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1. Phase transitions in the Vicsek model
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4Vicsek model [Vicsek, Czirok, Ben-Jacob, Cohen, Shochet, PRL 95]

Particle system

self-propelled ⇒ constant velocity

align with their neighbours up to a certain noise

Time-discrete model

k-th particle position Xn
k , velocity V n

k , at time tn = n∆t

|V n
k | = 1

Xn+1
k = Xn

k + V n
k ∆t,

V̄ n
k =

J n
k

|J n
k | , J n

k =
∑

j,|Xn
j −Xn

k
|≤R

V n
j

arg(V n+1
k ) = arg(V̄ n

k + τnk )

τnk drawn uniformly in [−τ, τ ]; R = interaction range

R

Xk

Vk
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5Phase transition in Vicsek model [Vicsek et al, PRL 95]

Phase transition

disordered → aligned state

Symmetry breaking

Order parameter measures alignment

c1 =
∣

∣

∣
N−1

∑

j Vj

∣

∣

∣
, 0 ≤ c1 ≤ 1

c1 vs noise c1 vs density band formation

c1 ∼ 1

Vk Vk

c1 ≪ 1

after [Chaté et al, PRE 2008]
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2. Mathematical analysis of the phase
transitions
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7Time continuous Vicsek model [Czirok et al PRE 1996]

Ẋk(t) = Vk(t), |Vk(t)| = 1

dVk(t) = PV ⊥
k
(ν V̄kdt+

√
2τ ◦ dBk

t ), PV ⊥
k
= Id− Vk ⊗ Vk

V̄k =
Jk
|Jk|

, Jk =
∑

j,|Xj−Xk|≤R

Vj

ν collision frequency τ noise intensity

PV ⊥
k

maintains |Vk(t)| = 1

νΩkdt

dVk

Ωk

Vk

√

2τdBt
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8Mean-field model [Bolley et al, AML 2012]

f(x, v, t) = 1-particle proba distr. (v ∈ R
n, |v| = 1)

∂tf + v · ∇xf = −∇v · (Fff) + τ∆vf

Ff = ν Pv⊥ v̄f , Pv⊥ = (Id− v ⊗ v), v̄f =
Jf

|Jf |

Jf =

∫

(x′,v′)

K
( |x′ − x|

R

)

f(x′, v′, t) v′ dv′ dx′

v̄f = direction of locally averaged flux

Here, we assume:

ν = ν(|Jf |) , τ = τ(|Jf |)

Ff

Ωf

v

ν Ωf
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9Spatially homogeneous case

Forget the space-variable: ∇x ≡ 0
Motivation: medium-scale size observations

Find the equilibria

Use them as LTE in hydrodynamic expansion
Local Thermodynamic Equilibria

Global existence result in [Figalli, Kang, Morales, arXiv:1509.02599]

Spatially homogeneous system: f(v, t), v ∈ R
n, |v| = 1

∂tf = −∇v · (Fff) + τ(|Jf |)∆vf := Q(f)

Ff = ν(|Jf |)Pv⊥uf , uf =
Jf

|Jf |
, Jf =

∫

v′
f(v′, t) v′ dv′

Note that ∂tρ = 0
ρ(t) =

∫

f(v, t) dv = Constant
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10Equilibria

Equilibria are functions f(v) such that Q(f) := 0

Q(f) = τ(|Jf |)∇v ·
[

− k(|Jf |)Pv⊥uf f +∇vf
]

with k(|J |) = ν(|J|)
τ(|J|)

Von Mises-Fisher (VMF) distribution Mκu:

Mκu(v) =
eκu·v

∫

eκu·v dv

κ > 0: concentration parameter ; u ∈ R
n, |u| = 1: orientation

Order parameter: c1(κ) =

∫

Mκu(v) (u · v) dv

κ
ր−→ c1(κ), 0 ≤ c1(κ) ≤ 1

Flux:

∫

Mκu(v) v dv = c1(κ)u
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11Compatibility condition

Equilibria are of the form f(v) = ρMκu(v)

where ρ > 0 and u ∈ R
n s.t. |u| = 1 are arbitrary

Current given by: |Jf | = ρc1(κ)

From expression of Q, κ must be equal to k(|Jf |)
Leads to compatibility condition

κ = k(ρc1(κ)) or equivalently ρ =
j(κ)

c1(κ)

where j(κ) is the inverse function of k(|J |) (|J | ր−→ k(|J |)):

κ = k(|J |) ⇐⇒ |J | = j(κ)

