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— Flow enhancement in confined fluids

- High slip systems (e.g. water in carbon nanotubes or
graphene sheets)

— Errors in simulation via nonequilibrium molecular dynamics
(NEMD) methods

= 1\H/[(]))W to reduce errors: (a) NEMD, and (b) using equilibrium

— Temperature control for confined fluids

— Pros and cons (errors) in thermostatting a confined fluid
either directly, or through the walls

= .(E(()%l)qpromise scheme that both freezes walls and thermostats
it (7

- Application: non-mechanical external pumping b
ro]’fgcing electric fields pulmping by

— Conclusions
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Part 1

Measurement of Slip
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What is slip?
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Example: Poiseuille flow NEMD simulation

0.5t

2 6 10 14
Y
hydrophobic’ wall ‘hydrophilic’ wall
Hansen, Todd & Daivis, Phys. Rev. E 84, 016313 (2011)
o o
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* Low slip systems (e.g. hydrophilic
confinement):
— Slip lengths small compared to channel width/
diameter
- No noticeable difference between classical flow
predictions based on hydrodynamic theory and
simulation/experimental results

* High slip systems (e.g. hydrophobic
confinement):
- Slip lengths large compared to channel width/
diameter
- Significant differences between classical flow
predictions based on hydrodynamic theory and
simulation/experimental results
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Slip and flow enhancement

1. Planar Poiseuille flow

2
_ PF, ﬁ 2 Streaming velocity
2 (y ) - ( yo|tu prediction with slip

Qslip 6ls
E= =| 1+ Flow enhancement, &
Qno—slip h

where @), = observed flow rate, @, ,;, = classical no-slip
prediction flow rate
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velocity u(r)

2 position (r) slip length /s

U (r) = PE, é 7t l+u Streaming velocity
Z 41, |\ 2 ’ prediction with slip
0., 81
€= —=| 1+ Flow enhancement, &
Qno—slip d

where @, = observed flow rate, @), ., = classical no-slip

prediction flow rate
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Controversy for high slip systems

* Experimental results

-  Majumder et al. (2005): I, ~ 39,000-68,000 nm (flow
enhancement of 44,000 — 77,000) for 7 nm

diameter CNT
- Holt et al. (2006): I, ~ 140-1400 nm for 1.3-2 nm
CNTs

- Operall, [, data scattered over 5 orders of
magnitude (10 nm — 485,000 nm) for CNTs of
diameter 0.81-10 nm and still no consensus has
been reached.
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Controversy for high slip systems

— NEMD simulation results

— Thomas et al. (2008) reassessed available flow
area in earlier experiments and found [, ~ 105 -
30 nm (flow enhancement 433 to 47) for CNTs
1.66 —4.99 nm diameter

— Errors resulted from fitting of parabolic velocity
profiles, assumptions of water viscosity and
fitting constraints (e.g. unconstrained fits result
in 40% lower slip for small strain rates)

- NEMD simulation studies show variation of I,
from ~ 1 nm to 5000 nm
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Controversy for high slip systems

6
10:“5 * | T ] 79,11

Shp length for HZO. in CNTs | |

11
12
14
15
16
17
19
6
20
11
21
22
18
23
24
13
25
26,36

10° -

=104 |

slip length [5 (nm
==

—_
)
—_

—_

()
]

—_—

0.7 1 2 3 4 5 678910 20 30 40 50
diameter d (nm)

Experiment - red; Simulation - blue; Theory - black

Kannam, Daivis & Todd, MRS Bulletin 42, 283-288 (2017)
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Where does the controversy stem

from in NEMD simulations?

* Largely due to questionable extrapolation of
slip velocity from velocity profile data

* Compounded for high-slip systems where
velocity profile (for Poiseuille flow) is ‘plug-
like’, i.e. flat.

