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Outline

Signatures of anomalous heat conduction in one dimensional momentum systems.

Introduction to Fluctuating Hydrodynamic Theory and results for anharmonic chains.

Other systems: Rotor models and Discrete NonLinear Schrodeinger equation
(Gross-Pitaevski).

Heisenberg spin-chains: hydrodynamic theory, numerical results.
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Breakdown of Fourier’s law — Anomalous heat transport

Fourier’s law is probably not valid in low-dimensional momentum-conserving systems.

Lecture notes in Phys. vol 921: Thermal transport in low dimensions (2016).

Divergent conductivity: κ ∼ Lα.

Nonlinear (and possibly singular) temperature profiles, EVEN for small temperature
differences.

Anomalous spreading of heat pulses — Levy walk instead of random walk.

Anomlaous behaviour of equilibrium space-time correlations of conserved quantities.

Predictions of fluctuating hydrodynamics — Levy heat peak and KPZ sound peaks.

Slow temporal decay of total energy-current correlations and conclusions from Green-Kubo
formula.
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Anomalous transport - spreading of energy pulses

Look at propagation of a energy pulse

The energy profile follows
the Levy-stable distribution.
Power-law decay at large x .
Finite speed of propagation
of front.
〈x2〉 ∼ t1+α

(Super-diffusive).
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Understanding anomalous transport

Nonlinear fluctating hydrodynamics - a general framework.

Narayan, Ramaswamy (2002), H. vanBeijeren (2012)

Very detailed predictions: H. Spohn and C. Mendl (2013,2014)

Look at decay of energy fluctuations in a system in thermal equilibrium. Thus one can look at
spatio-temporal correlation functions such as

C(x , t) = 〈δε(x , t) δε(0, 0)〉,

where δε(x , t) is fluctuation in local energy density.
Anomalous transport would imply super-diffusive spreading of such correlation functions.
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Systems studied so far in the framework of NlFHT

Fermi-Pasta-Ulam chains: Zhao, Das-AD-Saito-Mendl-Spohn

Hard particle gases: Mendl-Spohn

Rotor chains: Das-AD, Spohn, Mendl-Spohn

DNLS: Kulkarni-Huse-Spohn, Mendl-Spohn

Stochastic models: Stoltz-Spohn, Lepri et al, Cividini-Kundu-Miron-Mukamel

Coupled exclusion processes: Popkov-Schmidt-Schütz

What about spin-chains ?
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Basics of fluctuating hydrodynamics

Fermi-Pasta-Ulam Hamiltonian:

H =
N∑

x=1

p2
x

2
+ V (qx+1 − qx) , V (r) = k2

r2

2
+ k3

r3

3
+ k4

r4

4
.

Identify the conserved fields. For the FPU chain they are
Extension: rx = qx+1 − qx
Momentum: px
Energy: ex

Using equations of motion one can directly arrive at the following conservation laws (Euler
equations):

∂r
∂t

=
∂p
∂x
,

∂p
∂t

= −∂P
∂x

,
∂e
∂t

= −∂pP
∂x

,

where Px = 〈−V ′(rx )〉 is the pressure.

Consider constant T ,P and zero momentum ensemble.
Let (u1, u2, u3) be fluctuations of conserved fields about equilibrium values:
rx = 〈rx〉+ u1(x), px = u2(x), ex = 〈ex〉+ u3(x).

Expand the curents about their equilibrium value (to second order in nonlinearity) and write
hydrodynamic equations for these fluctuations.
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Fluctuating hydrodynamics basics

Let u = (u1, u2, u3). Equations have the form:

∂u
∂t

= − ∂

∂x
[Au + uHu] +

[
D̃
∂2u
∂x2 + B̃

∂ξ

∂x

]
.

1D noisy Navier-Stokes equation

A,H known explicitly in terms of microscopic model.
D̃, B̃ unknown but satisfy fluctuation dissipation.

