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Outline	

-  Flow  enhancement  in  confined  fluids	


-  High  slip  systems  (e.g.  water  in  carbon  nanotubes  or  
graphene  sheets)	


-  Errors  in  simulation  via  nonequilibrium  molecular  dynamics  
(NEMD)  methods	


-  How  to  reduce  errors:  (a)  NEMD,  and  (b)  using  equilibrium  
MD  	


	

-  Temperature  control  for  confined  fluids	


-  Pros  and  cons  (errors)  in  thermostaIing  a  confined  fluid  
either  directly,  or  through  the  walls	


-  Compromise  scheme  that  both  freezes  walls  and  thermostats  
it  (?)	


-  Application:  non-­‐‑mechanical  external  pumping  by  
rotating  electric  fields	

	


-  Conclusions	
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Part  1  
  

Measurement  of  Slip	
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What  is  slip?	
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Example:  Poiseuille  flow  NEMD  simulation	


‘hydrophobic’ wall ‘hydrophilic’ wall 
Hansen, Todd & Daivis, Phys. Rev. E 84, 016313 (2011)�
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Slip	


•  Low  slip  systems  (e.g.  hydrophilic  
confinement):	

-  Slip  lengths  small  compared  to  channel  width/

diameter	

-  No  noticeable  difference  between  classical  flow  

predictions  based  on  hydrodynamic  theory  and  
simulation/experimental  results	


	

•  High  slip  systems  (e.g.  hydrophobic  

confinement):	

-  Slip  lengths  large  compared  to  channel  width/

diameter	

-  Significant  differences  between  classical  flow  

predictions  based  on  hydrodynamic  theory  and  
simulation/experimental  results	
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Slip  and  flow  enhancement	


1.  Planar  Poiseuille  flow	


ux y( ) = ρFe
2η0

h
2

⎛
⎝⎜

⎞
⎠⎟
2

− y2
⎡

⎣
⎢

⎤

⎦
⎥ + us

ε =
Qslip

Qno−slip

= 1+ 6ls
h

⎛
⎝⎜

⎞
⎠⎟

where Qslip = observed flow rate, Qno-slip = classical no-slip 
prediction flow rate 

Streaming velocity 
prediction with slip 

Flow enhancement, ε	
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Slip  and  flow  enhancement	


2.  Hagen-­‐‑Poiseuille  flow	
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4η0
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where Qslip = observed flow rate, Qno-slip = classical no-slip 
prediction flow rate 

Streaming velocity 
prediction with slip 

Flow enhancement, ε	
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Controversy  for  high  slip  systems	


•  Experimental  results	

	

-  Majumder  et  al.  (2005):  ls  ~  39,000-­‐‑68,000  nm  (flow  

enhancement  of  44,000  –  77,000)  for  7  nm  
diameter  CNT	


-  Holt  et al.   (2006):  ls  ~  140-­‐‑1400  nm  for  1.3-­‐‑2  nm  
CNTs	


-  Overall,  ls  data  scaIered  over  5  orders  of  
magnitude  (10  nm  –  485,000  nm)  for  CNTs  of  
diameter  0.81-­‐‑10  nm  and  still  no  consensus  has  
been  reached.	
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Controversy  for  high  slip  systems	

	


-  NEMD  simulation  results	

	

-  Thomas  et  al.  (2008)  reassessed  available  flow  

area  in  earlier  experiments  and  found  ls  ~  105  –  
30  nm  (flow  enhancement  433  to  47)  for  CNTs  
1.66  –  4.99  nm  diameter	


-  Errors  resulted  from  fiIing  of  parabolic  velocity  
profiles,  assumptions  of  water  viscosity  and  
fiIing  constraints  (e.g.  unconstrained  fits  result  
in  40%  lower  slip  for  small  strain  rates)	


-  NEMD  simulation  studies  show  variation  of  ls  
from  ~  1  nm  to  5000  nm	
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Controversy  for  high  slip  systems	
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Kannam, Daivis & Todd, MRS Bulletin 42, 283-288 (2017)�

Experiment – red; Simulation – blue; Theory - black �

 
                                    Slip  length  for  H2O  in  CNTs	
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Where  does  the  controversy  stem  

from  in  NEMD  simulations?	


