 \rho_{inv}^u(x) \, dx$$

• Requires stationary distribution ρ^u_{inv}

Stochastic optimal control

$$I(a) = \lim_{T \to \infty} \inf_{u: A^u_T \to a} \quad \frac{1}{2\sigma^2 T} \int_0^T (u(X^u_t) - F(X^u_t))^2 dt$$

- Controlled process: X_t^u
- Constrained control (dual for SCGF is unconstrained)
- Solves Hamilton-Jacobi-Bellman equation (2nd order)

Hugo Touchette (NITheP)	IHP, Paris	April 2017 11 / 18

Fluctuation process

Optimal control process $d\hat{X}_t = F_k(\hat{X}_t)dt + \sigma dW_t$ $\mathbf{x}(t)$ • Optimal drift: $F_k(x) = F(x) + D(kg + \nabla \ln r_k), \quad I'(a) = k$ t Conditioning $P(A_T = a)$ $\underbrace{X_t \mid A_T = a}_{\cong} \quad \stackrel{T \to \infty}{\cong}$ conditioned driven canonical microcanonical а Effective process creating the fluctuation Process generalization of optimal path

[Chetrite HT, PRL 2013, AHP 2015, JSTAT 2015]

IHP, Paris

April 2017 12 / 18

Equilibrium vs nonequilibrium

$A_{T} = \tilde{A}(\rho_{T}, J_{T}) = \int f(x) \underbrace{\rho_{T}(x)}_{\mathcal{O}} dx + \int g(x) \underbrace{J_{T}(x)}_{\mathcal{O}} dx$		
	0	dist. current
X _t	g	\hat{X}_t
Reversible	0	Reversible
		Same spectrum
		Rayleigh-Ritz variational principle
	Gradient	Reversible
		Rayleigh-Ritz variational principle
	Non-gradient	Non-reversible
Non-reversible	0	Non-reversible
		Donsker-Varadhan principle
	Other	Non-reversible
• Process closest	Other to X_t that creates	Non-reversible 6 fluctuation
 Process closest Distance: u - 	Other to X_t that creates $F \parallel_{\rho_{inv}^u}$ or $\frac{1}{T} S(P_{\hat{X}})$	Non-reversible $ P_X)$
 Process closest Distance: u - Hugo Touchette (NITheP) 	Other to X_t that creates $F \parallel_{\rho_{inv}^u}$ or $\frac{1}{T} S(P_{\hat{X}})$ IHP, P	DefinitionNon-reversiblea fluctuation $ P_X)$ ParisApril 201713 / 18

Simulations: Importance sampling

•
$$P(A_T = a) \approx e^{-TI(a)}$$

• Direct sampling:

sample size
$$= L \sim e^T$$

Importance sampling

- Change process: $X_t
 ightarrow \hat{X}_t$
- Make $A_T = a$ typical
- Change of measure:

$$P(A_T = a) = E_X[\mathbb{1}_a(A_T)] = E_{\hat{X}}\left[\frac{dP_X}{dP_{\hat{X}}}\,\mathbb{1}_a(A_T)\right]$$

 $P(A_T = a)$

• Estimator:

$$\hat{P}_L(a) = \frac{1}{L} \sum_{j=1}^{L} \mathbb{1}_a(A_T^{(j)}) R$$

а

Efficiency

Zero-variance process

- Conditioned process: $X_t | A_T = a$
- Estimator variance:

$$\operatorname{var}_{\hat{X}}(\hat{P}_L) = \frac{E_{\hat{X}}[R^2 \mathbb{1}_a(A_T)] - p^2}{L} = 0$$

Effective process

- Not zero variance
- Asymptotic optimality:

$$\lim_{T\to\infty} -\frac{1}{T} \ln E_{\hat{X}}[R^2 \mathbb{1}_a(A_T)] = 2I(a)$$

- Variance goes to 0 with largest rate
- Exponential tilting:

$$P_{\mathsf{driven}}[x] pprox P_k[x] = rac{e^{TkA_T[x]}P[x]}{E[e^{TkA_T}]}$$

IHP, Paris

Hugo Touchette (NITheP)

Connections

$\sigma > \mathbf{0}$

- Stochastic optimal control
- Quadratic cost function (log RND)
- Nonlinear HJB equation (2nd order)
- Similar to cross-entropy minimization

$\sigma \to \mathbf{0}$

- Deterministic optimal control
- Quadratic cost function (log RND)
- Nonlinear HJB (1st order, viscosity)

April 2017

15 / 18

Optimal controller Dyn programming \hat{X}_t	\longleftrightarrow	Value function HJB equations LD functions	<i>←</i>	ightarrow Exponential tilting	
Hugo Touchette (NITheP)		IHP, Paris		April 2017 16	5 / 18

Conclusions

$\label{eq:LD} LD \equiv control/optimization \equiv spectral \\ Type of fluctuations determines class of control designs$

Equilibrium fluctuations	Nonequilibrium fluctuations
Reversible control	Non-reversible control
Hermitian spectral problem	Non-hermitian spectral problem
Future work	
 Adapt methods from quantum 	mechanics
 Methods for non-hermitian oper 	rators
 HJB-based methods 	
 Adaptive control methods 	
• Error bars	
 Benchmarking 	
Hugo Iouchette (NITheP)	', Paris April 2017 17 / 18

References