Neglecting nonlinear terms, one can construct normal mode variables (φ+, φ0, φ−), as linear
combinations of the original fields φ = Ru. These satisfy equations of the form

∂φ+
∂t

= −c
∂φ+
∂x

+ Ds
∂2φ+
∂x2 +

∂η+
∂x

∂φ0

∂t
= Dh

∂2φ0

∂x2 +
∂η0

∂x
∂φ−
∂t

= c
∂φ−
∂x

+ Ds
∂2φ−
∂x2 +

∂η−
∂x

NOTE: two propagating sound modes ( φ±) and one diffusive heat mode ( φ0).
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Predictions of fluctuating hydrodynamics

Including the nonlinear terms:

∂φ+

∂t
=

∂

∂x
[−cφ++G+φ2] + Ds

∂2φ+

∂x2
+
∂η+

∂x
∂φ0

∂t
=

∂

∂x
[G0φ2] + Dh

∂2φ0

∂x2
+
∂η0

∂x
∂φ−

∂t
=

∂

∂x
[cφ−+G−φ2] + Ds

∂2φ−

∂x2
+
∂η−

∂x

Given V (r),T ,P, the form of the G-matrices is completely determined.

Generic case: To leading order, the oppositely moving sound modes are decoupled from the
heat mode and satisfy noisy Burgers equations. For the heat mode, the leading nonlinear
correction is from the two sound modes.

Solving the nonlinear hydrodynamic equations within mode-coupling approximation, one can
make predictions for the equilibrium space-time correlation functions
C(x , t) = 〈φα(x , t)φβ(0, 0)〉.
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Predictions of fluctuating hydrodynamics

Predictions for equilibrium space-time correlation functions C(x , t) = 〈φα(x , t)φβ(0, 0)〉.

Sound− mode : Cs(x , t) = 〈φ±(x , t)φ±(0, 0)〉 =
1

(λs t)2/3
fKPZ

[
(x ± ct)
(λs t)2/3

]

Heat− mode : Ch(x , t) = 〈φ0(x , t)φ0(0, 0)〉 =
1

(λet)3/5
fLW

[
x

(λet)3/5

]
c, the sound speed and λ are given by the theory.
fKPZ - universal scaling function that appears in the solution of the Kardar-Parisi-Zhang
equation.
fLW – Levy-stable distribution with a cut-off at |x | = ct .

Cross correlations negligible at long times.

Also find 〈J(0)J(t)〉 ∼ 1/t2/3.

Correlations from direct simulations of FPU chains and comparisions with theory.
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Equilibrium space-time correlation functions

Numerically compute heat mode and sound mode correlations in the α− β-Fermi-Pasta-Ulam
chain with periodic boundary conditions.

Average over ∼ 107 thermal initial conditions. Dynamics is Hamiltonian.

Parameters — k2 = 1, k3 = 2, k4 = 1, T = 5.0, P = 1.0, N = 16384.

Speed of sound c = 1.803.
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Equilibrium simulations of FPU

Sound mode scaling: λtheory = 0.396, λsim = 0.46.
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Heat mode scaling: λtheory = 5.89, λsim = 5.86.
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Equilibrium simulations of FPU

Other results:

Other parameter regimes: KPZ and Levy scaling are always very good. Values of scaling
parameters sometimes far from theory. Fit to KPZ scaling function not always good.

Second universality class: even potential and zero pressure.

Sound modes diffusive, heat mode Levy with different exponent [ f̃ (k , t) = exp(−|k |3/2t) ].

Other possible special points — See “Fibonacci family of dynamical universality classes”, V.
Popkova, A. Schadschneidera, J. Schmidta, and G. M. Schütz [PNAS 112, 12645 (2015)].
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Rotor model

Hamiltonian of the Rotor model —

H =
N∑

l=1

p2
l

2m
−

N−1∑
l=1

V0 cos(ql+1 − ql )

Non-equilibrium simulations show that this model satisfies Fourier’s law and does not show
anomalous transport, even though it is momentum conserving.
Giardina, Livi, Politi, Vassali (2000), Gendelman, Savin (2000).