•  Largely  due  to  questionable  extrapolation  of  
slip  velocity  from  velocity  profile  data	


•  Compounded  for  high-­‐‑slip  systems  where  
velocity  profile  (for  Poiseuille  flow)  is  ‘plug-­‐‑
like’,  i.e.  flat.	


•  Other  issues  include  assumption  of  zero-­‐‑
shear  viscosity  (η0),  water-­‐‑CNT  model  used,  
electrostatic  force  handling  (e.g.  Ewald  vs  
Wolf),  density  profiles,  thermostaIing,  etc.	
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Example  1:  H2O  flowing  in  graphene  nanochannels  

undergoing  CoueIe  flow	


H2O: SPC/Fw 
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Example  1:  H2O  flowing  in  graphene  nanochannels  

undergoing  CoueIe  flow	


Couette: H2O, Ls (EMD) = 60 ± 6 nm; NEMD = 61 nm 

(~0.318 reduced units) 

20 x 5 million timesteps  
= 6000 CPU hrs 

Kannam et al, J. Chem. Phys. 136, 024705 (2012). �
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Example  2:  H2O  flowing  in  graphene  

nanochannels  undergoing  Poiseuille  flow	


Kannam et al, J. Chem. Phys. 136, 024705 (2012). �
Poiseuille: H2O, Ls (EMD) = 60 ± 6 nm; NEMD = 53 nm 

20 x 10 million  
timesteps = 12000 CPU hrs 

x 
[~ 0.0015 (reduced units)] 
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Observations  from  NEMD  

simulation  of  Poiseuille  flow	


1.  Average  slip  velocity  14.7±0.4  m/s	

2.  Average  velocity  difference  from  from  centre  to  wall  very  

small  (<0.25  m/s)	

3.  Strain  rate  (velocity  gradient)  at  wall  very  small  and  variation  

large  among  different  fits	

4.  Some  fits  are  inverted  parabola,  due  to  statistical  fluctuations  

resulting  from  very  weak  strain  rates	

5.  Weak  strain  rates  still  higher  than  typical  experimental  strain  

rates,  and  represent  lowest  viable  NEMD  rates  (reasonable  
temperatures  of  ~  300K  achievable  via  thermostaIing  walls)	


6.  Use  of  higher  external  forces  (hence  higher  strain  rates)  makes  
relating  to  experimental  data  unreliable  and  also  results  in  
excessive  heating	


7.  How  then  can  we  make  reliable  estimates  of  slip  velocity  by  
extrapolation  when  data  is  so  noisy?	
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Strategies  for  NEMD  data	

1.  P1  –  ‘raw’  method.  	


•  Simply  compute  ls  for  each  simulation  run  separately  and  
then  average:  	


•  WON’T  WORK!	

•  Inverted  parabola  yield  undefined  slip  lengths,  hence  

would  discard  actual  data,  resulting  in  selective  bias  that  
would  reduce  the  average  value  of  ls.	


	

2.  P2  –  Average  first,  then  fit  using  errors  as  weights.	


•  Results  in  slip  lengths  of  60  ±  9,  46 ± 3 and 130 ± 21 nm 
for external field strengths (Fe) of 1.00, 1.25 and 1.50 × 
1011 ms-2 

•  Strong  field  dependence  unrealistic  in  linear  regime  (as  
will  be  seen  later)	


•  Also  results  in  fit-­‐‑estimates  of  η0  that  do  not  compare  well  
with  known  value  of  η0  (from  independent  equilibrium  
MD,  Green-­‐‑Kubo  calculations)	


•  Suggests  method  is  naïve  and  error  prone	
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Strategies  for  NEMD  data	

3.  P3  –  use  the  definition  of  the  slip  length  (Navier  1823)	


	


	



which  leads  to  	

	

	

	