* Other issues include assumption of zero-
shear viscosity (7,), water-CNT model used,
electrostatic force handling (e.g. Ewald vs
Wolf), density profiles, thermostatting, etc.
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Example 1: H,O flowing in graphene nanochannels

undergoing Couette flow

H,O: SPC/Fw
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Example 1: H,O flowing in graphene nanochannels

undergoing Couette flow
U=50m/ (0318 reduced units)
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Couette: H,O, L, (EMD) = 60 + 6 nm; NEMD = 61 nm
3 Kannam et al, J. Chem. Phys. 136, 024705 (2012). r
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nanochannels undergoing Poiseuille flow

F.=1.0x 10! m/s?
[~ 0.0015 (reduced units)]
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Poiseuille: H,O, L, (EMD) = 60 + 6 nm; NEMD = 53 nm

Kannam et al, J. Chem. Phys. 136, 024705 (2012).
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simulation of Poiseuille flow

—_

Average slip velocity 14.7+0.4 m/s

2. Average velocity difference from from centre to wall very
small (<0.25 m/s)

3. Strain rate (velocity gradient) at wall very small and variation
large among different fits

4. Some fits are inverted parabola, due to statistical fluctuations
resulting from very weak strain rates

5. Weak strain rates still higher than typical experimental strain
rates, and represent lowest viable NEMD rates (reasonable
temperatures of ~ 300K achievable via thermostatting walls)

6. Use of higher external forces (hence higher strain rates) makes
relating to experimental data unreliable and also results in
excessive heating

7. How then can we make reliable estimates of slip velocity by

extrapolation when data is so noisy?

Numerical Aspects of Nonequilibrium Dynamics — IHP, Paris, 25-28 April 2017
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1. Pl —‘raw’ method.

Simply compute [, for each simulation run separately and
then average:

«  WON'T WORK!

* Inverted parabola yield undefined slip lengths, hence
would discard actual data, resulting in selective bias that
would reduce the average value of [..

2. P2 - Average first, then fit using errors as weights.

Results in slip lengths of 60 £9, 46 + 3 and 130 4+ 21 nm
for external field strengths (F,) of 1.00, 1.25 and 1.50 X
10H ms™

*  Strong field dependence unrealistic in linear regime (as
will be seen later)

*  Also results in fit-estimates of 1, that do not compare well
with known value of 7, (from independent equilibrium

MD, Green-Kubo calculations)
*  Suggests method is naive and error prone

Numerical Aspects of Nonequilibrium Dynamics — IHP, Paris, 25-28 April 2017
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Strategies for NEMD data

3. P3—use the definition of the slip length (Navier 1823)
du
[ @, u, =1l —
50 ay y=h/2
which leads to
2m 2m
ls o no ) 50 N
ph ph
where m = slope of slip velocity vs. field strength plot
? slope (m) = (14.9+£0.2)x10"'s™ ]
20 Kannam et al, J. Chem. Phys. 136, 024705 (2012).
\\’;:m 15
i 1 Leadstol,=63+4 nm

F/(10") (m/s’)
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Strategies for NEMD data

4. P4 - Use of independent viscosity to constrain
velocity fit profiles

*  Thomas & McGaughey (2008) found that unconstrained fit
to velocity profiles result in 100% deviation in [, and 7,
from the known actual values

«  Use of accurate 1, computed via independent Green-Kubo
equilibrium MD instead to constrain the fit (rather than
allowing 1, to be a free fitting parameter) leads to a value
of 1, =62 =5 nm.
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Strategies for NEMD data

5. P5 - Use of of flow enhancement

O :(H 618)
Qno—slip h

Qg Obtained by counting number of water molecules crossing a

fixed plane in the streaming direction, i.e. we measure the flow rate
directly without any assumption or approximation.