Number of roots and local monotony of j(κ)
c1(κ)

determine number of equilibria and their stability
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12The function κ → j(κ)
c(κ)

We assume |J | → τ(|J |) and |J | → ν(|J|)
|J| smooth

Define ρ∗ = minκ>0
j(κ)
c1(κ)

, ρc = limκ→0
j(κ)
c1(κ)

, ρ∗ ≤ ρc

But monotony of κ → j(κ)
c1(κ)

can be arbitrary
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13Multiple equilibria

κ = 0 (uniform distribution) always a solution

If ρ < ρ∗, the only equilibrium

If ρ > ρ∗, ∃ non-isotropic equilibria

Number of classes of non-isotropic equilibria (different κ’s)

= number of roots of j(κ)
c1(κ)

= ρ

Stability:

Isotropic equilibria are stable if ρ < ρc, unstable if ρ > ρc

Non-isotropic equilibria are stable if j(κ)
c1(κ)

ր, unstable if ց

In non-isotropic case, stability means that:

if f0 is close to equilibrium feq = ρMκu

solution f(t) → f̃eq = ρMκũ as t→ ∞

but ũ may be 6= u
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14Free energy

Free energy

F(f) =

∫

f ln f dv − Φ(|Jf |) with Φ′ = k

Free energy dissipation

D(f) = τ(|Jf |)
∫

f
∣

∣∇vf − k(|Jf |)(v · uf )
∣

∣

2
dv with uf =

Jf

|Jf |

Free energy dissipation identity
d

dt
F(f) = −D(f) ≤ 0

Free energy decays with time

f is an equilibrium iff D(f) = 0
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15Stability / instability

Stability / Instability of isotropic equilibria

Behavior determined by first spherical harmonics, i.e. by Jf

d

dt
Jf = −(n− 1)τ0

(

1− ρ

ρc

)

Jf + h. o. t. with τ0 = τ ||J|=0

In stable case, convergence to equilibrium with rate λ0

λ0 = (n− 1)τ0
(

1− ρ

ρc

)

Instability of non-isotropic equilibria proved by showing:

In any neighborhood of an unstable equilibrium feq = ρMκu,

∃ f0 with F(f0) < F(feq)

Then F(f(t)) ≤ F(f0) < F(feq)

f(t) cannot converge to any equilibrium of the same family

f̃eq = ρMκũ with any ũ since F(f̃eq) = F(feq)
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16Stability / instability (2)

Stability of non-isotropic equilibrium uses that

if
(

j
c1

)′
> 0, we have

‖f(t)− ρMκuf (t)‖2L2 ∼ F(f(t))−F(ρMκuf (t))

and this quantity is decreasing

Convergence to limit equilibrium with rate λκ

λκ =
c1τ(j)

j′
(κ) Λκ

( j

c1

)′
(κ)

where Λκ is the best Poincaré constant for
∫

|∇vg|
2Mκu(v)dv ≥ Λκ

∫

|g − 〈g〉|2Mκu(v)dv, 〈g〉 =

∫

g(v)Mκu(v)dv

Relies on estimate on the free energy dissipation

D(f) ≥ 2λκ(F(f)−F(Mκu)) +O
(

(F(f)−F(Mκu))
1+ε

)
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17Example 1: second-order phase transition

Assume κ → j(κ)
c1(κ)

increasing: then ρc = ρ∗

If ρ < ρc: isotropic distribution = only equilibrium and stable

If ρ > ρc: isotropic distribution is unstable

∃ only one class of non-isotropic equilibria and is stable

Order parameter: c1(ρ) = c1(κ(ρ)), with
j
c1
(κ(ρ)) = ρ

Then c1(ρ) ∼ c̃10(ρ− ρc)
β as ρ

>−→ ρc; β = critical exponent

Assume k(|J|)
|J| = n

ρc
− a|J |q + o(|J |q) as |J | → 0 then:

If q < 2, β = 1
q
> 1

2

If q > 2, β = 1
2

If q = 2, 0 < β ≤ 1
2

Phase diagram for k(|J |) =
|J|

ε+|J|
:
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18Example 2: first-order phase transition

Assume k(|J |) = |J |+ |J |2
Uniform equilib. stable for ρ ∈ [0, ρc]

Non-isotropic equilibria with maximal κ stable for ρ ∈ [ρ∗,∞]

Second class of unstable non-isotropic equilibria for ρ ∈ [ρ∗, ρc]

Function κ→ j
c1

(κ)

