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• Family-owned global corporation 

• Founded 1885 in Ingelheim, Germany 

• Focus on Human Pharmaceuticals,  
Animal Health and Biopharmaceuticals 

• Employees worldwide ~ 46,000 

• ~8000 employees in R&D+Medicine 

 

• Net sales 2016: ~16 billion € 

• Expenses for RD&M: ~3 billion € 

 

Boehringer Ingelheim in brief 

Our headquarters in Ingelheim, Germany 

Oncology 

Cardiometabolic diseases Immunology and respiratory diseases 

Diseases of the central nervous system 

4 major research areas: 
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Our global research and development sites 
human pharmaceuticals  

Vienna, 
Austria 

Biberach and 
Ingelheim, 
Germany 

Ridgefield, CT, 
USA 

Kobe,  
Japan 
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Historical Drug Discovery 
From Accidental Discovery to a Drug 

Cattle, 1920s, North Dakota Dead Cattle, 1920s, North Dakota 

Coumarin 4-Hydroxy-Coumarin Di-Coumarol 

Fungi CH2O 

strong anti-coagulant 

„sweet clover disease“ 

rotten clover 
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Historical Drug Discovery 
From Accidental Discovery to a Drug 

Accident 
(Decaying Hay)  

Observation of a 
pharmacological effect  

Link pharmacological 
effect to a substance Treatment of diseases 

Chemical variation of 
the substance 

Warfarin 
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Current Drug Discovery 
From the Disease to the Drug 

Treatment of disease 

Search for molecules 
which act on the drug 

target 

Disease  

Connection between 
the disease and 

molecular mechanisms 

Definition of „drug 
targets“ 

Clinical evaluation of 
the new drug 

Approval for Treatment 

Chemical variation of 
the substance 
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Drug Discovery Is … 

10,000 250 5 
1 FDA 

approved 
drug 

~6.5 years ~7 years ~1.5 years 

drug discovery 

clinical trials 

FDA 
review 

preclinical 

a long journey 

risky 

• http://www.discoverymanagementsolutions.com/the-organization-of-biopharmaceutical-rd/attrition/ 
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Drug Discovery Is … 

• new, difficult targets 

• new chemical matter 

• biologicals 

 

expensive 

• current estimate: 800 - 1000 M$ to bring new drug to market 

• 50-100 M$ preclinical cost 

 

changing 
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Drug Discovery Is … 

a multi-disciplinary team approach  

drug discovery 
project 

computational 
chemistry 

structural 
biology 

combinatorial 
chemistry 

medicinal 
chemistry 

pharmacokinetics / 
ADME 

in-vitro biology 

in-vivo biology 

automated 
assays 

CMC / upscaling 

patents 

translational 
medicine 

toxicology 
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Drug Discovery Project Phases 
A Typical Research Project 

Target Discovery Lead Identification Lead Optimization Assay Development Development 

 Target ideas from 
     literature and  
     in-house research 
 
 Target validation 
     with knock-out  
     animals, siRNA,  
     tool compounds 

 Cell-lines expressing 
     the target protein 
 
 Biochemical assays 

 
 Optimization and 
     automation for 
     high-throughput 
     screening 

 High-throughput 
     screening 
 
 Hit analysis 

 
 Selection of promising 
     chemical matter 
 
 Testing of related  
     compounds 
 
 Structure-activity 
     relationships 

 Affinity/Activity 
 

 Selectivity 
 

 Pharmacokinetics/ 
     Metabolism 

 
 Chemical 
     manufacturing 
     control 
 

Computational Chemistry 
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Lead Optimization 
Multiple Challenges for a Molecule 

mouth 

intestine 

(pH=7) 

stomach 

(pH=1) 

BLOOD 

gut wall 

Metabolism 

Liver 

BRAIN 

target 

Portal vein 

Target Discovery Lead Identification Lead Optimization Assay Development 
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Lead Optimization 
Optimization Parameters 

Drug Design is a Multi-Parameter Optimization 

Potency 

Selectivity 

Bioavailability 

Solubility 

Metabolic Stability 
Plasma Protein Binding 

Cytochrome Inhibition  
(Drug/Drug Interactions) 

Brain Permeation 

Toxicity 

Pharmacokinetics 

Chemical Tractability 

… 

Target Discovery Lead Identification Lead Optimization Assay Development 
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Lead Optimization 
Optimization Parameters 

Drug Design is a Multi-Parameter Optimization 

Potency 

Selectivity 

Bioavailability 

Solubility 

Metabolic Stability 
Plasma Protein Binding 

Cytochrome Inhibition  
(Drug/Drug Interactions) 

Brain Permeation 

Toxicity 

Pharmacokinetics 

Chemical Tractability 

… 

Target Discovery Lead Identification Lead Optimization Assay Development 

target specific 

often  
target- 

independent 
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Lead Optimization 
From a Lead to a Drug Candidate 

„easy“ chemistry -> variation straightforward 
cheap! 

difficult chemistry, different synthetic routes 
expensive! 