This can be understood in the framework of the hydrodynamics theory.
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Hydrodynamic theory for the Rotor model

Spohn: arxiv:1411.3907
S. Das and AD, arXiv:1411.5247 (2014)

1 (a) The coordinate variables are now angles, defined modulo 2π. Hence stretch not
conserved.
(b) Since V (r) is bounded, the pressure is identically zero.

2 Recall the conservation laws —
∂r
∂t

= −
∂p
∂x
,

∂p
∂t

= −
∂P
∂x

,
∂e
∂t

= −
∂pP
∂x

+ [Dissipation + Noise] ,

Since P is zero, in the final description, only the dissipative and fluctuation terms survive.

Thus the hydrodynamic equations for ~u = (r , p, e) are

∂t uα = −∂x
[
−∂x Dαβuβ + Bαβξβ

]
.

[Chaikin and Lubensky!]
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Rotor model

• Numerical observation: Cross elements Dα 6=β vanish.

V (r) = − cos(r),T = 1.
• Momentum and Energy correlations decay diffusively — completely different from FPU chain.

-2 0 2

x/t
1/2

0

0.1

0.2

0.3

0.4

0.5

t1
/2

C
p

p
(x

,t
) 

/ 
C

p
p
(0

,0
)

t=2000
t=4000
t=6000
t=8000
D=0.304

-4 -2 0 2 4

x/t
1/2

0

0.1

0.2

0.3

0.4

t1
/2

C
ee

(x
,t

) 
/ 

C
ee

(0
,0

)

t=2000
t=4000
t=6000
t=8000
D=0.627

(a) (b)

(Abhishek Dhar, ICTS-TIFR) IHP, April 25-27, 2017 16 / 27



Rotor model at low temperatures

At low temperatures the angles ql make small fluctuations around some fixed value (Broken
symmetry phase!) — replace − cos(r) by −1 + r2/2− r4/24 + r6/720.

Hence the restriction ql ∈ (0, 2π) is NOT relevant.

In this case one finds two diffiusive sound modes (Zero pressure and even potential) and a
Levy heat mode.

The hydrodynamic equations for both the high temperature “disordered phase” and the
“broken symmetry phase” have been discussed earlier (Chaikin and Lubensky, Principles of
condensed matter physics).

However it was not realized that the heat mode is actually non-diffusive and with Levy
characteristics.
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XXZ classical Heisenberg spin chains

Heisenberg spins S = (Sx ,Sy ,Sz) on a ring with nearest neighbor interactions. Hamiltonian given
by

H =
N∑
`=1

−J
[
Sx
`Sx
`+1 + Sy

`Sy
`+1

]
− JzSz

`Sz
`+1 .

Consider J > Jz — easy-plane magnetization.

Equations of motion − >

Ṡα` = −eαβγSβ`
∂H
∂Sγ`

. OR [Ṡ` = S` × Beff (`)] −−−− Symplectic dynamics

Explicitly

Ṡx
` = −J

[
Sy
`+1 + Sy

`−1

]
Sz
` + Jz

[
Sz
`+1 + Sz

`−1
]

Sy
`

Ṡy
` = −Jz

[
Sz
`+1 + Sz

`−1
]

Sx
` + J

[
Sx
`+1 + Sx

`−1
]

Sz
`

Ṡz
` = −J

[
Sx
`+1 + Sx

`−1
]

Sy
` + J

[
Sy
`+1 + Sy

`−1

]
Sx
` .
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Regular Hamiltonian form

Define new variables {s`, θ`}

Sz
` = s`, Sx

` = (1− s2
`)

1/2 cos θ`, Sy
` = (1− s2

`)
1/2 sin θ`.