	

where  m  =  slope  of  slip  velocity  vs.  field  strength  plot	


ls =
2mη0
ρh

; ξ0 =
2m
ρh

ls =
η0
ξ0
; us = ls

∂ux
∂y y=h 2

Kannam et al, J. Chem. Phys. 136, 024705 (2012). �

Leads  to  ls  =  63  ±  4  nm    	
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Strategies  for  NEMD  data	


4.  P4  –  Use  of  independent  viscosity  to  constrain  
velocity  fit  profiles	


	

•  Thomas  &  McGaughey  (2008)  found  that  unconstrained  fit  

to  velocity  profiles  result  in  100%  deviation  in  ls  and  η0  
from  the  known  actual  values	


	

•  Use  of  accurate  η0  computed  via  independent  Green-­‐‑Kubo  

equilibrium  MD  instead  to  constrain  the  fit  (rather  than  
allowing  η0  to  be  a  free  fiIing  parameter)  leads  to  a  value  
of  η0  =  62  ±  5  nm.	
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Strategies  for  NEMD  data	


5.  P5  –  Use  of  of  flow  enhancement	

	


ε =
Qslip

Qno−slip

= 1+ 6ls
h

⎛
⎝⎜

⎞
⎠⎟

Qslip  obtained  by  counting  number  of  water  molecules  crossing  a  
fixed  plane  in  the  streaming  direction,  i.e.  we  measure  the  flow  rate  
directly  without  any  assumption  or  approximation.	

	

Advantage  of  this  method  is  it  does  not  suffer  from  sensitivity  of  
streaming  velocity  profiles	
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Strategies  for  NEMD  data	

Comparison  of  all  NEMD  methods  +  equilibrium  method  (to  be  
discussed  next)	


Kannam et al, J. Chem. Phys. 136, 024705 (2012). �
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Equilibrium  Method  to  Compute  Slip	


•  Designed  to  be  able  to  predict  slip  velocity  for  highly  
confined  fluids	


•  Makes  use  of  constitutive  equation  for  frictional  force  
between  solid-­‐‑fluid  to  form  relevant  time  correlation  
functions  (TCFs)	


•  From  TCFs  extract  friction  coefficient  	

•  From  friction  coefficient  and  fluid  viscosity  predict  slip  

velocity  and  slip  length  for  a  nonequilibrium  system	

•  Model  is  valid  in  weak  to  moderate-­‐‑field  regime	

•  Computationally  less  expensive  and  procedurally  

simpler  than  NEMD	
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Model:  geometry	


Numerical Aspects of Nonequilibrium Dynamics – IHP, Paris, 25-28 April 2017  



Model:  Time  Correlation  functions	


with	


CuSuS
t( ) ≡ uS 0( )uS t( ) ; uW t( ) = 0 equilibrium( )

CuS ′F t( ) ≡ uS 0( ) ′F t( )

 
CuS ′F s( ) = − ζ s( ) CuSuS

s( )
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Hansen, Todd & Daivis, Phys. Rev. E 84, 016313 (2011)�



Comparison:  H2O  flowing  in  carbon  nanotubes	


Kannam et al, J. Chem. Phys. 138, 094701 (2013) �
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Ls
EMD = η0

ξ0



Part  2  
  

Temperature  Control  for  
Nanofluidic  Systems	
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Temperature  control	


-  As  nanofluidics  becomes  a  serious  technology,  
measurement  and  control  of  temperature  becomes  a  
serious  challenge  in  both  laboratory  and  simulation  
work	


-  For  NEMD  simulation,  there  are  two  strategies  one  
could  use:	


	

1.  Thermostat  the  fluid  molecules  directly	

2.  Thermostat  only  the  wall  atoms  and  allow  heat  to  

dissipate  through  the  walls	

	

-  We  ask:  which  is  preferable,  or  does  it  even  maIer?	
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Thermostat  (e.g.  Poiseuille  flow  with  wall  thermostat)	
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•  Most  basic  form  of  microscopic  equations  of  motion  for  
single-­‐‑component  atomic  fluid:	