Lead Optimization essentially means synthesis of close analogs of an active molecule. 

Target Discovery Lead Identification Lead Optimization Assay Development 
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Lead Optimization 
Prediction of Molecule Properties 

predict of molecular properties - prior to synthesis! 

Structure-based design Ligand-based design Data-driven design 

„Predictions are difficult, 
especially about the future“ 

(Niels Bohr) 

• Xray structure(s) required 
• Physics-based approaches 

• known ligand required 
• physics-based approaches 
• chemoinformatics 

• lots of data required 
• chemoinformatics 
• Machine Learning 

need to make better decisions which compounds to make 

• 50-100 M$ preclinical cost 
• most of it MedChem: labor-intensive, often not amenable to automation 
• estimation: cost to make a compound 2000-3000$ on average 

 

Target Discovery Lead Identification Lead Optimization Assay Development 
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Lead Optimization 
Design Cycle 

Ideas for new 
molecules 

best compounds 
selected for synthesis 

measure 
properties 

rationalize 
structure  
property 
relationship 

Virtual in silico 
synthesis 

Synthesis 
ideas 

predict 
properties 

prioritize 

Target Discovery Lead Identification Lead Optimization Assay Development 

Thomas Fox | BI Pharma | Paris April 2017 
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What is Molecular Dynamics? 

• atomistic model of a biological system 
• dynamics is described by Newton‘s 

equations of motion 

“…everything that is living can be 

understood in terms of jiggling and 

wiggling of atoms.” 

 (R. Feynman) 
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• Molecular Dynamics is primarily used to understand protein function 

• Ion channels 

• GPCRs 

• Aquaporins 

• …… 

 

Molecular Dynamics in Drug Discovery 

• Understanding protein function is important for Drug 
Discovery, but the central questions are: 

• Where and how does a ligand bind? 

• How to improve affinity? 

„The computational microscope“ 

Thomas Fox | BI Pharma | Paris April 2017 
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Molecular Dynamics in Drug Discovery 

protein 
flexibility 

explicit 
water 

physics-
based 

computat-
ionally 

expensive 

does not 
meet project 

timelines 
difficult to 

analyze 

clear benefit 
for DD 

process ? 

Where are current/future applications of Molecular Dynamics  in Drug Discovery? 

tool for 
specialists 

Thomas Fox | BI Pharma | Paris April 2017 
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• investigate flexibility of proteins (which conformations do I have to deal with?) 

• search for putative binding sites which are not obvious or not present in experimental 
structure 

• calculate binding energies 

• conformational sampling and analysis 

• find and evaluate binding poses 

• calculate (un)binding kinetics 

• analysis of water structure and water energetics in binding site 

• … 

MD Simulations 
Possible Applications 

Thomas Fox | BI Pharma | Paris April 2017 



21 

Mapping Protein Surfaces 
Individual Interaction Patterns 

Drug-like molecule  

use these probes in MD simulations:  
map protein surfaces → identify favorable interaction sites and types 

interaction with target protein based 
on interactions of its fragments 

fragments (“probes“) 

Thomas Fox | BI Pharma | Paris April 2017 
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Mapping Protein Surfaces 
Mixed-Solvent Molecular Dynamics (SILCS) 
 
 

Approx. 150 mM benzene and 150mM propane (other fragments are also possible). 

Basic concept: 
• no assumption about a particular binding site 
• fragments compete with water for binding sites at the protein surface 
• flexible protein -> induced-fit, transient pockets 

Site Identification by Ligand Competitive Saturation 
MD simulation of a protein in an environment of different solvent probes (fragments) 

Thomas Fox | BI Pharma | Paris April 2017 
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• reasonably long mixed solvent  
simulations (10 x 100 ns) for converged  
results 

• convert spatial distribution to a  
free-energy map for each fragment type 

• same can be done for water 

• use this information to suggest  
modifications to existing ligands 

 

Mapping Protein Surfaces  
Ligand Optimization with Fragment Maps 

combined maps give a pharmacophore describing interaction patterns 

Thomas Fox | BI Pharma | Paris April 2017 
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Mapping Protein Surfaces 
Mdm2/p53 complex (3dac) 

deep hydrophobic cleft to interact  
with p53-derived peptide  

Thomas Fox | BI Pharma | Paris April 2017 
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Mapping Protein Surfaces 
Mdm2 apo structure (1z1m) 

no binding site 

Thomas Fox | BI Pharma | Paris April 2017 
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Mapping Protein Surfaces 
Fragment maps of Mdm2 (apo structure) 