Advantage of this method is it does not suffer from sensitivity of
streaming velocity profiles
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i Strategies for NEMD data

Comparison of all NEMD methods + equilibrium method (to be

discussed next)
300 ' | ' | ' | ' |

| EMD: 60 = 6 O Method-P5

Method-P3: 63+4 = = —

250 1

Method-C3: 58 +8
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> Kannam et al, J. Chem. Phys. 136, 024705 (2012).
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Equilibrium Method to Compute Slip

* Designed to be able to predict slip velocity for highly
confined fluids

* Makes use of constitutive equation for frictional force

between solid-fluid to form relevant time correlation
functions (TCFs)

* From TCFs extract friction coefficient

* From friction coefficient and fluid viscosity predict slip
velocity and slip length for a nonequilibrium system

* Model is valid in weak to moderate-field regime

* Computationally less expensive and procedurally
simpler than NEMD

Numerical Aspects of Nonequilibrium Dynamics — IHP, Paris, 25-28 April 2017
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Model: geometry

Slab Fluid

\)
] 1 -I-I-I-lb

Wall 1 Wall 2

P

Ls
_—t ! -y
y=0 y=A =Ly
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- ()= (uS (0)u (t)); u, (1)=0 (equilibrium)\

J

Hansen, Todd & Daivis, Phys. Rev. E 84, 016313 (2011)
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Comparison: H,O flowing in carbon nanotubes
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Kannam et al, J. Chem. Phys. 138, 094701 (2013)
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Part 2

Temperature Control for
Nanofluidic Systems
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Temperature control

- As nanofluidics becomes a serious technology,
measurement and control of temperature becomes a

serious challenge in both laboratory and simulation
work

- For NEMD simulation, there are two strategies one
could use:

1. Thermostat the fluid molecules directly
2. Thermostat only the wall atoms and allow heat to
dissipate through the walls

— We ask: which is preferable, or does it even matter?

Numerical Aspects of Nonequilibrium Dynamics — IHP, Paris, 25-28 April 2017
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Thermostat (e.g. Poiseuille flow with wall thermostat)

* Most basic form of microscopic equations of motion for
single-component atomic fluid:

A A

r, = P I, = b
m, >wall m, > fluid
p.=F +F" —ap, | p, =F +F"

— Wall atoms can vibrate about their tethering sites

— Fluid atoms evolve only under Newton’s equations with
an external applied field (e.g. gravity) that acts in much
the same way as a pressure gradient

— Fluid flow generated by the external field

— Heat is conducted out of the fluid (unthermostatted)
through the walls (thermostatted)

Numerical Aspects of Nonequilibrium Dynamics — IHP, Paris, 25-28 April 2017
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— It turns out it does matter what to thermostat

— Preferable to thermostat walls and allow heat
generated in the fluid to dissipate through the walls

— Models Nature more faithfully and generates

physically realistic heat fluxes (thermostatting fluid
produces no heat flux)

-  Why not just thermostat the fluid directly?
—  Would have the advantage of being able to freeze
walls, hence making simulations faster and also

adding rigidity to walls so unwanted permeation of
fluid atoms into walls does not occur

— Particularly important for realistic and geometrically
complex atomic wall structure

Numerical Aspects of Nonequilibrium Dynamics — IHP, Paris, 25-28 April 2017
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Temperature control

— Previous studies (Bernardi et al., J. Chem. Phys. 132,
244706 (2010)) show that freezing walls and

thermostatting liquid under flow conditions can lead
to undesirable and unphysical side-effects such as:

— Anomalies in the shear stresses
- Anomalies in the resulting streaming velocities
— Anomalies in the fluid densities

— Reduction in fluid slip at walls

Numerical Aspects of Nonequilibrium Dynamics — IHP, Paris, 25-28 April 2017
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Temperature control

- Propose a new way to combine the best of both
worlds, i.e.

- Freeze walls, and

— Thermostat the walls

— Absolutely no thermostat applied directly to the
fluid!