	

	

	


–  Wall  atoms  can  vibrate  about  their  tethering  sites	

–  Fluid  atoms  evolve  only  under  Newton’s  equations  with  
an  external  applied  field  (e.g.  gravity)  that  acts  in  much  
the  same  way  as  a  pressure  gradient	


–  Fluid  flow  generated  by  the  external  field	

–  Heat  is  conducted  out  of  the  fluid  (unthermostaIed)  
through  the  walls  (thermostaIed)	


 

 

ri =
pi
mi

pi = Fi
φ + Fi

H −αpi

⎫
⎬
⎪

⎭⎪
wall

 

ri =
pi
mi

pi = Fi
φ + Fext

⎫
⎬
⎪

⎭⎪
fluid



Temperature  control	


-  It  turns  out  it  does  maIer  what  to  thermostat	

-  Preferable  to  thermostat  walls  and  allow  heat  

generated  in  the  fluid  to  dissipate  through  the  walls	

-  Models  Nature  more  faithfully  and  generates  

physically  realistic  heat  fluxes  (thermostaIing  fluid  
produces  no  heat  flux)	


-  Why  not  just  thermostat  the  fluid  directly?	

-  Would  have  the  advantage  of  being  able  to  freeze  

walls,  hence  making  simulations  faster  and  also  
adding  rigidity  to  walls  so  unwanted  permeation  of  
fluid  atoms  into  walls  does  not  occur	


-  Particularly  important  for  realistic  and  geometrically  
complex  atomic  wall  structure	
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Temperature  control:  water  

permeation	
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Temperature  control	

	

-  Previous  studies  (Bernardi  et  al.,  J.  Chem.  Phys.  132,  

244706  (2010))  show  that  freezing  walls  and  
thermostaIing  liquid  under  flow  conditions  can  lead  
to  undesirable  and  unphysical  side-­‐‑effects  such  as:	


	

-  Anomalies  in  the  shear  stresses	


-  Anomalies  in  the  resulting  streaming  velocities	


-  Anomalies  in  the  fluid  densities	


-  Reduction  in  fluid  slip  at  walls	
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Temperature control 
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Temperature  control	


-  Propose  a  new  way  to  combine  the  best  of  both  
worlds,  i.e.	

-  Freeze  walls,  and	

-  Thermostat  the  walls	

-  Absolutely  no  thermostat  applied  directly  to  the  

fluid!	

-  Introduce  ‘virtual  particles’  tethered  by  harmonic  

potential  to  the  walls	

-  Virtual  particles  interact  only  with  fluid  molecules	

-  They  are  ‘invisible’  to  wall  atoms  and  can  pass  

straight  through  them	

-  Carry  no  charge  but  have  mass  and  momentum	

-  VPs  are  not  stiff,  but  rather  ‘loosely’  bound  and  

do  not  behave  as  a  barrier  (wall)	
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-  Water  confined  to  realistic  hydrophobic  (high  slip)  
and  hydrophilic  (low  slip)  surfaces	


	

-  Simulation  details	


-  System  geometry	

-  Interaction  potentials	

-  Equations  of  motion  –  apply  either  a  uniform  gravity-­‐‑like  

field  or  an  external  rotating  electric  field	


-  Some  results  and  comparison  with  Extended  Navier-­‐‑
Stokes  (ENS)  equations  to  show  coupling  of  
molecular  rotation  with  linear  translational  motion	


NEMD  simulation	
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-  SPC/E  water  molecules  (good  agreement  with  
experimental  viscosity  and  dipole  moment)	


	

-  Hydrophobic  surface:  graphene	


-  Hydrophilic  surface:  β-­‐‑cristobalite	

-  Polymorph  of  silica  (SiO2)	

-  Tetrahedral  (diamond)  structure	

-  Well  investigated	

-  Hydroxylate  unsaturated  oxygens  	

	
with  hydrogen	


	

-  Entire  system  is  electrically  neutral	


 

Simulation  system  and  geometry	
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Simulation  system  and  geometry	
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Equations  of  motion  for  water  molecules  

and  virtual  wall  particles	


 

ri =
pi
mi

pi = Fi +Fext

!