MD simulation starting from  
apo structure 
fragment maps:    benzene 
  propane 

Thomas Fox | BI Pharma | Paris April 2017 
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Mapping Protein Surfaces 
Fragment maps of Mdm2 (apo structure) 

fragment maps reveal  
binding site beneath the  
Mdm2 apo structure surface 
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Mapping Protein Surfaces 
Fragment maps of compared to Mdm2 complex structure 

Fragment maps computed 
from the Mdm2 apo structure 
match Mdm2 complex 
structure 

Thomas Fox | BI Pharma | Paris April 2017 
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Mapping Protein Surfaces 
Comparison with experimental structures 

Positions of hydrophobic 
affinity anchors of synthetic 
ligands are correctly computed 
from apo structure 

1t4e 
4oq3 

Thomas Fox | BI Pharma | Paris April 2017 
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• MD simulations with small chemical probes yield fragment maps which represent favorable 
interaction possibilities on the protein surface 

• crystal water positions are well reproduced and water networks can be analyzed 

• pharmacophores derived from fragment maps agree with crystal structures of protein/ligand 
complexes 

• induced-fit/conformational selection be observed 

 

 

• methodology provides valuable hints for ligand optimization 

 

Mapping Protein Surfaces 
Summary 

Thomas Fox | BI Pharma | Paris April 2017 
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• influenced by many components 

 

 

 

 

 

 

 

 

 

 

• need to be highly accurate 
Gibbs’ fault: 1.4 kcal/mol  factor 10 in affinity 

 

Protein Ligand Binding Affinity Prediction 

desolvation of ligand 

rotational, translational 
and conformational 
flexibility of ligand 

protein rearrangement 

changes in protein 
flexibility 

desolvation of 
protein binding site 

protein-ligand 
interactions 

solvation of new 
pocket surface 

liberation of water 
molecules 

changes in water 
protein interactions 
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• much more efficient than absolute free energy calculations 

• modeling of smaller changes should be more accurate 

• relative differences probably more relevant in lead optimization 

• currently the most used technique for rigorous calculations of binding energies 

• compute difference between ligand 1 and 2 in a) solution and b) in the binding site 

 

TI Calculations 
Relative Free Binding Energy Calculations 

DDGbinding =  DG1- DG2 
 =  DG3- DG4 

binding L1 

binding L2 

DG1 

DG2 

DG3 DG4 

alchemical 
transformation 
in protein 

alchemical 
transformation 
in solution 

Thomas Fox | BI Pharma | Paris April 2017 

experiment 

computer 
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• need MD simulations at „intermediate“ steps between start and final state („l-windows“) 

• calculate DG either via Thermodynamic Integration or FEP (BAR or MBAR used in practice) 

• absolute DG / ranking of ligands from a set of perturbations (solve linear equation system) 

 

TI Calculations 
The Alchemical Transformation 

 


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B
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Kirkwood, J. G. J Chem Phys 1935, 3, 300 

real starting state L1 real final state L2 alchemical intermediates 

l = 0 

 

V(l0) = V0 

l = 1 

 

V(l1) = V1 

0 < l < 1 

 

V(l) = (1-l) * V0 + l * V1 

l = 0.5 

DG (0->1) 
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• use TI engine as implemented in the AMBER MD software 

• largely automated setup with little user intervention 

• need to define size of changing part in the molecule („perturbation“): 

 

 

 

 

 

 

• minimal spanning tree or closed cycles ? 

 

TI Calculations 
In-house Implementation / Adaption 

? 

L4 
L4 

L3 

L2 L1 L5 

L6 

L3 

L2 L1 L5 

L6 
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TI Calculations 
Automated Setup 

Input:  
protein pdb file,  

coordinates of bound ligands 

generate amber parameter files 
(prepin, frcmod) for ligands 

(antechamber) 

compute maximum common 
substructure (MCS) 

generate amber topologies and 
coordinates (leap, ff99SB/gaff-

am1bcc) 

decide on perturbed atom selection 
(softcore regions) 

Generate input and jobscript files 

topologies, coordinates, 
input, job-scripts 

implementation in svl, R, perl 

based on MCS: decide which 
ligands to connect via perturbation 

(e.g. minimal spanning tree) 

manual intervention possible/ necessary 

NS NS NS NS

Thomas Fox | BI Pharma | Paris April 2017 
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• disappear single molecule in water box 

• less of a sampling issue, test of underlying FF 

• dataset: 211 diverse small 
organic molecules 

• average of 5 runs 
 
 

• most compounds within 
the accepted error range 

• discrepancies often can be 
explained by known  
deficiencies of the gaff-FF 

TI Calculations 
Can it Work At All? Solvation Free Energies 

Thomas Fox | BI Pharma | Paris April 2017 
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• 11 systems, 147 ligands 