Phase diagram

Hysteresis

Numerical computation of hysteresis loop

Using the kinetic model

Using the particle model

Kinetic simulation

Particle simulation
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3. Self-organized Hydrodynamics (SOH)
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20Space-inhomogeneous case

Scaling assumptions: let ε, η ≪ 1 with η = η(ε)

Social force and noise are large: ν, τ = O( 1
ε
)

Interaction radius is small: R = O(η)

ε(∂tf
ε + v · ∇xf

ε) + η2∇v · (F (1)
fε f

ε) = Q(f ε)

F
(1)
f = First order term in the expansion of Ff in η2

Two types of scaling

η = O(ε): microscopic interaction radius

η = O(
√
ε): mesoscopic interaction radius

Micro scale = O(ε)

Macro scale = O(1)

Meso scale = O(
√
ε)
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21Macroscopic model

Macroscopic limit ε → 0: fε → local equilibrium feq:

feq(x, v, t) = ρ(x, t)Mκ(ρ(x,t))u(x,t)(v), with |u(x, t)| = 1

locally around (x, t), a branch of stable equilibria is chosen

question: what equations for ρ(x, t) and u(x, t) ?

Two cases: either κ(ρ) = 0: isotropic equilibria

or κ(ρ) 6= 0: non-isotropic equilibria

Limit ε → 0: Mass conservation eq.

obtained by integrating kinetic eq. w.r.t. v

and closing the flux
∫

f(v) v dv with f = feq

∂tρ+∇ · (c1(ρ)ρu) = 0
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22Case κ(ρ) = 0: isotropic equilibria

Then c1(ρ) = c1(κ(ρ)) = 0: flux vanishes

Leads to ∂tρ = 0

To get non-trivial dynamics, requires O(ε) terms

Gives diffusion model

∂tρ
ε =

ε

(n− 1)nτ0
∇x ·

( 1

1− ρε

ρc

∇xρ
ε
)

Note: stability of isotropic equilibria requires 1− ρε

ρc
> 0
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23Case κ(ρ) 6= 0: non-isotropic equilibria

Now, c1(ρ) = c1(κ(ρ)) 6= 0: flux does not vanish

Requires an equation for u(x, t)

Problem: no momentum conservation

Requires new concept: Generalized Collision Invariants (GCI)

Fix u and require ’momentum’ conservation only for f such that Jf ‖ u

This special ’momentum’ ~ψu is the GCI

Not explicit: solves a PDE related to Q∗

Yields ’Self-Organized Hydrodynamics’ (SOH)

∂tρ+∇x · (c1ρu) = 0

ρ (∂tu+ c2(u · ∇x)u) + ΘPu⊥∇xρ = δPu⊥∆x(c1ρu)

|u| = 1; c1, c2, Θ, δ functions of ρ; δ = 0 if η = O(ε)

~ψΩ

Ω
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24Properties of SOH

Similar to Compressible Navier-Stokes

First-order part hyperbolic under some conditions on the data

But major differences:

Geometric constraint |u| = 1

Non-conservative projection Pu⊥ and factors c, Θ, δ

c2 6= c1: loss of Galilean invariance
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25Motion of phase interfaces

Phase interface when disordered and aligned phases coexist

Connection conditions between models at interfaces between

region κ(ρ) = 0 (diffusion eq.)

and region κ(ρ) 6= 0 (SOH)

are unknown
von Mises-Fisher

equilibrium

κ(ρ) > 0

isotropic equilibrium

?

SOH modelDiffusion eq.

κ(ρ) = 0

Numerical treatment:
Relaxation ’super-model’ (no diffusion case)

∂tρ+∇x · (ρv) = 0 p′(ρ) = c1(ρ)Θ(ρ)

∂t(ρv) +∇x ·
(c2

c1
ρv ⊗ v

)

+∇xp(ρ) =
1

α
ρv

(

c1(ρ)
2 − |v2|

)

As α → 0 super-model tends to [PD, H. Yu, S. Merino-Aceituno, WIP]

SOH (if c1(ρ) > 0)

Diffusion eq (if c1(ρ) = 0)
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4. Conclusion
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27Summary & Perspectives

Complete characterization of phase transitions

in kinetic models of self-propelled particles with alignment

Order of phase transition fully determined

Occurrence of hysteresis in case of first-order phase transitions

Derivation of macroscopic models of Self-Propelled particles

Diffusion in regions where isotropic equilibria are stable

New hydrodynamics in regions of anisotropic equilibria

Opens new challenges in analysis and numerical simulation

Model has potential validity for large class of phenomena

can be improved → attraction/repulsion, volume exclusion . . .
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