This defines a canonical transformation leading to equations of motion

θ̇` =
∂H
∂s`

, ṡ` = −
∂H
∂θ`

,

with

H = −J
N∑
`=1

(1− s2
`)

1/2(1− s2
`+1)

1/2 cos(θ`+1 − θ`)− Jzs`s`+1 =
N∑
`=1

ε`.
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Conservation laws

Two Exact conservation laws: Energy and z-magnetization-> continuity equations:

ṡ` = −(js`+1 − js` ) , ε̇` = −(j
ε
`+1 − jε` ) ,

with currents

js` = −J(1− s2
`)

1/2(1− s2
`+1)

1/2 sin(r`) ,

jε`+1 = −J2s`+1(1− s2
`)

1/2(1− s2
`+2)

1/2 sin (r`+1 − r`)

+ JJzs`(1− s2
`+1)

1/2(1− s2
`+2)

1/2 sin r`+1

− JJzs`+2(1− s2
`)

1/2(1− s2
`+1)

1/2 sin r` .

r` = θ`+1 − θ`.

Equilibrium distribution − > e−β(H−µ
∑

` s`).
Equilibrium currents IDENTICALLY zero:〈js〉 = 〈jε〉 = 0.
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Hydrodynamics at high temperatures

Hence we expect diffusive hydrodynamic equations.

Numerical tests: β = 1.0, µ = 0.3 , Css(x , t) = 〈sx (t)s0(0)〉eq .

s − s correlations
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Low temperature: effective symmetry breaking

At low temperatures, one expects the xy -plane symmetry to be broken.
Small fluctuations around a chosen θ∗ and r` = θ`+1 − θ` = ∇θ is a new “conserved” variable.

Clearly ṙ` = −∇j r with j r = θ̇ = ∂H/∂s.

Equilibrium measure is now − > ∼ e−β(H−µ
∑

` s`−ν
∑

` r`).

Equilibrium currents are now NON-ZERO. Magic Identity (Mendl,Spohn, 2016) gives

〈j r 〉eq = 〈−∂H/∂s〉eq = −µ, 〈js〉eq = 〈−∂H/∂r〉eq = −ν , 〈jε〉eq = µν .

— This is useful for computing linear and nonlinear coefficients in FHT equations.

Fluctuating hydrodynamics then predicts two KPZ sound modes and one Levy heat
mode. [SPECIAL CASE: µ = 0, two diffusive sound modes, one Levy heat mode]
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Low temperature correlations

Numerical tests: β = 8.0, µ = 0.3, N = 4096

s − s correlations
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Speed of sound: c = 0.819....
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Low temperature: heat mode

ε− ε correlations
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Still need to go to normal modes to see scaling clearly — i.e look at linear combinations of the
basic fields.
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Very low-temperature: integrable dynamics

s − s correlations
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Ballistic scaling implies integrability at low temperatures — but probably not harmonic ?
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Numerical methods

We implemented an effective finite-time version of the dynamics, which preserves the
conservation laws exactly [Damle (unpublished notes)]. Possible to study large system sizes
and large times.

Dynamics is a variant of symplectic algorithms, normally written for (X ,P) systems,
implemented here for spin dynamics.

Similar to odd-even dynamics which conserves ONLY energy exactly — alternately odd and
even sites updated in parallel.

Can check that in the limit of small update times, dynamics is equivalent to the exact
Poisson-bracket dynamics.
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Conclusions

Equilibrium space-time correlations of conserved variables in one-dimensional interacting
systems.
Very detailed theoretical predictions [Spohn, JSP (2014)] allow direct comparision with
microscopic simulations.

Fermi-Pasta-Ulam chains, Rotor chain and integrable models.

A new class is investigated here — classical spin chains.

Simulations for XXZ chain verify the scaling predictions quite well. [Preliminary results- work
in progress]
High temperatures - Diffusive scaling
Low temperatures - Anomalous scaling

— Levy scaling for heat mode

— KPZ scaling for sound-mode

Very low temperatures - Ballistic scaling

Open questions:

Derivation of hydrodynamic equations (Diffusion matrix ?).

Understanding strong finite size effects seen in simulations.
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