• overall, good agreement  
with experiment over large 
range of affinities 

• 7 >2 kcal/mol error 

• 130 <1.5 kcal/mol  

• overall correlation: 0.8 

• MUE = 0.75 kcal/mol 

• RMSD = 1.0 kcal/mol 

 

TI Calculations  
Overall Results 

co
lo

r c
od

e 
of

 le
ge

n
d 

w
ro

n
g 
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Schrödinger FEP  

Thomas Fox | BI Pharma | Paris April 2017 
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• a few examples from literature data sets and in-house projects: 

– MMP13 

– in-house protein kinase 

– Phosphodiesterase 5A 

 

• in-house example which takes advantage of limited sampling 

 

TI Calculations 
Is it really useful? 

Thomas Fox | BI Pharma | Paris April 2017 
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• 12 ligands from 2.5 → >500 µM 

• binding modes modeled by analogy to the Xray structures of cpd1 and cpd11 

 

 

TI Calculations 
MMP13 

Taylor et al., J. Med. Chem. 2011, 54, 8174 

Thomas Fox | BI Pharma | Paris April 2017 
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TI Calculations 
MMP13 - Results 

relative DDG absolute DG 

• DDG: all but one within 1.5 kcal/mol, 10/15 within 1 kcal/mol 
• experimental trends well reproduced 
• DG: clear separation between high- and low-affinity ligands 
• large error bars for ligands where multiple binding conformations look reasonable 

Thomas Fox | BI Pharma | Paris April 2017 



42 

TI Calculations 
The Masked Kinase („TMK“) – Core Modifications of an active ligand 

N

N

R1

R2

N

N
N

N

N

N
F

N

N

N

NN
N

N

N

N
N

NN

N

N

N

N
H

N

N N

N

11 ligands with IC50 from 0.13 to 2100 nM 
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• larger errors >1.5 kcal/mol observed, nevertheless still prioritization of cores possible 

 

TI Calculations 
“TMK” – Core Modifications: Results 

relative DDG absolute DG 
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• of different heterocyclic scaffolds as substrate 
analog PDE5A inhibitors  

 

 

 

 

 

 

 

 

• 32 compounds with PDE5 IC50 from 1 to 200 nM 

 

 

TI Calculations  
PDE5A 

Haring, Bioorg. Med. Chem. Lett. 15 (2005) 3900) 
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• most of the individual perturbations are within 1.5 kcal/mol error margin and have 
only small hystereses 

• DG values with large errors, no correlation with experiment 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

TI Calculations  
PDE5A - Results 

relative DDG absolute DG 
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• inaccurate model (‘force field’) - especially for arbitrary organic molecules or metal ions in the 
binding site 

 

• insufficient sampling - lack of sufficient criteria for convergence 

– statistical error estimates from a single FE simulation severely underestimate sampling error 

– forward/backward convergence is necessary but not sufficient condition for convergence 

– cannot estimate error bar from a single simulation 

 

• role of water molecules 

– energies of displaced water molecules hard to assess 

– displacement of buried waters poses sampling issue 

TI Calculations 
Sources of Error 

Thomas Fox | BI Pharma | Paris April 2017 
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• setup of TI calculations largely automated 

• TI calculations close to matching time lines of projects (goal ~1-2 days, achievable with GPUs) 

• albeit no quantitative agreement, in most cases TI calculations very valuable in prioritizing 
synthetic efforts  

• very difficult to track problems 

• cannot estimate error bar from a single simulation  
→ cannot say how confident I am about a result 
→ multiple replicas 

 

• make sure you throw your CPUs at a problem where the chemists do not outpace you with a 
small library 

– substituent scan ?? 

– core modifications which usually mean a completely different synthetic route 

 

TI Calculations  
Summary 

Thomas Fox | BI Pharma | Paris April 2017 
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• MD simulations are starting to become a standard tool in drug discovery 

• from expert tool to routine application 

• combines physics based methodology, explicit water treatment, and inclusion of protein 
flexibility to obtain a realistic model of the system of interest 

• many of the earlier obstacles that hampered its use are being overcome 

– increase in computer power and GPU/cloud computing  

– easier and more intuitive user interfaces for simulation setup and analysis 

 

 

MD Simulations in Drug Design 
Summary 

several in-house examples where MD simulations 
had impact on project progress 
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• University of Innsbruck (AK Klaus R. Liedl) 

Hannes G. Wallnoefer (now Sandoz) 

Anna S. Kamenik 

 

• BI CompChem Group  

Clara Christ (now Bayer Pharma) 

Julian Fuchs (BI Wien) 

Sandra Handschuh 

Jan Kriegl 

Uta Lessel 

Daniel Seeliger 

Christofer Tautermann 

Alex Weber 

Bernd Wellenzohn 

 

Thanks to 
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