"
#

$
#

water

where

Fi = − ∇φ rij( )
j=1
j≠i

N

∑ ; φ rij( ) = 4εij
σ ij

rij

,

-
..

/

0
11

12

−
σ ij

rij
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6

+
qiqj
4πε0rijj>i

∑
i=1

N

∑
3
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5
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7

8
8j>i

∑
i=1

N

∑

and
Fext = mig (gravity-like) or qiEi electric field( )
Ei = E cosωt, sinωt, 0( ) τH2O = ri − rCM( )

i∈H2O
∑ ×qiEi

 

ri =
pi
mVP,i

pi = Fi − k ri − ri0( )−αpi

⎫

⎬
⎪

⎭
⎪

VPs 1D or 3D( )
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Temperature  control	
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Temperature  control	


SPC/E water – graphene system 

De  Luca  et  al.,  J.  Chem.  Phys.  140,  054502    (2014)	
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Temperature  control	
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Mid-­‐‑channel  temperature	

(profiles  quite  flat)	


red-­‐‑dashed  line:  TW	


SPC/E  water  –  graphene  system	


De  Luca  et  al.,  J.  Chem.  Phys.  140,  054502    (2014)	


TW 

VP3D-36 

VP-36 

VP-72 

VP3D-72 

σVP  =  σO  =  0.3166  nm	

εVP  =  εO  =  0.6502  kJ/mol	

kVP  =  0.431  Nm-­‐‑1	


dgv  =  0.63  Å	


Temperature  control  similar  to  directly  thermosta>ing  liquid  
without  side-­‐‑effects!	
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Slip  velocity,  temperature,  density  vs  VP  plane  position	


De  Luca  et  al.,  J.  Chem.  Phys.  140,  054502    (2014)	
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εVP  =  εO  =  0.6502  kJ/mol	

kVP  =  0.431  Nm-­‐‑1	


g  =  2.56  x  1013  ms-­‐‑2	


VP scheme 
dgv = -0.32Å (solid) 
dgv = 0.63Å 
dgv = 1.27Å (dotted) 
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Strain  rate,  heat  flux	


TW:  black;  T  ~  350K	

VP:  red;  T  ~  318K	
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Stress  profile	
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Thermal  resistance  (Kapiya  resistance)	


R ≡ ΔT
Jq

=
Tf −Tw
Jq

Experimental/simulation  
values  in  the  range	

R  ~  (2  x  10-­‐‑8  –  2  x  10-­‐‑9)  
m2KW-­‐‑1	
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Application:  Flow  generation  via  

rotating  electric  field	
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De  Luca  et  al,  J.  Chem.  Phys.  138,  154712    (2013)	


NEMD  Simulation  Results	

(Idealised  system)	
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De  Luca  et  al,  Langmuir  30,  3095  (2014)	


NEMD  Simulation  Results	

(asymmetric  graphene-­‐‑silica  system)	
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Comparison  with  continuum  theory	
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De  Luca  et  al,  Langmuir  30,  3095  (2014)	
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Conclusions  	

Flow  Enhancement  Simulations	

-  Direct  NEMD  needs  careful  analysis  and  excellent  

statistics  to  make  reasonable  predictions	

-  Equilibrium  MD  methods  based  on  time  correlation  

functions  more  accurate,  reliable  and  valid  in  linear  
(experimental)  regime	


Temperature  Control  Simulations	

-  ThermostaIing  confined  fluid  directly  a  questionable  

simulation  strategy  that  results  in  several  sources  of  
error	


-  ‘Virtual  particle’  thermostat  allowing  rigid  walls  to  co-­‐‑
exist  with  unthermostaIed  fluid  enables  thermostaIing  
of  complex  wall-­‐‑fluid  systems  and  may  be  a  useful  
NEMD  simulation  scheme  to  control  temperature  for  
confined  fluids	
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