— Introduce ‘virtual particles” tethered by harmonic

potent1al to the walls
Virtual particles interact only with fluid molecules

— They are “invisible’ to wall atoms and can pass
straight through them

— Carry no charge but have mass and momentum

— VDPs are not stift, but rather ‘loosely” bound and
do not behave as a barrier (wall)

Numerical Aspects of Nonequilibrium Dynamics — IHP, Paris, 25-28 April 2017
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NEMD simulation

—  Water confined to realistic hydrophobic (high slip)
and hydrophilic (low slip) surfaces

— Simulation details
- System geometry
— Interaction potentials
- Equations of motion — apply either a uniform gravity-like
field or an external rotating electric field

— Some results and comparison with Extended Navier-

Stokes (ENS) equations to show coupling of
molecular rotation with linear translational motion

Numerical Aspects of Nonequilibrium Dynamics — IHP, Paris, 25-28 April 2017
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Simulation system and geometry

- SPC/E water molecules (good agreement with

experimental viscosity and dipole moment)

{ »d »d »o »<

- Hydrophlhc surface: f-cristobalite <7<+

Polymorph of silica (5iO,)

—  Tetrahedral (diamond) structure

- Well investigated

- Hydroxylate unsaturated oxygens
with hydrogen

Numerical Aspects of Nonequilibrium Dynamics — IHP, Paris, 25-28 April 2017
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Simulation system and geometry
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quations of motion for water molecules

(P
m. -
1
p I - Fi + Fext
where
N

and

and virtual wall particles

i = P;

water Myp
A Fi —

P k(r,—r,)—ap,

F,, =mg (gravity-like) or ¢E, (electricfield)

E, = E(coswt,sinwr,0)

i€H,0

N

J

Tho = E (ri _rCM)qu'Ei
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Temperature control
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Temperature control

(a) (b)

550 ‘ ‘ ‘ 550 ‘ ‘ ‘
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—~ —
3 400 X, 400
— —
350( 1 350%
300/v 1 3000w
VP system TW system
2001 02 03 04 05 06 07 25001 02 03 04 05 06 07
y [2.57 nm] y [2.57 nm]
SPC/E water — graphene system
De Luca et al., ]. Chem. Phys. 140, 054502 (2014)
o
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SPC/E water — gra
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De Luca et al., ]. Chem. Phys. 140, 054502 (2014)
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Slip velocity, temperature, density vs VP plane position
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Strain rate, heat flux

10 (a) 8 (c)
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TW: black; T ~ 350K
VP: red; T ~ 318K
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Stress profile

P, [Pal

_3 L 1 |
-1 -0.5 0 0.5 1

y [m] x 107

TW: black; T ~ 350K
VP: red; T ~ 318K
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Thermal resistance (Kapitza resistance)

TABLE I. Temperature jump, strain rate, shear stress, heat flux, and thermal
boundary resistances as a function of d,,,,. The point yy at which the properties
are evaluated is close to the interface. Reference parameters and external field
are indicated in the text.

dgv AT y(}"O) P x)'(yO) J qy(yO) R
(107%m) (K) (10"s™") (107Pa) (10°Wm™?) (107° m’KW™)
0.127 14 0.41 3.04 0.4 3.5 B : Isimul
0.095 15 04 3.04 0.39 3.9 xperimental/simulation
0.063 19 042 3.04 0.41 46 values in the range
0.032 23 0.45 3.04 0.43 5.3 R~(2x 108 =2 x 10—9)
0 35 0.53 3.04 0.51 6.8 m2KW-1
-0.032 86 0.85 3.03 0.82 10.4
g=AT _L -1
Jq JC]
[ o
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NEMD Simulation Results
(Idealised system)
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De Luca et al, ]. Chem. Phys. 138, 154712 (2013)
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NEMD Simulation Results
(asymmetric graphene-silica system)
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De Luca et al, Langmuir 30, 3095 (2014)
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Conclusions

Flow Enhancement Simulations

— Direct NEMD needs careful analysis and excellent
statistics to make reasonable predictions

— Equilibrium MD methods based on time correlation
functions more accurate, reliable and valid in linear
(experimental) regime

Temperature Control Simulations

— Thermostatting confined fluid directly a questionable
simulation strategy that results in several sources of

error

— “Virtual particle’ thermostat allowing rigid walls to co-
exist with unthermostatted fluid enables thermostatting
of complex wall-fluid systems and may be a usetful
NEMD simulation scheme to control temperature for
confined fluids
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